Classification of behavior disorders in adolescence: scaling methods, predictive validity, and gender differences

David M. Fergusson
Joseph M. Boden
L. John Horwood

Christchurch Health and Development Study
University of Otago, Christchurch School of Medicine and Health Sciences
Christchurch, New Zealand

Corresponding author: Prof. David M. Fergusson, Christchurch Health and Development Study, Christchurch School of Medicine and Health Sciences, PO Box 4345, Christchurch, New Zealand
Phone: +643 372 0406 Fax: +643 372 0407 Email: dm.fergusson@otago.ac.nz
Abstract

The present study examined issues relating to the measurement and discriminant validity of DSM diagnostic criteria for behavior disorders in adolescence (conduct disorder; oppositional/defiant disorder; attention deficit/hyperactivity disorder). Data were obtained from a birth cohort of 995 New Zealand-born individuals studied to the age of 25, and modelled associations between behavior disorder from ages 14 to 16 (CD; ODD; ADHD) later outcomes including crime, substance use, mental health, parenthood/partnership outcomes, and education/employment outcomes to age 25. The associations between behavior disorders and outcomes were adjusted for both comorbid behavior disorders and a range of confounding factors. The results suggested that: i) dimensional measures of behavior disorder were more strongly correlated with outcomes than categorical (DSM) measures; ii) CD, ODD and ADHD each had a distinctive pattern of associations with longer-term consequences; and iii) there was no evidence to suggest that the developmental consequences of CD, ADHD and ODD differed by gender. In general, the results supported the validity of DSM diagnostic domains, but also highlighted the importance of DSM-V including methods for both recognising the severity of disorder and addressing subclinical symptom levels.
This paper is one of a series of papers examining the proposed DSM-V classification of disruptive behavior disorders. This classification proposes that disruptive behaviors in childhood and adolescence can be classified into the following diagnostic categories: 1) Conduct Disorder; 2) Oppositional Defiant Disorder; and 3) Attention Deficit Hyperactivity Disorder (Castellanos, 2008; Moffitt et al., 2008).

While these classifications are founded on substantial bodies of research evidence and clinical experience a number of questions require further analysis (Moffitt et al., 2008). In this paper we address three fundamental questions relating to the Conduct Disorder (CD), Oppositional Defiant Disorder (ODD) and Attention Deficit Hyperactivity Disorder (ADHD) classifications in adolescence. These questions are as follows.

1. Scales or Categories

A tension that follows the DSM classification of disruptive behaviors concerns the extent to which these classifications identify: a) qualitatively distinct groups of children with a clearly defined disorder; or b) extremes of underlying dimensional variables. It is clear that the weight of the evidence now favours the view that DSM classifications of disruptive behaviors are more likely to represent the extremes of underlying dimensions than discrete diagnostic categories (Fergusson & Horwood, 1995b; Helzer, Bucholz, & Gossop, 2007; Hudziak, Achenbach, Althoff, & Pine, 2007; Krueger & Bezdjian, 2009; Krueger, Markon, Patrick, & Iacono, 2005). The area in which the differences between categorical descriptions and dimensional models of disruptive behavior are likely to be most marked is in the area of predictive validity. More specifically, simulations have shown that dichotomising an underlying continuous distribution may lead to substantial loss of predictive validity with this loss being particularly marked when the classification involves the extremes of the distribution (Altman & Royston, 2006; MacCallum, Zhang, Preacher, & Rucker, 2002). Therefore, the first issue addressed in this study concerns the extent which the predictive
validity of measures of CD, ODD and ADHD varies between continuous and categorical representations of symptoms of these disorders.

2. Patterns of associations between behavior disorders and outcomes

A second issue concerns the extent to which symptoms of CD, ODD and ADHD predict future developmental outcomes, including: crime; mental health disorders; substance use; relationship and parenthood difficulties; and educational achievement and related outcomes, when due allowance is made for the comorbidity of these disorders and potentially confounding factors that may be associated with the disorder and later outcomes (Moffitt et al., 2008). Of particular interest is the extent to which each disorder has a distinctive pattern of associations with later outcomes; evidence of a distinctive profile of associations for each disorder would provide support for the validity of DSM diagnostic domains.

While there is a substantial body of evidence on the linkages between disruptive behavior in childhood and later outcomes (Boylan, Vaillancourt, Boyle, & Szatmari, 2007; Burke, Loeber, & Birmaher, 2002; Flory & Lynam, 2003; Keenan, Loeber, & Green, 1999; Moffitt & Scott, in press; Robins, 1991; Zoccolillo, 1992), to our knowledge no study has compared the long terms outcomes of CD, ODD and ADHD in terms of a wide range of outcomes. In the present study we attempt that task by examining the relationship between symptoms of CD, ODD and ADHD assessed at the ages of 14-16 years and developmental outcomes in a New Zealand birth cohort studied to the age of 25. Underlying this investigation is an interest in determining the future risk profile of each disorder. While there has been substantial research which has examined developmental differences in the outcomes of CD and ADHD (Broidy et al., 2003; Disney, Elkins, McGue, & Iacono, 1999; Fergusson & Horwood, 1995a; Fergusson, Horwood, & Lynskey, 1993a; Fergusson, Horwood, & Ridder, 2007; Fergusson, Lynskey, & Horwood, 1993; Flory, Milich, Lynam, Leukefeld, & Clayton, 2003; Gunter, Arndt, Riggins-Caspers, Wenman, & Cadoret, 2006; Lynskey & Fergusson, 1995; Molina & Pelham, 2003), less has been known about the differences between ODD and CD
or ADHD (Biederman, Petty, Dolan et al., 2008; Biederman, Petty, Monuteaux et al., 2008; Copeland, Shanahan, Costello, & Angold, 2009; Stringaris & Goodman, 2009a, , 2009b). The present study aims to explore this issue.

3. Gender Differences

It has been well-documented that CD, ADHD and ODD are far more common in males than females (Boylan et al., 2007; Eme, 2007; Hudziak et al., 2007; Moffitt, Caspi, Rutter, & Silva, 2001; Stefanatos & Baron, 2007; Zoccolillo, 1992). This observation has led to debates about the extent to which gender-specific measures and thresholds should be set in the definition of these disorders (Moffitt et al., 2001; Rutter et al., 2004; Zahn-Waxler, 1993; Zoccolillo, 1993). One way of approaching this issue is to examine whether the relationships between CD, ADHD, ODD, and later outcomes vary with gender. Evidence suggesting different relationships for males and females would support the need for gender-specific criteria, whereas findings of gender similarities in these relationships would be consistent with the view that, for prognostic purposes, a common set of criteria may be used to measure males and females.

Overview

To address each of these questions we used data gathered as part of the Christchurch Health and Development Study (CHDS), a longitudinal study of a birth cohort of 1265 New Zealand born children who have been studied from birth to the age of 25. This paper uses the data to examine the relationships between diagnostic criteria at ages 14 to 16 and outcomes up to the age of 25, with these analyses focussing on the three questions relating to predictive validity outlined above. First, we contrast the predictive validity of dimensional models that rank cohort members by the extent of disorder with corresponding diagnostic models based on DSM criteria to examine the differences in the predictive validity of dimensional and categorical representations of DSM diagnoses. Second, we examine whether different disorders (CD, ODD, and ADHD) in adolescence have different
developmental consequences for outcomes assessed from adolescence into adulthood. Finally, we fit nested models to test whether the predictive validity of adolescent DSM criteria varies with gender.

Method

Data were gathered during the course of the Christchurch Health and Development Study, a longitudinal study of an unselected birth cohort of 1,265 children born in the Christchurch (New Zealand) urban region during a 4-month period in mid-1977. This cohort has been studied at birth, 4 months, 1 year, annual intervals to age 16 years, and at ages 18, 21, and 25 years. A more detailed description of the study and an overview of study findings have been provided by Fergusson and Horwood (2001). The present analyses were based on the 995 participants for whom information was available regarding behavioral disorders during the period 14-16 years and adult outcomes at ages 21 and 25 years (78.7% of the original sample).

Disruptive Childhood Behaviors 14-16 Years

Information concerning disruptive childhood behavior was obtained at two assessments taking place when the sample members were aged 15 and 16 years. At each age, sample members were interviewed on a comprehensive mental health interview that examined aspects of mental health and adjustment over the previous 12 months. A parallel interview was also conducted with the child’s mother at each assessment stage. The two interviews were conducted at different sites (mothers were interviewed at home and children at school) and by different interviewers. All information obtained was subject to the signed consent of study participants.

As part of the assessments at each age information was obtained on DSM-III-R (American Psychiatric Association, 1987) symptom criteria for disruptive childhood behaviors, including conduct disorder (CD), oppositional defiant disorder (ODD), and attention deficit hyperactivity disorder (ADHD) (Fergusson, Horwood, & Lynskey, 1993b). For child self-report, the assessment
of ODD and ADHD was based on the relevant sections of the Diagnostic Interview Schedule for Children (DISC) (Costello, Edelbrock, Kalas, Kessler, & Klaric, 1982), whereas CD was assessed using the Self-Report Early Delinquency (SRED) scale (Moffitt & Silva, 1988). For parental reports ODD and ADHD were assessed using items from the Revised Behavior Problems Checklist (RBPC) (Quay & Peterson, 1987), and CD was assessed using a parent version of the SRED. The combined symptom data thus comprised information on DSM-III-R symptom criteria for two separate 12 month periods (ages 14-15 and 15-16 years) from two sources (parent, self-report).

The ways in which this information was used to derive DSM-III-R symptom criteria and disorder classifications has been described in detail in a previous paper (Fergusson, Horwood et al., 1993b). However, for the purposes of the present analysis it was desirable to have disorder classifications that mirrored the DSM-IV as closely as possible. Since data were not available on all DSM-IV (American Psychiatric Association, 1994) symptom criteria it was necessary to develop operational definitions of disorder as follows:

For CD, maternal report data were available for all but one of the 15 DSM-IV criteria (forced sexual activity), and for self-report data were available all but two of the criteria (often bullies, threatens, intimidates; forced sexual activity). The diagnostic criterion of the presence of three or more symptoms in a given 12 month period was applied for both maternal and self-reports. Two-thirds of those classified as meeting criteria for CD on the basis of maternal or self-report showed an onset of symptoms before age 10, as assessed using prospectively-collected maternal and teacher reports of conduct problems in middle childhood.

For ODD, data were available for all eight symptom criteria for self report and all but one of the eight criteria for maternal report (often angry and resentful). The diagnostic criterion of the presence of four or more symptoms in a given 12 month period was applied for both maternal and self-report. However, in order to avoid creating arbitrary dependencies between CD and ODD in the analysis, the usual exclusion criteria between CD and ODD were ignored. That is, participants could be classified as having both CD and ODD.
For ADHD, of the DSM-IV symptom criteria for inattention, self report data were available for six symptoms and maternal report data for five of the nine symptom criteria. Data were not available for both parent and self-report on inattention criteria (a), (e) and (i), and for parent report only on criterion (g). For hyperactivity-impulsivity self report data were available for eight symptoms and maternal report for six of the nine symptom criteria. The missing hyperactivity-impulsivity criteria included symptoms (c), (d) and (f) for parent report and symptom (e) for self-report. To deal with the reduced item set the cut-point for a disorder classification in a given 12 month period was reduced to five or more symptoms of inattention for both maternal and self reports; whereas the criterion of six or more symptoms of hyperactivity/impulsivity was retained.

In terms of the additional classification criterion that evidence of ADHD be present during childhood, examination of the data showed that all of the participants classified as meeting criteria for ADHD during the period 14-16 years had displayed at least some ADHD symptomatology by age 7 on the basis of prospective maternal or teacher report.

The observed symptom reports and the modified diagnostic criteria above were used to derive two measures reflecting the extent of disordered behavior in each domain (CD, ODD, ADHD) over the two year period from age 14-16 years.

1. The first measure, used for the purposes of data display, classified participants into one of three groups, reflecting the extent to which the individual met diagnostic criteria for each disorder on the basis of either maternal or self report at either the age 15 or the age 16 interview. Each cohort member therefore had four opportunities for behavior disorder classification (maternal report age 15; self-report age 15; maternal report age 16; self-report age 16). These groups were: (i) no symptoms, the participant was never reported by either mother or child as having any symptoms of the disorder; (ii) sub-clinical, the participant was reported by either mother or child as meeting criteria for at least one symptom of disorder but never met full diagnostic criteria; (iii) clinical, the participant met diagnostic criteria for disorder on the basis of either self or maternal report or both. Combining parental and self report measures of disorder in this
manner was done on the basis of previous research in the cohort that examined a range of alternatives for combining multiple informant data, including optimal informant and latent class approaches (Fergusson, Horwood et al., 1993b). This analysis showed that all approaches led to similar rates of classification of disorder.

For the purposes of comparison with the continuous scale score (below), each of the three-level measures was dichotomized, classifying participants into clinical/non-clinical categories for CD, ODD, and ADHD.

2. The second measure, used for the main data analyses, was a continuous scale measure reflecting the number of symptom criteria reported for each disorder. This measure was based on a count of the number of symptoms of disorder reported by either the mother or child over the two year period. In calculating this measure a symptom was recorded as present if it was reported by either source (mother or child) in either of the interview periods (14-15, 15-16 years). The correlations between each measure were as follows: \(r (\text{CD-ODD}) = .62; \ r (\text{CD-ADHD}) = .53; \ r (\text{ODD-ADHD}) = .73. \)

Outcome measures

Crime.

Number of self-reported property/violent offenses, ages 18-25. At ages 21 and 25, cohort members were questioned about their criminal behaviors since the previous assessment using an instrument based on the Self-Report Delinquency Inventory (SRDI: Elliott & Huizinga, 1989) supplemented by additional custom-written survey items. This information was used to derive count measures of the number of self-reported property/violent offenses committed in each year over the period from age 18 to age 25 years. Property offenses were defined to include theft, burglary, breaking and entering, vandalism, fire setting, and related offenses; violent offenses included assault, fighting, use of a weapon, or threats of violence against a person. For each category of offense, the total number of self-reported offenses were summed over the period to
derive a measure of the total number of property and violent offenses committed during the period 18-25 years.

Number of times arrested, ages 18 to 25. At ages 21 and 25, cohort members were questioned about any contacts they may have had with the police and courts during each year following the previous assessment. In particular, they were asked whether or not they had been arrested for any reason during each year, and, if so, they were asked to provide details of the circumstances leading to the arrest and the consequences of the arrest. For the purposes of the present investigation, the responses to these measures were summed to derive a measure of the total number of self-reported arrests during the period 18 to 25 years.

Substance use.

Nicotine dependence symptoms, ages 18-25. At ages 21 and 25, participants were questioned as to the frequency with which they had smoked cigarettes during the month prior to the assessment. Those who reported smoking were further questioned using custom written survey items to assess DSM-IV (American Psychiatric Association, 1994) symptom criteria for nicotine dependence. For the purposes of the present analyses, the symptom reports at ages 21 and 25 were combined to create a measure of the total number of symptoms of nicotine dependence reported at age 21 or 25 years, where each symptom was counted as present if it was reported at either age.

Alcohol abuse/dependence symptoms, ages 18-25. At ages 21 and 25 years, study participants were interviewed on a structured mental health interview designed to assess aspects of mental health and psychosocial adjustment since the previous assessment. As part of the mental health assessment at each age, components of the Composite International Diagnostic Interview (CIDI)(World Health Organization, 1993) were used to assess DSM-IV symptom criteria for alcohol abuse/dependence. Participants were questioned about alcohol abuse/dependence symptoms occurring in the past 12 months, and during each 12 month period following the previous assessment. For the purposes of the present analysis, the symptom reports were combined to create
a count measure of the total number of symptoms of alcohol abuse/dependence reported at any time during the period 18 to 25 years. In calculating this score, symptom reports were first pooled over assessment periods to record a symptom as present if it was reported at least once during the period 18 to 25 years.

Illicit drug abuse/dependence symptoms, ages 18-25. At ages 21 and 25, cohort members were questioned as to their use of a range of illicit drugs, including cannabis. In addition, those who reported using illicit drugs were further questioned regarding symptoms of abuse/dependence on illicit drug using items of the CIDI relevant to DSM-IV symptom criteria for abuse of/dependence upon cannabis and other illicit drugs. For the purposes of the present analysis, the symptom reports were combined to create a count measure of the total number of symptoms of illicit drug abuse/dependence that were reported at any time during the period 18 to 25 years, where each symptom was recorded as present or absent on the basis of the pooled reports across the two assessment periods.

Mental health disorders.

Major depression/anxiety disorder, ages 18-25. At ages 21 and 25, participants were questioned regarding symptoms of major depression and a range of anxiety disorders (including generalized anxiety disorder, panic disorder, agoraphobia, social phobia, and specific phobia) using CIDI items and DSM-IV diagnostic criteria. For the purposes of the present analysis sample members who met DSM diagnostic criteria for a major depressive episode or one or more anxiety disorders at any time during either assessment period (18-21 years; 21-25 years) were classified as having major depression/anxiety disorder during the period 18-25 years.

Anti-social personality disorder (ages 18-25). At ages 21 and 25, anti-social personality disorder was assessed using custom-written survey items reflecting the DSM-IV criteria for anti-social personality disorder. These items were considered to have face validity due to their derivation from DSM-IV behavioral descriptors. Sample members who met diagnostic criteria for
anti-social personality disorder during an assessment period (18-21 years; 21-25 years) were classified as having the disorder during the period 18-25 years.

Number of suicide attempts, ages 18-25 years. Suicidal behavior during the periods 18-21 years and 21-25 years was assessed via self-report by asking sample members whether they had ever thought about killing themselves or had attempted suicide during the assessment period, and the frequency of such thoughts or attempts. For the purposes of the present analyses, the number of suicide attempts reported by participants during each assessment period were summed over the assessment periods to derive a measure of the total number of suicide attempts during the period 18 to 25 years.

Pregnancy/parenthood/partnership outcomes.

Pregnancy/parenthood by age 20. At ages 16, 18, and 21, participants were questioned about their history of pregnancy and parenthood. Female cohort members were questioned as to whether they had ever become pregnant, and the age(s) that this had occurred; while male cohort members were questioned as to whether they had ever gotten a partner pregnant, and the age(s) that this had occurred. In addition, all cohort members were asked whether they had ever become a natural parent, and the age(s) that this had occurred. Those cohort members who indicated that they had gotten pregnant/gotten a partner pregnant prior to age 21 were classified using a dichotomous measure as having a pregnancy by age 20. Those cohort members who indicated having become a natural parent prior to age 21 were classified using a dichotomous measure as being a parent by age 20. The youngest age of parenthood in the cohort was age 16.

Interpartner violence (IPV) perpetration, ages 24-25. At age 25, sample members in partnerships of over one month duration in the last year were asked about the occurrence of IPV perpetration using a 22-item scale that incorporated selected items from the Revised Conflict Tactics Scale (CTS2, Straus, Hamby, Boney-McCoy, & Sugarman, 1996). The selected items spanned the domains of minor psychological aggression, severe psychological aggression, minor
physical assault, severe physical assault, and sexual coercion as described by Straus et al. (1996).

To devise a measure of the overall perpetration of violence in the cohort, each item was scored in dichotomous (absent/present) form and a scale score created from the sum of these items. The scale was found to have adequate reliability ($\alpha = .79$).

Education/employment outcomes.

Delayed reading. At age 18, the word recognition skills of sample members were assessed using the New Zealand revision of the Burt Word Reading Test (Gilmore, Croft, & Reid, 1981). This measure was scored in two ways. First, for each participant a total test score representing the number of correct responses was computed. Second, a dichotomous measure of reading delay was constructed by classifying participants with a test score that was below the normed score indicating a reading age of 12 (scores of 90 or below) as being reading delayed.

Leaving school without qualifications. At age 18, sample members were questioned regarding their educational history. In particular, information was obtained on attainment of high school qualifications. For the purposes of the present analyses, participants who had left school by age 18 and had failed to attain a recognized high school qualification were classified as having left school without qualifications.

Attained university degree or equivalent. At age 25, sample members were questioned as to whether they had ever attained a Bachelor’s level or higher degree from a university or tertiary institution. Those who reported having attained this level of qualification were classified using a dichotomous measure as having obtained a university degree by age 25.

Educational achievement rank score. An additional measure was devised to reflect the overall progression of each cohort member through the hierarchy of educational qualifications. Each level in the progression was assigned an ordinal value (from 0 = no high school qualifications to 6 = gained university degree), and each individual received a score based on his or her highest
level of qualification. This score served as a measure of educational achievement rank score in these analyses.

Personal income, age 25. At age 25 sample members were asked to estimate their personal gross income from all sources over the previous 12 months. This estimate served as the measures of personal and income (in New Zealand dollars) at age 25 (personal income, M = 28,538; SD = 18,688).

Covariate factors

A range of covariate factors were selected from the study database on the basis that they were associated with the range of outcomes listed above. These factors included:

Measures of family economic circumstances.

Mother’s age. The mother’s age was recorded at the birth of each cohort member.

Mother’s education. Maternal education levels were assessed at the participant’s birth using a three point scale: 1 = mother lacked formal educational qualifications (had not graduated from high school); 2 = mother had secondary level qualifications (had graduated from high school); 3 = mother had tertiary level qualifications (had obtained a university degree or tertiary technical qualification).

Family living standards (0-10 years). At each year a global assessment of the material living standards of the family was obtained via interviewer rating. Ratings were made on a five point scale that ranged from “very good” to “very poor”. These ratings were averaged over the 10 year period to give a measure of typical family living standards during this period.

Family socioeconomic status (at birth). This was assessed at the time of the participant’s birth using the Elley-Irving (Elley & Irving, 1976) scale of socioeconomic status for New Zealand. This scale classifies SES into levels on the basis of paternal occupation ranging from 1 = professional occupations to 6 = unskilled occupations.
Average family income (0-10 years). At each year estimates of the family’s gross annual income were obtained from parental report. These income estimates for each year were recoded into decile categories and the resulting measures then averaged over the ten year period to produce a measure of the family’s averaged income decile rank.

Measures of family functioning.

Parental illicit drug use. When sample members were aged 11, information was obtained from parents as to whether any parent had a history of illicit drug use. Participants were classified as having a parent history of illicit drug use if one of his/her parents was reported to have a history of illicit drug use.

Parental criminality. When sample members were aged 15 years, their parents were questioned as to whether any parent had a history of criminal offending. Participants were classified as having a parent history of criminality if one of his/her parents was reported to have a history of offending.

Parental alcohol problems. When sample members were aged 15 years, their parents were questioned as to whether any parent had a history of problems with alcohol, or alcohol dependence. Participants were classified as having a parent history of alcohol problems if one of his/her parents was reported to have a history of alcohol problems.

Family problems measure. A measure of family problems was calculated using a count measure of 38 different measures of family disadvantage during the period 0-15 years, including measures of disadvantaged parental background, poor pre-natal health practices and perinatal outcomes, and disadvantageous child-rearing practices (Fergusson, Horwood, & Lynskey, 1994a).

Changes of parents to age 15. As part of the study data on changes of parents were collected at annual intervals (Fergusson, Horwood, & Lynskey, 1994b). These data were used to construct a measure of the number of changes of parent figures during the interval from birth to the
age of 15 years, including changes due to parental separation/divorce, reconciliation, remarriage, death, and other changes of custodial parents.

Exposure to abuse in childhood.

Childhood sexual abuse. At ages 18 and 21 years sample members were questioned about their experience of sexual abuse during childhood (< 16 years); (Fergusson, Lynskey, & Horwood, 1996). Questioning spanned an array of abusive experiences from episodes involving non-contact abuse (e.g. indecent exposure) to episodes involving attempted or completed intercourse. Using this information a 4-level scale was devised reflecting the most extreme form of sexual abuse reported by the young person at either age.

Parental use of physical punishment (childhood physical abuse). At ages 18 and 21 sample members were asked to describe the extent to which their parents used physical punishment during childhood (Fergusson & Lynskey, 1997). Separate questioning was conducted for mothers and fathers. This information was used to create a 4-level scale reflecting the most severe form of physical punishment reported for either parent.

Childhood cognitive ability and educational achievement.

Child cognitive ability. Cognitive ability was assessed at ages 8 and 9 using the Revised Wechsler Intelligence Scale for Children (WISC-R: Wechsler, 1974). Total IQ scores were computed on the basis of results on four verbal and four performance subscales. The split half reliabilities of these scores were .93 at age 8 and .95 at age 9. For the purposes of the present analysis the observed WISC-R total IQ scores at age 8 and 9 were combined by averaging over the two administrations.

Grade point average ages 11-13 years. School performance was assessed via teachers’ ratings in each of five areas of the curriculum (reading, handwriting, written expression, spelling, mathematics) using a 5-point scale ranging from very good to very poor. To provide a global
measure of the child’s educational achievement over the interval from 11-13 years, the teacher ratings were summed across years and curriculum areas and then averaged to provide a teacher rating grade point average for each child.

Adolescent depression/anxiety.

Internalizing disorder, ages 14-16. Parallel to the assessment of disruptive behavior disorders, ages 15 and 16 years cohort members and their parents were questioned about symptoms of major depression and anxiety disorders (generalized anxiety disorder; over-anxious disorder; social phobia; simple phobia) occurring in the previous 12 months using the relevant sections of the Diagnostic Interview Schedule for Children (DISC; Costello et al., 1982). These items were used to classify participants according to DSM-III-R (American Psychiatric Association, 1987) symptom criteria for major depression and anxiety disorders. Participants were classified as having major depression or an anxiety disorder during the period 14-16 years if they met criteria for disorder on the basis of either self or parental report over the period 14-16 years.

Statistical analyses

The analyses of the present data were conducted in several stages. In the first stage, the associations between the three level dimensional measures of CD, ODD, and ADHD (none; subclinical; clinical) and each of the outcomes was examined using the Mantel-Haenszel chi-square test of linear trend for dichotomous outcomes, or the F-test of linearity from one-way ANOVA for continuous and count measures.

In the second stage of the analysis, to compare the predictive utility of the continuous symptom scale measure of each behavior disorder with a dichotomous disorder classification, Pearson correlations were computed between the alternative measures of CD, ODD, and ADHD and each of the outcomes. The squares of these correlations provide estimates of the proportion of variance explained in each outcome by each measure of disorder. The distribution of these variance
explained estimates for each measure and disorder was plotted as a box-whisker diagram using the Graph Plot function in Stata 10.0 (StataCorp, 2007).

In the third stage of the analyses, the associations between the continuous scale measures of CD, ODD, and ADHD and each of the outcome measures were modelled using logistic regression (for dichotomous outcomes); negative binomial regression (for count measures); and multiple regression (for the measures of income and overall educational achievement). Two models were fitted for each outcome; first, to control for comorbidity between each of the behavior disorders, the scale measures for the three disorders were entered into the regression model simultaneously. Second, in order to control for potential confounding, the fitted models were then extended to incorporate the covariate factors described above. All covariates were included in all models. A Sidak correction (Sidak, 1971), which accounts for correlations between outcome measures, was used to control for the effect of multiple significance tests (48 in total) of the adjusted associations between each disorder and the outcomes.

Finally, to examine whether there were gender differences in the extent to which the dimensional measures of behavior disorder were associated with later outcomes, the associations between each outcome and CD, ODD, and ADHD were modelled using a moderated regression approach by fitting a series of nested regression models of the general form:

\[F(Y)^k = B0^k + \sum B_j^k X_j \]

where \(Y \) represented a given outcome, and \(F(Y) \) was either the log odds of \(Y \) (for dichotomous outcomes), the log rate of \(Y \) (for count measures), or the mean of \(Y \) (for continuous outcomes); and \(X_j \) were the set of predictors (measures of CD, ODD, ADHD symptoms, and covariate factors). In these models gender-specific intercept parameters \(B0^k \) and slope parameters \(B_j^k \) for predictors \(X_j \) were fitted simultaneously within the same regression model. The parameters \(B_j^k \) represent the effect of the predictors within levels of gender \(k \) (\(k = 1 \) male; \(k = 2 \) female). Tests of gender equality of slope for each measure of disruptive behavior were derived from Wald chi-square tests of the null hypothesis that \(H_0: B_j^1 = B_j^2 \) for each \(X_j \).
Results

Prevalence and comorbidity of CD, ODD, and ADHD (ages 14-16)

Examination of the data showed that 21.8% of the sample met DSM-IV (American Psychiatric Association, 1994) symptom criteria for a diagnosis of a behavior disorder. In terms of comorbidity, 13.1% of the sample met criteria for one behavior disorder; 6.1% of the sample met criteria for two behavior disorders; and 2.6% met criteria for all three behavior disorders. For CD, 10.6% of the sample (7.4% of females; 13.7% of males) met DSM-IV criteria for the disorder; for ODD, 15.1% of the sample (15.0% of females; 15.1% of males) met DSM-IV criteria for the disorder; and for ADHD, 7.5% of the sample (6.2% of females; 8.9% of males) met DSM-IV criteria for the disorder. For those meeting criteria for two behavior disorders, 5.6% met criteria for both CD and ODD (4.0% of females; 7.3% of males); 5.5% met criteria for both ODD and ADHD (4.2% for females; 6.9% for males); and 2.8% met criteria for both CD and ADHD (1.0% for females; 4.6% for males).

Associations between dimensional measures of CD, ODD, ADHD (ages 14-25) and outcomes to age 25

Table 1 shows the sample classified into three groups (none; subclinical; clinical) according to the extent to which participants met diagnostic criteria for CD, ODD, and ADHD (see Methods). The Table reports associations between these classifications of CD, ODD, and ADHD measured at ages 14-16, and a series of outcome measures to age 25 in the areas of: crime; substance use; mental health; pregnancy/parenthood/partnership; and education/employment (see Methods). The Table shows the rates (for dichotomous outcomes) or mean scores and standard deviations (for continuous and count measures) for each of three levels of CD, ODD, and ADHD symptoms.

The Table shows that, for all outcomes, increasing severity of disorder was associated with increasing risks of crime; substance dependence; mental health disorders; early parenthood;
interpartner violence; lower educational achievement; and lower income. In all cases those meeting criteria for disorder had the worst outcomes; those with no symptoms had the best outcomes; and those with sub-clinical symptoms had outcomes that were intermediate between the other two groups. In all but one case, there was evidence of a statistically significant (p < .05) linear trend as tested by the Mantel-Haenszel chi square test of linearity (for dichotomous outcomes) and by the F-test for linearity (for continuous and count measures).

Scales or categories

In the previous section, Table 1 demonstrated that there was evidence of linear relationships between the extent of disruptive behavior and each outcome. This result is consistent with the view that the measures of CD, ODD and ADHD are best conceptualised as dimensional variables in which the severity of disorder varies from none to severe. To explore the implications of dimensional versus categorical scaling of DSM symptoms, comparisons were made of the predictive power of two representations of these symptoms: a) a dimensional (scale score) model in which the severity of disorder was represented by the number of DSM-IV criteria present; and b) a categorical model in which respondents were classified as disordered or non disordered using DSM-IV criteria.

The results of these analyses are depicted in Figure 1, which shows box-whisker plots of the distribution of shared variance estimates for each of the 16 outcomes for each measure of disorder (CD scale score; CD dichotomous; ODD scale score; ODD dichotomous; ADHD scale score; ADHD dichotomous). These comparisons showed that the scale score model consistently out performed the categorical DSM-IV model in terms of its capacity to predict later outcomes. Specifically:
1. For CD variance estimates for the scale score measure ranged from .006 to .199 with a median value of .065; in contrast, the estimates for the DSM-IV classification ranged from .002 to .113 with a median value of .032.

2. For ODD, variance estimates between the scale score measure and outcomes ranged from .018 to .141 with a median value of .054; in contrast the estimates for the DSM-IV classification ranged from .004 to .089 with a median of .030.

3. For ADHD, variance estimates between the scale score measure and outcomes ranged from .010 to .162 with a median value of .052; in contrast the estimates for the DSM-IV classification ranged from .001 to .06 with a median of .017.

On average, estimates of explained variance for the categorical model were only 0.49 (95% CI: 0.42-0.55) times the values for the corresponding scale score model.

INSERT FIGURE 1 HERE

Adjustment for comorbid disorders and confounding factors

To examine the extent to which each of the disorders listed in Table 1 was associated with later outcomes after control for both comorbidity and potential confounding, the associations between the three behavior disorder scale score measures and outcomes were modelled. The results of these analyses are shown in Table 2, which shows the unstandardized regression coefficients, standard errors, and tests of significance for the associations between each of the three dimensional measures of CD, ODD, and ADHD, and outcomes to age 25, after adjusting the associations for: a) comorbid behavior disorders; and b) both comorbid behavior disorders, and the full range of potentially confounding factors described above. Finally, the Table also reports on the statistically significant (p < .05) confounding factors in the analyses (further information concerning specific confounding factors can be obtained from the authors by request). The Table shows:
1. Adjustment for comorbid disorders reduced the number of statistically significant (p < .05) associations between behavior disorders and outcomes. Accounting for comorbidity between behavior disorders clearly limited the extent to which some disorders were predictive of some adverse outcomes.

2. In general, adjustment for both comorbid behavior disorders and confounding factors further reduced the magnitude of the associations between each behavior disorder and each outcome. Exceptions to this pattern were found for the associations between ODD and the measures of crime and ASPD, which became stronger after controlling for both comorbid disorders and confounding factors. These findings suggest that confounding factors may have served to suppress the associations between ODD and behavior disorders to some extent.

3. After adjustment for comorbid behavior disorders and confounding factors, CD and ODD had differing patterns of association with later outcomes, although there were some similarities. For example, both CD and ODD were significantly (p < .05) associated with property/violent crime. However, CD was significantly (p < .05) associated with several education/employment outcomes, whereas ODD was not; similarly, CD was significantly (p < .05) associated with all three substance use outcomes, whereas ODD was not. In addition, CD was significantly (p < .05) associated with early pregnancy and parenthood, and IPV perpetration, whereas ODD was not. On the other hand, ODD was associated with all three adverse mental health outcomes after controlling for confounding factors, including contemporaneous internalizing disorders, whereas CD was associated with only later ASPD. In general, both CD and ODD were predictive of later adverse outcomes after adjustment for comorbid disorders and confounding factors, although CD had a broader pattern of associations with outcomes than did ODD.

4. In contrast, after adjustment for comorbid behavior disorders and confounding factors, ADHD was significantly (p < .01) associated with outcomes in the area of education/income. However, ADHD symptoms, after controlling for CD symptoms, were not related to increased risk in
adverse outcomes in any of the other areas (crime; substance use; mental health; pregnancy/parenthood/partnership) after adjustment.

5. Application of the Sidak corrected p-value (p = .0182) for correlated multiple comparisons (Sidak, 1971) suggested that, after correction for multiple comparisons, the pattern of results remained generally consistent. The exceptions to this were that the adjusted associations between: ODD and later ASPD; CD and pregnancy; and CD and later intimate partner violence were no longer statistically significant after applying the Sidak correction.

INSERT TABLE 2 HERE

Tests of gender differences

To examine whether there were gender differences in the extent to which the dimensional measures of behavior disorder were associated with later outcomes, after adjustment for comorbid disorders and confounding factors, nested regression methods were used to test the similarity of model parameters across gender groups (see Methods).

The results of these analyses showed that, of the 48 comparisons made, there was only a single significant (p < .05) gender difference in the association between a behavior disorder measure and an outcome. For self-reported property and violent crime, the association with CD was stronger for females. However, this difference was no longer significant upon application of the Sidak correction for multiple significance testing. In general, the results of these analyses showed that there was very little evidence to suggest that the associations between the dimensional measures of behavior and later adverse outcomes differed according to gender.

Discussion

In this paper we have addressed three issues relating to the measurement and discriminant validity of DSM diagnostic criteria for conduct disorder (CD), oppositional/defiant disorder (ODD)
and attention-deficit/hyperactivity disorder (ADHD), using prospective data from a longitudinal birth cohort. These issues were:

Scales versus categories

The first stage of our analysis examined the extent to which there was evidence of consistent relationships between the extent of disruptive behavior disorders and subsequent developmental outcomes in a number of domains. These data (Table 1) showed consistent evidence of increasing risks of outcomes with increasing levels of symptoms of CD, ODD and ADHD. These findings are consistent with a growing body of evidence that suggests that DSM criteria for disruptive behavior disorders describe broad dimensional measures that rank the population on underlying dimensions in which the severity of symptomatology ranges from none to severe (Broidy et al., 2003; Fergusson & Horwood, 1995b; Helzer et al., 2007; Hudziak et al., 2007; Krueger & Bezdjian, 2009; Krueger et al., 2005). There is also increasing agreement in discussions of the measurement of disorder of the need to distinguish levels of severity of disorder (Altman & Royston, 2006; Bissonnette, Ickes, Bernstein, & Knowles, 1990; MacCallum et al., 2002).

In addition, the results of the analyses suggested that symptom scale scores had a greater level of predictive validity than dichotomous (categorical) measures of DSM diagnoses. On average, estimates of the proportion of variance explained in outcomes by dichotomous measures of behavior disorders were less than half the size of the estimates derived using continuous scale scores. These results suggest that classification schemes that take into account the severity of disorder will have stronger predictive validity than dichotomous classification schemes.

Irrespective of how this issue is to be addressed in DSM-V (Castellanos, 2008; Moffitt et al., 2008), the results suggest that it is important that the use of black and white diagnostic classification is supplemented by some nomenclature for both describing the severity of disorder and/or addressing the issues raised by sub-clinical symptom levels.
Discriminant validity of DSM diagnostic classifications

The second stage of the analysis examined the extent to which symptoms of CD, ODD and ADHD were associated with differing longer-term outcomes when due allowance was made for: a) the comorbidities of these disorders; and b) confounding factors. This analysis suggested that each disorder was associated with a different profile of future outcome risks.

The clearest distinction was between CD or ODD and ADHD. The analysis suggested that while CD/ODD were associated with increased risks of crime, substance use, mental health problems, and adverse parenthood/partnership outcomes, ADHD was not associated with these outcomes after control for comorbidity and confounding. This result is consistent with a series of previous findings from this study (Fergusson & Horwood, 1995b; Fergusson, Horwood et al., 1993a; Fergusson et al., 2007; Fergusson, Lynskey et al., 1993; Fergusson, Lynskey, & Horwood, 1997; Lynskey & Fergusson, 1995) all of which have found that ADHD in the absence of CD/ODD is not associated with crime or substance use but is associated with educational under-achievement and related outcomes. The present study extends these results to the age of 25, and shows that increasing ADHD symptoms in adolescence were associated with lower levels of educational achievement and income. This pattern of associations between ADHD and later educational and employment outcomes has also been observed in the present cohort using continuous symptom measures of childhood ADHD (Fergusson & Horwood, 1992; Fergusson, Horwood et al., 1993a; Fergusson et al., 1997).

While the findings of this and other studies (Biederman, Petty, Dolan et al., 2008; Brook, Duan, Zhang, Cohen, & Brook, 2008; Disney et al., 1999; Mannuzza, Klein, & Moulton, 2008; Milich & Loney, 1979; Satterfield et al., 2007; Satterfield & Schell, 1997) have shown that ADHD in the absence of CD/ODD is not associated with increased risks of crime, substance use or antisocial behavior, not all studies have found this to be the case (Barkley, Fischer, Edelbrock, & Smallish, 1990; Barkley, Fischer, Smallish, & Fletcher, 2004; Elkins, McGue, & Iacono, 2007;
Indeed, a meta-analysis (Pratt, Cullen, Blevins, Daigle, & Unnever, 2002) concluded that the weight of the evidence favoured the view that ADHD was a risk factor for later crime. The reasons for these differences in the literature on this topic are not clear, but may be related to between study differences in the extent of control for comorbidity and confounding. It is notable that findings from the CHDS have consistently shown that when due allowance is made for confounding and comorbidity, measures of ADHD have been unrelated to crime and antisocial behavior (Fergusson & Horwood, 1995b; Fergusson, Horwood et al., 1993a; Fergusson et al., 2007; Fergusson, Lynskey et al., 1993; Fergusson et al., 1997; Lynskey & Fergusson, 1995), but have been predictors of later academic achievement and related outcomes (Fergusson & Horwood, 1992, 1995a; Fergusson, Horwood et al., 1993a; Fergusson et al., 1997). A strength of the present study was the availability of both information on the comorbidities of ADHD, and on a wide range of prospectively assessed confounding factors assessed over the period from birth to adolescence. The present findings suggest that when such statistical control is applied, ADHD in the absence of CD/ODD was not associated with increased risks of crime, substance use or other forms of antisocial behavior.

The results of the present study also showed that the long term consequences of adolescent CD and ODD were also relatively distinct. The two conditions showed some overlap in terms of risks of later self-reported crime. However, ODD showed stronger linkages with internalizing problems (depression/anxiety; suicide attempts) while CD had more pervasive consequences that spanned substance use, sexual and partnership relationships, educational achievement and employment outcomes. These results support the view that CD and ODD are distinct, albeit highly correlated domains of externalising (Biederman, Petty, Dolan et al., 2008; Biederman, Petty, Monuteaux et al., 2008; Copeland et al., 2009; Stringaris & Goodman, 2009a, 2009b). The results are in general agreement with a recent study by Copeland and colleagues (Copeland et al., 2009), who showed that CD in adolescence was more likely to be associated with later ASPD and substance use, whereas ODD in adolescence was more likely to be associated with depression.
These findings and conclusions clearly support the current DSM-IV division of externalising symptoms into domains representing symptoms of CD, ODD and ADHD. Not only do CD, ODD and ADHD appear to be factorially distinct domains of externalising behaviors, these domains also have different profiles of outcome risks.

Gender differences

The third question addressed in the analysis concerned the issue of whether the relationships between disruptive behavior disorders and later outcomes varied with gender. Addressing this question is important for examining the extent to which the development of gender-specific diagnostic criteria are justified (Moffitt et al., 2001; Rutter et al., 2004; Zahn-Waxler, 1993; Zoccolillo, 1993). This question was addressed by fitting nested regression models to test the equality of regression parameters for males and females. The findings of the analysis showed that there was very little evidence to suggest that the developmental consequences of CD, ODD and ADHD varied with gender. These findings do not support the view that there is a need to develop gender-specific criteria for CD, ODD and ADHD.

Summary and implications for DSM-V

The accumulated findings of this study lead to the following conclusions about the relationships between CD, ODD and ADHD in adolescence and later developmental outcomes:

1. There was consistent evidence to suggest that DSM criteria for CD, ODD and ADHD were indicators of underlying dimensions for which the extent of disorder varied from none to severe. This results highlights the importance of DSM-V including methods for both recognising the severity of disorder and addressing subclinical symptom levels. While the present study suggested that a sizeable proportion of adolescents display symptoms of disruptive behavior disorder, the results also clearly show that increasing severity of disorders was related to increased risks of adverse outcomes.
2. There was clear evidence for the discriminant validity of CD, ODD and ADHD to the extent that each disorder had a distinctive pattern of longer term consequences. CD was associated with pervasive increases in risks of adverse psychosocial, educational and economic outcomes. The adverse effects of ADHD in isolation were confined to educational and related outcomes. The adverse outcomes of ODD were confined to increased risks of later crime and elevated risks of internalizing problems. These findings reinforce factor analytic and other evidence of the validity of these diagnostic domains (Burke et al., 2002; Fergusson, Horwood, & Lynskey, 1994c). The findings also support the assertion that CD, ODD, and ADHD each need to be included as discrete diagnostic entities in the DSM-V system for categorizing disruptive behavior disorders.

3. There was no consistent evidence to suggest that the developmental consequences of CD, ADHD and ODD in adolescence differed for males and females. These findings do not support the view that DSM-V should develop gender-specific diagnostic classifications for males and females.

Although the present study provides evidence for the utility of a dimensional approach to disruptive behavior disorders, it is clear that the categorical approach may also have significant utility, particularly in situations in which diagnostic information is required. Furthermore, the evidence for the discriminant validity of each disorder provided by the present study suggests that the categorical approach may also play a role in treatment and prognosis of disruptive behavior disorders.

Limitations

The present study has a number of limitations that should be borne in mind. Perhaps the most important of these was that the assessments of DSM criteria for disruptive behavior disorders were obtained in adolescence. This limitation made it difficult to distinguish between life-course persistent and adolescent limited disorders (Moffitt, 1993), although it was clear that the majority of
those meeting criteria for behavior disorder in adolescence also displayed behavior problems in middle childhood. The assessment of disorders using two sources (mother, child) over a two year time span may have caused the symptom count measures and prevalence estimates for each disorder to be somewhat inflated, particularly in comparison to studies that examine prevalence within a single 12-month period; while the “or” method of classification used in the present study is used commonly in the literature, debate continues as to its appropriateness in all circumstances (Kraemer et al., 2003). Also, it should be noted that the present study was unable to account for the complete range of DSM-IV symptoms for each behavior disorder during adolescence; did not have access to teacher report data on adolescent behaviors; and for each disorder, did not assess whether symptoms were associated with significant impairment. A further limitation is that the findings apply to a specific cohort studied over a particular historical period in a specific social context. The extent to which the present findings can be generalised to other cohort and social contexts requires further investigation. Finally, as with all observational studies, errors of measurement in the assessment of exposure outcomes and uncontrolled sources of confounding remain potential threats to study validity.

Acknowledgements

This research was funded by grants from the Health Research Council of New Zealand, the National Child Health Research Foundation, the Canterbury Medical Research Foundation and the New Zealand Lottery Grants Board.
References

Table 1. Associations between three-level measures of: a) conduct disorder; b) oppositional/defiant disorder; and c) attention deficit/hyperactivity disorder at ages 14-16 and outcomes to age 25.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Conduct Disorder</th>
<th>Oppositional/Defiant Disorder</th>
<th>Attention Deficit/Hyperactivity Disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None (n = 599)</td>
<td>Sub-clinical (n = 291)</td>
<td>Clinical (n = 105)</td>
</tr>
<tr>
<td>Crime</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD) property/violent crime incidents ages 18-25</td>
<td>0.84 (4.41)</td>
<td>4.11 (13.12)</td>
<td>9.83 (21.18)</td>
</tr>
<tr>
<td>Mean (SD) number of arrests ages 18-25</td>
<td>0.19 (1.12)</td>
<td>0.56 (1.72)</td>
<td>1.74 (4.63)</td>
</tr>
<tr>
<td>Substance Use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD) number of nicotine dependence symptoms ages 18-25</td>
<td>1.22 (1.99)</td>
<td>2.49 (2.53)</td>
<td>3.63 (2.32)</td>
</tr>
<tr>
<td>Mean (SD) number of alcohol abuse/dependence symptoms ages 18-25</td>
<td>1.08 (1.82)</td>
<td>1.80 (2.45)</td>
<td>2.55 (2.91)</td>
</tr>
<tr>
<td>Mean (SD) number of illicit drug abuse/dependence symptoms ages 18-25</td>
<td>0.63 (1.71)</td>
<td>1.83 (2.95)</td>
<td>2.33 (3.06)</td>
</tr>
<tr>
<td>Mental Health</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% major depression/anxiety disorder ages 21-25</td>
<td>38.6</td>
<td>50.0</td>
<td>51.5</td>
</tr>
<tr>
<td>% anti-social personality disorder ages 21-25</td>
<td>0.9</td>
<td>7.8</td>
<td>22.8</td>
</tr>
<tr>
<td>Measure</td>
<td>Conduct Disorder</td>
<td>Oppositional/Defiant Disorder</td>
<td>Attention Deficit/Hyperactivity Disorder</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Mean (SD) number of suicide attempts, ages 21-25</td>
<td>0.05 (0.33)</td>
<td>0.04 (0.30)</td>
<td>0.05 (0.32)</td>
</tr>
<tr>
<td></td>
<td>0.13 (0.64)</td>
<td>0.09 (0.47)</td>
<td>0.11 (0.62)</td>
</tr>
<tr>
<td></td>
<td>0.31 (1.16)</td>
<td>0.30 (1.14)</td>
<td>0.17 (0.88)</td>
</tr>
<tr>
<td>Linear trend p<.001</td>
<td></td>
<td></td>
<td><.001</td>
</tr>
<tr>
<td>Pregnancy/parenthood/partnership</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% pregnant/got partner pregnant by age 20</td>
<td>10.6 (25.8)</td>
<td>11.4 (18.1)</td>
<td>9.5 (19.2)</td>
</tr>
<tr>
<td></td>
<td>32.0 (32.9)</td>
<td></td>
<td>33.8 (32.8)</td>
</tr>
<tr>
<td>Linear trend p<.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% became a parent by age 20</td>
<td>3.7 (12.5)</td>
<td>4.3 (7.8)</td>
<td>3.6 (8.6)</td>
</tr>
<tr>
<td></td>
<td>20.2 (20.0)</td>
<td></td>
<td>21.6 (21.6)</td>
</tr>
<tr>
<td>Linear trend p<.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD) interpartner violence perpetration score age 24-25<sup>3</sup></td>
<td>1.55 (1.73)</td>
<td>1.40 (1.69)</td>
<td>1.60 (2.03)</td>
</tr>
<tr>
<td></td>
<td>2.22 (2.38)</td>
<td>2.13 (2.28)</td>
<td>1.96 (2.19)</td>
</tr>
<tr>
<td></td>
<td>3.20 (3.13)</td>
<td>3.01 (2.74)</td>
<td>3.07 (2.34)</td>
</tr>
<tr>
<td>Linear trend p<.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education/employment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% delayed reading (age 18)</td>
<td>17.2 (22.3)</td>
<td>16.2 (19.1)</td>
<td>13.0 (21.1)</td>
</tr>
<tr>
<td></td>
<td>28.4 (33.1)</td>
<td></td>
<td>39.4 (39.4)</td>
</tr>
<tr>
<td>Linear trend p<.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% leaving school without qualifications</td>
<td>9.1 (8.4)</td>
<td>21.0 (47.5)</td>
<td>6.0 (21.7)</td>
</tr>
<tr>
<td></td>
<td>58.2 (47.5)</td>
<td></td>
<td>53.6 (53.6)</td>
</tr>
<tr>
<td>Linear trend p<.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% university degree to age 25</td>
<td>34.8 (33.5)</td>
<td>23.4 (5.7)</td>
<td>39.2 (20.7)</td>
</tr>
<tr>
<td></td>
<td>14.6 (23.4)</td>
<td>5.7 (5.7)</td>
<td>7.3 (7.3)</td>
</tr>
<tr>
<td>Linear trend p<.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD) educational achievement rank</td>
<td>4.81 (2.11)</td>
<td>4.78 (2.08)</td>
<td>5.03 (2.03)</td>
</tr>
<tr>
<td></td>
<td>3.55 (2.15)</td>
<td>3.97 (2.26)</td>
<td>3.93 (2.22)</td>
</tr>
<tr>
<td></td>
<td>2.34 (1.79)</td>
<td>2.93 (2.10)</td>
<td>2.75 (2.19)</td>
</tr>
<tr>
<td>Linear trend p<.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD) income age 25 ($000)</td>
<td>33.0 (21.4)</td>
<td>34.2 (21.4)</td>
<td>35.2 (23.0)</td>
</tr>
<tr>
<td></td>
<td>29.8 (19.2)</td>
<td>30.4 (20.4)</td>
<td>30.5 (19.3)</td>
</tr>
<tr>
<td></td>
<td>28.7 (18.2)</td>
<td>26.9 (16.7)</td>
<td>25.8 (16.8)</td>
</tr>
<tr>
<td>Linear trend p<.001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ p-value based on test of linear trend; Mantel-Haenszel chi-square test for dichotomous measures; F-test from one-way ANOVA for continuous and count measures.
Number of participants restricted to only those being in partnerships during the period 24-25 years (n = 770)
Table 2. Associations between dimensional measures of behaviour disorders at ages 14-16 and outcomes to age 25, after adjustment for: a) comorbid disorders; and b) both comorbid disorders and confounding factors.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Adjusted for Comorbid Disorders</th>
<th></th>
<th></th>
<th>Adjusted for Comorbid Disorders and Confounding Factors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conduct Disorder</td>
<td>Oppositional/Defiant Disorder</td>
<td>Attention Deficit/Hyperactivity Disorder</td>
<td>Conduct Disorder</td>
<td>Oppositional/Defiant Disorder</td>
</tr>
<tr>
<td>--</td>
<td>--------------------</td>
<td>---------------------------------</td>
<td>--------------------------------------</td>
<td>---</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Crime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Property/violent crime ages 18-25</td>
<td>.25 (.08)</td>
<td><.01</td>
<td>.16 (.08)</td>
<td><.05</td>
<td>.09 (.04)</td>
</tr>
<tr>
<td>Arrest ages 18-25</td>
<td>.28 (.07)</td>
<td><.001</td>
<td>.07 (.08)</td>
<td>ns.</td>
<td>.06 (.04)</td>
</tr>
<tr>
<td>Substance Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicotine symptoms ages 18-25</td>
<td>.16 (.04)</td>
<td><.001</td>
<td>.04 (.04)</td>
<td>ns.</td>
<td>.02 (.02)</td>
</tr>
<tr>
<td>Alcohol symptoms ages 18-25</td>
<td>.13 (.04)</td>
<td><.01</td>
<td>.04 (.04)</td>
<td>ns.</td>
<td>.00 (.02)</td>
</tr>
<tr>
<td>Illicit drug abuse/dependence symptoms ages 18-25</td>
<td>.17 (.06)</td>
<td><.01</td>
<td>.11 (.06)</td>
<td>ns.</td>
<td>.03 (.03)</td>
</tr>
<tr>
<td>Mental Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major depression/anxiety disorder ages 18-25</td>
<td>-.03 (.05)</td>
<td>ns.</td>
<td>.16 (.05)</td>
<td><.001</td>
<td>.02 (.03)</td>
</tr>
<tr>
<td>Anti-social personality disorder ages 18-25</td>
<td>.40 (.07)</td>
<td><.001</td>
<td>.18 (.10)</td>
<td>ns.</td>
<td>-.01 (.06)</td>
</tr>
<tr>
<td>Measure</td>
<td>Adjusted for Comorbid Disorders</td>
<td>Adjusted for Comorbid Disorders and Confounding Factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conduct Disorder</td>
<td>Oppositional/Defiant Disorder</td>
<td>Attention Deficit/Hyperactivity Disorder</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B(SE) p</td>
<td>B(SE) p</td>
<td>B(SE) p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suicide attempts ages 18-25</td>
<td>.09 (.05) ns.</td>
<td>.30 (.07) <.001</td>
<td>- .05 (.04) ns.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- .03 (.06) ns.</td>
<td>.22 (.07) <.01</td>
<td>- .04 (.04) ns.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pregnancy/Parenthood/Partnership</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pregnant/got partner pregnant by age 20</td>
<td>.14 (.05) <.01</td>
<td>.09 (.06) ns.</td>
<td>.07 (.03) <.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.12 (.06) <.05</td>
<td>.03 (.06) ns.</td>
<td>.07 (.03) ns.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Became a parent by age 20</td>
<td>.21 (.06) <.001</td>
<td>.10 (.08) ns.</td>
<td>.07 (.04) ns.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.18 (.08) <.05</td>
<td>.01 (.08) ns.</td>
<td>.07 (.05) ns.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inter-partner violence perpetration age 24-25</td>
<td>.06 (.03) <.05</td>
<td>.07 (.03) <.05</td>
<td>.02 (.02) ns.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.06 (.03) ns.</td>
<td>.06 (.03) <.05</td>
<td>.02 (.02) ns.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education/employment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delayed reading age 18</td>
<td>.00 (.06) ns.</td>
<td>-.02 (.06) ns.</td>
<td>-.10 (.06) ns.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.06 (.06) ns.</td>
<td>-.06 (.06) ns.</td>
<td>-.15 (.03) <.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaving school without qualifications</td>
<td>.40 (.06) <.001</td>
<td>.01 (.06) ns.</td>
<td>.16 (.03) <.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.34 (.07) <.001</td>
<td>-.05 (.07) ns.</td>
<td>.16 (.04) <.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University degree by age 25</td>
<td>-.50 (.12) <.001</td>
<td>-.01 (.07) ns.</td>
<td>-.16 (.04) <.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.31 (.12) <.05</td>
<td>-.01 (.08) ns.</td>
<td>-.15 (.04) <.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational achievement rank</td>
<td>-.10 (.01) <.001</td>
<td>-.01 (.01) ns.</td>
<td>-.06 (.01) <.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.06 (.01) <.001</td>
<td>.01 (.01) ns.</td>
<td>-.03 (.01) <.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income at age 25</td>
<td>.33 (.49) ns.</td>
<td>-.43 (.50) ns.</td>
<td>-.83 (.28) <.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.67 (.50) ns.</td>
<td>.05 (.48) ns.</td>
<td>-.65 (.20) <.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Note: Statistically significant (p < .05) covariate factors for at least one outcome included: maternal age; maternal education level; family living standards ages 0-10; average family income ages 0-10; socio-economic status at birth; parental history of illicit drug use; parental history of criminal offending; exposure to childhood sexual abuse; exposure to physical punishment in childhood; depression/anxiety disorder ages 14-16; gender

Note: Ns range from 770 to 995 in covariate adjusted analyses.
Figure 1: Distribution of proportion of variance explained estimates across all outcomes for different classifications of behavior disorder (continuous, dichotomous) and outcomes.

N.B. Area within box indicates interquartile range (IQR); area within whiskers indicates the lowest datum still within 1.5 IQR of the lower quartile, and the highest datum still within 1.5 IQR of the upper quartile; closed dots indicate extreme outliers (> 3 IQR).