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Abstract

The aim of this thesis is to look into data selection strategies for selecting

data to be used for Bayesian analysis of genotyping by sequencing (GBS)

data. Each selection of data leads to a different distribution on the model

parameters. Methods for analysing the different resulting posterior distribu-

tions will be discussed and compared. The most applicable method will be

applied to a set of simulated genetic markers.

Traditionally, GBS data sets are constructed so that each marker is a poly-

morphic (non-constant) site, for example a single nucleotide polymorphism

(SNP). However, there is evidence to show that this might not be the optimal

method. The best method may in fact be to include a certain proportion of

sites which are not filtered on being polymorphic sites and are allowed to be

constant sites.

To understand whether there is truth in this, we begin by analysing sim-

plified problems with simpler distributions. These simpler problems will be

studied analytically and using Monte Carlo samples. This decision making

process is to decide the optimal proportion of which class of data points to

include in the marker data set. The chosen method will then be first applied

to a simulated marker data set and then the results analysed in order to show

there appears to be an optimal mixture of data which should be used in any

future phylogenetic analysis.
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Chapter 1

Introduction and Background

1.1 Bayesian Statistics in Evolutionary Biol-

ogy

To begin, we must de�ne what Bayesian inference and Bayesian analysis is.

Bayesian inference is a process of �tting a probability model using Bayes'

Theorem. This model is observed and parameters studied as a probability

distribution. This `posterior' distribution is obtained by a combination of

prior knowledge of the parameters being inferred and a data set which has

been observed in relation to the same parameters [10], [8]. The result from

obtaining this distribution is being able to expand our knowledge of the pa-

rameters of interest.

The key theoretical tool within Bayesian inference is Bayes' Theorem, which

is used in order to de�ne and draw from a posterior distribution. This poste-
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rior distribution is proportional to the likelihood function multiplied by the

prior distribution. The prior distribution represents knowledge about the pa-

rameters before any data is observed and the likelihood function represents

the probability of the observed data conditional on given parameters.

When designing a study, we have multiple ways to collect and observe data.

How do these choices e�ect the posterior distribution? How would this ef-

fect the results and summaries obtained from this distribution? Is there an

optimal way of collecting this data in order to obtain the most information?

With Bayes' Theorem, as the form of a posterior distribution can be a pro-

portionality, a computational approach is frequently used in order to de�ne

and analyse the distribution. The computational method which is commonly

used is Markov chain Monte Carlo (MCMC).

In the context of evolutionary biology, the Bayesian inference conducted will

be analysing the posterior distribution of phylogenetic trees using a given

model of evolution and some prior probabilities. The resulting posterior dis-

tribution relates to the posterior probability of the ith phylogenetic tree given

the DNA or SNP data.

As these methods of phylogenetic analysis have become more popular, so

has the availability of programs which utilise these methods. These programs

include but are not limited to BEAST [2], SNAPPER [18] and Mr Bayes [14].

7



Mr Bayes is an open source program which was designed to perform Bayesian

inference of phylogeny using MCMC to estimate and obtain draws from the

posterior distribution of choice [12]. It has very similar methods for obtaining

these posterior distribution as found in other programs like Beast2, however,

there are quite di�erent model assumptions, di�erent operators and possible

prior models etc between the two programs.

BEAST2 is another program which was designed for Bayesian phylogenetic

analysis of molecular sequences [2]. This program is used to estimate time-

measured phylogenies using di�erent forms of molecular clocks. BEAST2

uses MCMC to average over the tree space, so that each tree is weighted

proportional to its posterior probability.

SNAPPER [18] is a speci�c package which is run on the BEAST2 plat-

form [18]. It was created to infer species trees from independent biallelic

data at multiple loci for multiple individuals. What this package is designed

to return are samples drawn from the joint posterior distribution of species

phylogenies, species divergence times and e�ective population sizes. The

MCMC method is very similar to that which is described in the BEAST2

program above.

For the following work we will be only using BEAST2 and SNAPPER, but

Mr Bayes would have been a viable option as well.
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1.2 Challenges with Bayesian Analysis

With the positives of Bayesian analysis, we also have practical challenges

with this form of analysis. One of the main and most obvious challenges

is the computational time required to obtain the draws from the posterior

distribution. The main factors which e�ect computational speed are the com-

plexity of the model and the size of the data sets.

With phylogenetic analysis, for the calculations, an evolutionary model is

needed to be able to simulate from the posterior distribution of the phy-

logenetic trees. These models are substitution models and they model the

di�erent genetic events which can occur like a base substitution occurring

which is how a SNP will appear. Examples of substitution models are

the Hasegawa-Kishino-Yano (HKY) substitution model or the General time-

reversible (GTR) substitution model. These models are computationally

expensive and complex and hence take a longer time to run in comparison

with some simple model.

The other factor for computational speed is the size of the data set and

we are working with phylogenetic data sets. This means the data sets con-

sist of DNA information representing speci�c SNP data or potentially the

whole genome. These therefore will be very large data sets consisting of a

lot of information and data points. Combining these facts of a large data set

being used in a complex model a lot of times throughout a MCMC analysis,

this will increase the computational time at a large rate.
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Another main challenge which exists with Bayesian Analysis is lack of con-

vergence of the chain and hence problems obtaining draws from the desired

posterior distribution. Lack or partial lack of convergence with the MCMC

run can be observed by looking at the trace plot of each of the draws and vi-

sually checking if the chain appears to be converging around one point tightly

or not. If there is a partial lack of convergence, then the sample will be a less

reliable indicator of the posterior distribution. This aim for better conver-

gence is a normal and frequent problem within a MCMC analysis. Because

of this we wish to �nd a method for improving convergence and obtaining a

\smaller" posterior variance from our draws of the posterior distribution of

phylogenetic trees.

In this thesis we will be examining a strategy for addressing these challenges

by carefully choosing parts of the data in an alternative method. In general,

we have correlated multivariate dataX i and Yi which we wish to analyse,

and for eachi we can choose one ofX i or Yi to be present in the data set. We

study and analyse the posterior distributions and �nd some mixture of the

data sets that returns the most accurate results. This means the data that

will be observed will be chosen at a certain proportion from each set which

is used, for example 0:4 of X i and 0.6 of Yi . This selection of proportion

will e�ect the results which are obtained from the analysis and so this choice

of proportion will be chosen purposefully in order to improve the signal and

increase the accuracy of the results.
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1.3 Selecting SNP data

A single nucleotide polymorphism (SNP) is a DNA sequence variation in

which a single DNA base (adenine, thymine, cytosine or guanine) di�ers

across the group of populations or species being studied. SNPs have now

become a common source of genetic information and are one of the most

abundant sources of genetic variation [19]. They can provide information on

both evolutionary relationships and ancestral demographics [4].

The big question is whether a judicious choice at each locus of a SNP or

of any biallelic marker could improve the inference. We focus speci�cally on

a recent Bayesian method, SNAPPER [4], for inferring species relationships

and demographics from markers. At present, SNAPPER only uses poly-

morphisms. However there is evidence to suggest that a mixture of markers

of which only some are constrained to be polymorphic could be advantageous.

We will consider two primary sources of SNP data; genotyping by sequencing

(GBS) and whole genome comparisons. GBS is a marker assisted selection

tool. It is considered a form of Next Generation Sequencing (NGS), which

is a new and frequently used method for genome sequencing [16]. The idea

of NGS is the genome is broken up into small fragments and then random

fragments are sampled and sequenced. As these fragments are created at

random, there will exist some overlap between the fragments and therefore

repeat sequencing of the same point, which increases the accuracy.
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Figure 1.1: NGS Cartoon Representation [13]

For GBS, there is a speci�c change to this process. The adaptors that are

ligated onto the end of the fragments are targeted to attach to the SNPs of

interest. After the ampli�cation steps, the di�erences which are found in the

overlapping fragments are the SNPs which we were searching for.

GBS data is a commonly used technique for genotyping. Some reasons for

the popularity of this method include the lower cost per sample, the ability

to sequence predetermined areas of genetic variation and the fact it permits

comparative analyses across di�erent samples even in the lack of a reference

genome.

The species history information obtained through Bayesian analysis is rep-

resented in the form of a phylogenetic tree. In fact, in any form of biological

analysis, there needs to be some sort of method in order to be able to organise

and group what we are trying to research and understand. The commonly

used system is to organise based on evolutionary relationships between or-
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ganisms and species, hence to organise based on the organisms or species

phylogeny. The phylogeny can refer to physical similarities/di�erences or it

can refer to genetic similarities/di�erences which is the case we will be con-

sidering.

The idea that everything is related at some level and therefore can be con-

nected at when their most recent common ancestor was dates back to the

19th Century with Charles Darwin and \The Origin of Species" [6]. As ev-

ery species is assumed to be related, we are able to connect all species into

a directed graph with how far back they are connected being decided based

on the similarity of their phylogeny of choice, for us that phylogeny is their

genetic similarities.
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Figure 1.2: Phylogenetic Tree Example

What we can see in Figure 1.2 is an example of a phylogenetic tree. As

mentioned, a phylogenetic tree is a directed graph which consists of branches

and nodes. Branches are de�ned to connect the nodes on the graph and they

go in the direction of time, traditionally this is going from top to bottom.

Nodes are the points on the graph and are connected by branches. Examples

of nodes consists of but are not limited to A, B, (2) and (3). Nodes like (2)

and (3) which are connected by multiple di�erent branches are de�ned as

internal nodes. Nodes with only one branch connected to them like A and B

are called leaves. Leaves are species at the current time and hence represent
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the species which we are able to sample and obtain the phylogenetic infor-

mation from.

Previously, in order to obtain species history information from some form

of a biallelic marker, like a SNP, the method has included implementing very

large simulation-based sampling of both species trees and the the actual gene

trees at each locus. This was until this process was improved in [4] which as

stated, computes the tree likelihoods directly from the biallelic markers.

This new improved modelling process consists of two main components; the

model for the gene trees with a coalescent model and the model for the

biallelic markers evolving down the gene tree with a mutation model. One

issue that appears with SNP data and attempting to model mutation is e�ec-

tive non-identi�ability of some parameters. Under certain mutation models,

branch lengths of the species tree and the population size (� ) are confounded

parameters and hence changing one or the other will have the same e�ect and

hence can not be di�erentiated between the two. When interpretating the�

values, there is the chance of non-identi�ability, especially if the amount of

mutation is low.

The method of GBS for creating a SNP data set is to search for SNPs in

short sequences of DNA originating at a restriction site. An alternative

approach is to not restrict attention for SNPs but instead select any short

sequence following the restriction site. This means the initial base in the read

could actually be a constant site. The question now is to �gure out a way to
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decide what is the optimal proportion of these \un�ltered" points to include

in order to decrease the bias and variance seen in the results, without loosing

any of the species history information which is provided from the SNP's.

1.4 Thesis Outline

Chapter 2 starts with the analytical work when there is a multivariate Gaus-

sian posterior distribution. We derive the di�erent aspects of the di�erent

posterior distributions resulting from di�erent mixtures of data and then

attempt to de�ne possible scoring rules and their analytical form for this

speci�c posterior distribution. Formulas for optimal mixtures are also de-

rived.

Chapter 3 deals with the same de�ned posterior distributions as in Chap-

ter 2, however we now attempt to analyse these distributions only through

Monte Carlo samples. The di�ering scoring rules are used to analyse these

posterior distributions and these values are used to �nd an optimal posterior

distribution. Every result is compared with the analytical results previously

found if available.

Chapter 4 attempts to take the knowledge and understanding obtained from

the multivariate Gaussian posterior distribution work and apply it to a less

understood posterior distribution of parameters on phylogenetic trees. We

take the chosen optimal scoring rule and obtain an optimal percentage of

un�ltered GBS data to include in the analysis.

16



Chapter 5 discusses and summarises the main conclusions obtained.
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Chapter 2

Data selection for a Gaussian

Example

In this chapter we examine a simpli�ed problem where the observed data are

selected from one of two transformations of underlying multivariate normal

data. Our goal will be to determine the proportion of data from each trans-

formation that provides the most information about the model parameters.

For each data selection strategy we can determine posterior densities analyt-

ically, thereby providing measures to determine which strategy provides the

most information. Our investigations with these simple distributions inform

the more complicated analyses in later chapters.

2.1 Analytic expressions for the Posterior Den-

sities: Mean unknown

Initially we will assume � is known and � is being inferred.
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Theorem 1 ( [10, p. 71]). If x i � N (�; �) for all i and � has aN (� 0; � 0)

prior distribution, then � jx1; � � � ; xn � N (� n ; � n ) where

� n = ( n� � 1 + � � 1
0 )� 1(n� � 1 �x + � � 1

0 � 0) (2.1)

� n = ( n� � 1 + � � 1
0 )� 1: (2.2)

Now we let a; b2 Rd and we suppose that for eachi we can choose between

aT x i and bT x i . We consider the posterior density of the mean given a mixed

data sample of

aT x1; aT x2; � � � ; aT xm ; bT xm+1 ; � � � ; bT xn a; b2 Rd: (2.3)

Theorem 2. If x i � N (�; �) , � has aN (� 0; � 0) prior distribution and � is

known, then

� jaT x1; � � � ; aT xm ; bT xm+1 ; � � � ; bT xn � N (� (m)
n ; � (m)

n )

where

� (m)
n =

�
m

aaT

aT � a
+ ( n � m)

bbT

bT � b
+ � � 1

0

� � 1

;

� (m)
n =

�
m

aaT

aT � a
+ ( n � m)

bbT

bT � b
+ � � 1

0

� � 1
 

mX

i =1

aaT

aT � a
x i +

nX

i = m+1

bbT

bT � b
x i + � � 1

0 � 0

!

:

(2.4)
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Proof. From Bayes' Rule.

2 log� (� jaT x1; � � � ; aT xm ; bT xm+1 ; � � � ; bT xn )

=
mX

i =1

(aT x i � aT � )2

aT � a
+

nX

i = m+1

(bT x i � bT � )2

bT � b
+ ( � � � 0)T � � 1

0 (� � � 0) + const

=
mX

i =1

(� T a � xT
i a)(aT � � aT x i )
aT � a

+
nX

i = m+1

(� T b� xT
i b)(bT � � bT x i )
bT � b

+ ( � � � 0)T � � 1
0 (� � � 0) + const

=
mX

i =1

� T aaT � � 2� T aaT x i + ( aT x i )2

aT � a
+

nX

i = m+1

� T bbT � � 2� T bbT x i + ( bT x i )2

bT � b

+ � T � � 1
0 � � 2� T � � 1

0 � 0 + � T
0 � � 1

0 � 0 + const: (2.5)

From this log-posterior, we simplify by absorbing terms not dependent on

� into the constant and we pull the terms out of the sum which are not

dependent oni .

(2:5) = m
� T aaT �
aT � a

+
mX

i =1

� 2� T aaT x i

aT � a
+ ( n � m)

� T bbT �
bT � b

+
nX

i = m+1

� 2� T bbT x i

bT � b

+ � T � � 1
0 � � 2� T � � 1

0 � 0 + const

= � T (m
aaT

aT � a
+ ( n � m)

bbT

bT � b
+ � � 1

0 )�

� 2� T (
mX

i =1

aaT

aT � a
x i +

nX

i = m+1

bbT

bT � b
x i + � � 1

0 � 0) + const

= ( � � � (m)
n )T (� (m)

n )( � � � (m)
n ) + const: (2.6)
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2.2 Quantifying informativeness of posterior

distributions

The goal is to select a value form so that the resulting posterior distribution

provides the the most information about the mean. There are number of

ways to assess the information provided by a distribution, known as scoring

rules [11]. We consider several options here.

When � is from a univariate distribution, selecting m that minimises the

posterior variance is an obvious metric to use. However, when� is multivari-

ate, there are multiple measures that can be used. We consider rules based

on functions of the posterior variance matrix, with larger values correspond-

ing to greater variability, or less information.

The trace of the covariance matrix is a standard scoring rule for the vari-

ability of a distribution [15]. It is the sum of the variances for each of thed

dimensions present in the data:

f (� (m)
n ) =

X

i

(� (m)
n ) ii : (2.7)

The downside of using this function is that it ignores the covariance terms of

the variance matrix. If the covariance terms are small, the trace is a useful

overall metric; if these terms are large, optimising for the trace may be a

sub-optimal choice.
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Another widely used scoring rule is the determinant of the variance ma-

trix, also known as the generalised variance [9], [20]. This function uses both

the main diagonal values and the o� covariance values.

A third and closely related measure is the entropy, which is given by

H (X ) = �
Z

X
f (x) log(f (x))dx: (2.8)

If we are analysing normal distributions withX � N (�; �), it is given by [17]

H (X ) =
1
2

ln det(2�e �) : (2.9)

Unfortunately, computing entropy for other distributions can be very com-

plicated.

2.3 Analytical formula for scoring rules in the

single data selection problem

Here we derive expressions for the di�erent scoring rules evaluated on the

posterior density for the mean� , given a �xed variance � and selection pa-

rameter m. Throughout these calculations, we will be utilising two di�erent

formulas. These are the Sherman-Morrison formula and the Woodbury Ma-

trix Identity.
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Lemma 1 (Sherman-Morrison). SupposeA 2 Rn� n is an invertible square

matrix and u; v 2 Rn are column vectors. ThenA + uvT is invertible if and

only if 1 + vT A � 1u 6= 0, in which case

(A + uvT )� 1 = A � 1 �
A � 1uvT A � 1

1 + vT A � 1u
(2.10)

det(A + uvT ) = (1 + vT A � 1u) det(A): (2.11)

The result in Equation 2.10 generalises to the

Lemma 2 (Woodbury Identity) . SupposeA; U; C and V are all matrices of

the correct dimensions. Speci�callyA 2 Rn� n , U 2 Rn� k , V 2 Rk� n and

C 2 Rk� k

(A + UCV)� 1 = A � 1 � A � 1U(C � 1 + V A� 1U)� 1V A� 1 (2.12)

Recall that � (m)
n is the posterior variance of the mean, given that we have

a known covariance matrix and reduced data as described in Theorem 2.

The �rst scoring rule we determine analytically is the trace of the posterior

variance.

Theorem 3. The trace of the posterior distribution's variance matrix is

tr (� (m)
n ) = tr (� � 1

0 ) �
� 1m2 + � 1m +  1

� 2m2 + � 2m +  2
(2.13)
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With the following de�nitions

� 1 = � bT � 0baT � 2
0a � aT � 0abT � 2

0b+ 2bT � 0aaT � 2
0b

� 1 = nbT � 0baT � 2
0a + aT � 2

0abT � 2nbT � 0aaT � 2
0b+ naT � 0abT � 2

0b� bT � 2
0baT � a

 1 = nbT � 2
0baT � a

� 2 = � aT � 0abT � 0b+ ( aT � 0b)2

� 2 = naT � 0abT � 0b+ aT � 0abT � b� bT � 2
0baT � a � n(aT � 0b)2

 2 = nbT � 2
0baT � a

(2.14)

Proof. We rearrange the variance de�ned in Theorem 2 by �rst de�ning new

variables and then applying the Woodbury Identity (2.12).

(m
aaT

aT � a
+ ( n � m)

bbT

bT � b
+ � � 1

0 )� 1 = ( A + uuT + vvT )� 1

with A := � � 1
0 u :=

r
m

aT � a
a v :=

r
n � m
bT � b

b (2.15)

With the vectors u; v we also now de�ne a matrixU 2 Rn� 2 as

U := [ u v] (2.16)

where the �rst column is made up of the vectoru and the second column is

made up of the vectorv.
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We see thatUUT = uuT + vvT and hence we de�ne the variance as follows.

�
m

aaT

aT � a
+ ( n � m)

bbT

bT � b
+ � � 1

0

� � 1

= ( A + UUT )� 1 (2.17)

We apply this to (2.12) with A = � 0, U = U and C = I .

(A + UUT )� 1 = ( A + UCU)� 1 = A � 1 � A � 1U(C � 1 + UT A � 1U)� 1UT A � 1

= � 0 � � 0U(I + UT � 0U)� 1UT � 0 (2.18)

We then calculate the 3 main parts of this matrix multiplication in order to

simplify the expression.

� 0U =
�
� 0u � 0v

�
; UT � 0 =

2

6
4

uT � 0

vT � 0

3

7
5 (2.19)

The �nal requirement is the inverse, which in this case is a 2x2 matrix and

hence the inverse can be solved for simply.

(I + UT � 0U)� 1 =
1
�

2

6
4

(vT � 0v + 1) � vT � 0u

� uT � 0v (uT � 0u + 1)

3

7
5 (2.20)

with � := ( uT � 0u + 1)( vT � 0v + 1) � (uT � 0v)2

These can be multiplied together to give us the form of posterior variance
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which we desire.

� (m)
n = � 0 �

1
�

�
� 0u � 0v

�
2

6
4

(vT � 0v + 1) � vT � 0u

� uT � 0v (uT � 0u + 1)

3

7
5

2

6
4

uT � 0

vT � 0

3

7
5

= � 0 �
1
�

�
� 0u(vT � 0v + 1) uT � 0 � � 0uvT � 0uvT � 0 � � 0vuT � 0vuT � 0

+ � 0v(uT � 0u + 1) vT � 0

�
(2.21)

With this form of the posterior variance, we de�ne the trace of this matrix

and then derive the simpler analytic form. In this derivation we use the fact

that tr( aaT ) = aT a.

tr(� (m)
n ) = tr(� 0) �

(vT � 0v + 1) uT � 2
0u � 2vT � 0uuT � 2

0v + ( uT � 0u + 1) vT � 2
0v

(uT � 0u + 1)( vT � 0v + 1) � (uT � 0v)2

(2.22)

Using the de�nition for u and v, then rearranging and solving form gives us

the rational function.

tr(� (m)
n ) = tr(� � 1

0 ) �
� 1m2 + � 1m +  1

� 2m2 + � 2m +  2
(2.23)
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With the following de�ned constants:

� 1 = � bT � 0baT � 2
0a � aT � 0abT � 2

0b+ 2bT � 0aaT � 2
0b

� 1 = nbT � 0baT � 2
0a + aT � 2

0abT � 2nbT � 0aaT � 2
0b+ naT � 0abT � 2

0b� bT � 2
0baT � a

 1 = nbT � 2
0baT � a

� 2 = � aT � 0abT � 0b+ ( aT � 0b)2

� 2 = naT � 0abT � 0b+ aT � 0abT � b� bT � 2
0baT � a � n(aT � 0b)2

 2 = nbT � 2
0baT � a:

(2.24)

Next, we derive an analytical formula for the determinant of the posterior

covariance matrix, the second of the scoring rules we considered.

Theorem 4. The determinant of the posterior distribution's covariance ma-

trix is as follows

det(� (m)
n )

= det(� 0)
�

(1 +
aT � 0a
aT � a

m)(1 +
bT � 0b
bT � b

(n � m)) �
(aT � 0b)2

aT � abT � b
(m(n � m))

� � 1

:

(2.25)

Proof. From Theorem 2, the precision matrixP for the posterior distribution

of � is

P = m
aaT

aT � a
+ ( n � m)

bbT

bT � b
+ � � 1

0 : (2.26)
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This matrix can be written as

P = A + uuT + vvT (2.27)

where

A := � � 1
0 u :=

r
m

aT � a
a v :=

r
n � m
bT � b

b (2.28)

allowing use of (2.10).

det(A + uuT + vvT )

= det(A + uuT )(1 + vT (A + uuT )� 1v)

= det( A)(1 + uT A � 1u)(1 + vT (A + uuT )� 1v)

= det( A)(1 + uT A � 1u)(1 + vT (A � 1 �
A � 1uuT A � 1

1 + uT A � 1u
)v)

= det( A)((1 + uT A � 1u) + (1 + uT A � 1u)vT A � 1v � vT A � 1uuT A � 1v)

= det( A)(1 + uT A � 1u + vT A � 1v + uT A � 1uvT A � 1v � (vT A � 1u)2)

= det( A)((1 + uT A � 1u)(1 + vT A � 1v) � (vT A � 1u)2): (2.29)

As this is the determinant value for the precision matrix, in order to get the
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determinant for the variance matrix, we can invert it.

det(� (m)
n ) =

1
det(A)((1 + uT A � 1u)(1 + vT A � 1v) � (vT A � 1u)2)

= det(� 0)
�

(1 +
aT � 0a
aT � a

m)(1 +
bT � 0b
bT � b

(n � m)) �
(aT � 0b)2

aT � abT � b
(m(n � m))

� � 1

(2.30)

The third scoring rule we derive analytically is that for the entropy function.

This formula follows directly from the previous scoring rule derivation, the

determinant.

Corollary 1. The entropy of the posterior distribution's covariance matrix

is as follows

H (� (m)
n )

= log det(� 0) � log
�

(1 +
aT � 0a
aT � a

m)(1 +
bT � 0b
bT � b

(n � m)) �
(aT � 0b)2

aT � abT � b
(m(n � m))

�
:

(2.31)

2.4 Optimisation of Scoring Rules

If we know that each of the scoring rules are convex, this would allow us to

use the known results in convex optimisation, including the local minimum

is equal to the global minimum [3]. With this, we look at trying to minimise

each of these scoring rules and show that the minimum is unique.
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Theorem 5. The value form value giving the minimum trace of the posterior

distributions variance matrix is

m�
1 =

� B �
p

B 2 � 4AC
2A

(2.32)

with the following de�nitions

A = � 1� 2 � 2� 2� 1

B = 2� 1 2 � 2� 2 1

C = � 1 2 � � 2 1: (2.33)

This optimal value is unique.

The de�nitions for each of the� i ; � i and  i are the same as de�ned in (2.14).

Proof.

@
@m

(tr(var( � jaT x i ; bT x i ; �)))

=
@

@m
(tr(� 0) �

� 1m2 + � 1m +  1

� 2m2 + � 2m +  2
)

=
(2� 1m + � 1)( � 2m2 + � 2m +  2) � (2� 2m + � 2)( � 1m2 + � 1m +  1)

(� 2m2 + � 2m +  2)2
:

(2.34)

With this derivative, we let @
@m(tr(var( � jaT x i ; bT x i ; �))) = 0.

0 = (2� 1m + � 1)( � 2m2 + � 2m +  2) � (2� 2m + � 2)( � 1m2 + � 1m +  1)

(2.35)
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Expanding, we get

0 = 2� 1� 2m3 + 2� 1� 2m2 + 2� 1 2m + � 1� 2m2 + � 1� 2m + � 1 2

� (2� 1� 2m3 + 2� 2� 1m2 + 2� 2 1m + � 1� 2m2 + � 1� 2m + � 2 1) (2.36)

Simplifying the terms and factoring yields

(� 1� 2 � � 2� 1)m2 + (2 � 1 2 � 2� 2 1)m + ( � 1 2 � � 2 1) = 0 (2.37)

As this is a quadratic which we want the roots of, we therefore use the

quadratic equation with the given constants, givingm�
1.

To prove uniqueness, we note thatf 1(X ) = tr( X � 1) is convex on the space

of positive de�nite matrices [3] and � (m)
n is a linear function ofm.

Theorem 6. The optimal m in order to minimise the determinant of the

posterior variance matrix is

m�
2 =

n
2

+
aT � 0abT � b� aT � abT � 0b
2aT � 0abT � 0b� 2(aT � 0b)2

(2.38)

and this optimal value is unique.

Proof. We will be using the derived formula in Theorem 4 in order to optimise
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it.

@
@m

det(var(� jaT x; bT x; �))

=
@

@m
1

det(� � 1
0 )

�
(1 + aT � 0a

aT � a m)(1 + bT � 0b
bT � b (n � m)) � (aT � 0b)2

aT � abT � b(m(n � m))
�

=
1

det(� � 1
0 )

@
@m

1
�

(1 + aT � 0a
aT � a m)(1 + bT � 0b

bT � b (n � m)) � (aT � 0b)2

aT � abT � b(m(n � m))
�

=
� 1

det(� � 1
0 )

�
(1 +

aT � 0a
aT � a

m)(1 +
bT � 0b
bT � b

(n � m)) �
(aT � 0b)2

aT � abT � b
(m(n � m))

� � 2

�
@

@m

�
(1 +

aT � 0a
aT � a

m)(1 +
bT � 0b
bT � b

(n � m)) �
(aT � 0b)2

aT � abT � b
(m(n � m))

�
:

(2.39)

We expand the �nal factor of this expression.

@
@m

�
(1 +

aT � 0a
aT � a

m)(1 +
bT � 0b
bT � b

(n � m)) �
(aT � 0b)2

aT � abT � b
(m(n � m))

�

=
@

@m

�
1 +

aT � 0a
aT � a

m +
bT � 0b
bT � b

(n � m) +
aT � 0abT � 0b
aT � abT � b

(mn � m2)

�
(aT � 0b)2

aT � abT � b
(mn � m2)

�

=
�

aT � 0a
aT � a

�
bT � 0b
bT � b

+
aT � 0abT � 0b
aT � abT � b

(n � 2m) +
(aT � 0b)2

aT � abT � b
(2m � n)

�
:

(2.40)

We substitute this into (2.39) and equate this to zero.
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@
@m

det(var(� jaT x; bT x; �))

=
� 1

det(� � 1
0 )

�
(1 +

aT � 0a
aT � a

m)(1 +
bT � 0b
bT � b

(n � m)) �
(aT � 0b)2

aT � abT � b
(m(n � m))

� � 2

�
�

aT � 0a
aT � a

�
bT � 0b
bT � b

+
aT � 0abT � 0b
aT � abT � b

(n � 2m) +
(aT � 0b)2

aT � abT � b
(2m � n)

�
= 0

(2.41)

When solving this equation, we can multiply both sides by the two di�erent

denominators and we are left with a simpler linear equation to solve for.

�
aT � 0a
aT � a

�
bT � 0b
bT � b

+
aT � 0abT � 0b
aT � abT � b

(n � 2m) +
(aT � 0b)2

aT � abT � b
(2m � n)

�
= 0

aT � 0abT � b� aT � abT � 0b+ aT � 0abT � 0b(n � 2m) + ( aT � 0b)2(2m � n) = 0

aT � 0abT � b� aT � abT � 0b+ aT � 0abT � 0bn� (aT � 0b)2n = 2aT � 0abT � 0bm� 2(aT � 0b)2m

aT � 0abT � b� aT � abT � 0b+ ( aT � 0abT � 0b� (aT � 0b)2)n
2aT � 0abT � 0b� 2(aT � 0b)2

= m

m =
n
2

+
aT � 0abT � b� aT � abT � 0b
2aT � 0abT � 0b� 2(aT � 0b)2

(2.42)

To show uniqueness for this solution, we observe thatf 2(X ) = (det( X ))1=n is

convex [3] and so det(�(m)
n ) is an increasing function composed with a convex

function.
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Corollary 2. The optimal m in order to minimise the entropy of the poste-

rior variance matrix is

m�
3 =

n
2

+
aT � 0abT � b� aT � abT � 0b
2aT � 0abT � 0b� 2(aT � 0b)2

(2.43)

Proof. We will be using the derived formula for the entropy as stated in

Corollary 1.

H =
p
2

ln(2� ) +
p
2

�
1
2

ln(det(� � 1
0 ))

�
1
2

ln
�

(1 +
aT � 0a
aT � a

m)(1 +
bT � 0b
bT � b

(n � m)) �
(aT � 0b)2

aT � abT � b
(m(n � m))

�

(2.44)

We observe that the entropy of the posterior variance is proportional to

the log-det part of the function when considering it as a function of the

variable m. This then gives the fact that it will be optimised at the same

value m�
2 = m�

3 as the determinant function. This is because the natural

logarithm is a monotonically increasing function, hence doesn't e�ect the

optimisation.

So far with this analytical work, we now have a lot of di�erent analytical

forms of the desired distributions we wished to describe. The analytical

forms of the posterior distributions are known with our transformed data

and as the distributions are able to be de�ned analytically, then we have also

been able to de�ne the closed forms for the di�erent scoring rules. These

scoring rules were all de�ned and shown to be convex functions, hence we

were able to solve for the global minimum. These minimum values give us
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the information of how to transform our data in order to ensure that we

obtain the most information from the posterior distribution.

2.5 Analytic expressions for the Posterior Den-

sities: Variance unknown

We now consider a more complex scenario in which the mean is known and

the variance matrix is being inferred. This implies that we will still be using

data which has a Gaussian distribution but now the prior distribution is for

the variance matrix and the posterior distribution will be over variance ma-

trices.

We again assume the data is normally distributed:

x1; � � � ; xn � N (�; �) x i 2 Rd: (2.45)

We use an inverse-Wishart prior distribution for �.

Theorem 7 ( [10, p. 73]). For �xed mean � and prior � � W � 1(	 ; � ),

[� jx1; � � � ; xn � W � 1(� n ; � n )] with

� n =
nX

i =1

(x i � � )(x i � � )T + 	

� n = � + n: (2.46)

Now supposea; b 2 Rd and m 2 [n]. We attempted to extend the earlier
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analysis to the posterior distribution � jaT x1; � � � ; aT xm ; bT xm+1 ; � � � ; bT xn

Attempting to derive the analytical form of the posterior de�nition is im-

portant if we wish to be able to analyse di�erent aspects of the posterior

distribution, in particular the di�erent scoring rules applied to the posterior

variance matrix. The previous method for deriving these analytical forms was

to use the observed conjugacy between the likelihood function and the prior

distribution in order to have a posterior distribution of a known form, for

example a normal distribution or a Wishart distribution. With this speci�c

case, the likelihood function is now a product of univariate normal distribu-

tions, either being of the form of a transformation with the vectora or b and

the prior distribution on the variance matrix is still a Wishart distribution.

These are not conjugate and hence for the posterior distribution, when we

apply Bayes' Theorem we are not left with a known form for a certain dis-

tribution.

Not having conjugacy occurring is actually the common outcome when ap-

plying Bayesian analysis to any form of real life data. Because of this, to

continue on with analysis of this more complex scenario and infact any of

the future scenarios we wish to analyse, we require another form of analysing

and attempting to de�ne the posterior distribution. This will be done numer-

ically using Markov Chain Monte Carlo (MCMC) in order to sample from

the posterior distribution and then use these samples to approximate the dif-

ferent aspects of the posterior distribution, for example the variance matrix

approximated from the variance of the posterior draws.
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Chapter 3

Determining Mixing

Proportions from Monte Carlo

samples

The previous chapter looked at the e�ect of di�erent mixture proportions for

a simple family of distributions for which we had analytical expressions for

posterior densities. To step closer to the application of GBS analysis, we now

consider the case when our knowledge of the posterior distributions is limited

to MCMC samples. The reason for wanting to use MCMC to analyse the

posterior distribution is due to the complexity of the posterior distributions

which we wish to draw from. The target posterior distributions for the �nal

application will not be a general known distribution and therefore will not

have a simple closed form which could be analysed analytically.

As an interim step, in this chapter we will use numerical methods to analyse
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the multivariate Gaussian distribution and then compare it with the analytic

results from Chapter 2.

3.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a process in which we iteratively

sample from a posterior distribution without knowing the analytical form.

Here, we use the Metropolis-Hastings algorithm [5] to create a Markov chain

which has a limiting distribution equal to the posterior distribution we wish

to sample from. We then extract a sample from this chain. In comparison

to direct sampling from a conjugate prior, MCMC is more computationally

intensive. However, it does also allow us to draw samples from complex pos-

teriors which have no conjugate prior.

We use the Metropolis-Hastings algorithm in order to implement MCMC.

In this algorithm, a proposal distribution q is used to propose a new valuey

from a given valuex. This value y is accepted with probability � with

� = min
�

1;
� (y)q(yjx)
� (x)q(xjy)

�
; (3.1)

where� (X ) is a known distribution which is proportional to the desired tar-

get posterior distribution. See Algorithm 1 for an overview of MCMC.
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Algorithm 1: Draw from the Posterior Distribution with MCMC
Result: Obtain independent posterior draws

1 De�ne the parameters: � ; N; x(1);

2 for n = 2:N do

3 Choose random dimension to alter;

4 Draw � x uniform on (� �; � );

5 Add � x to x = x(n � 1) in the chosen dimension to obtain the

candidate drawy;

6 Calculate the probability � with (3.1);

7 Accept candidate draw with probability � ;

8 if y Acceptedthen

9 x(n) = y;

10 else

11 x(n) = x(n � 1);

12 end

13 end

14 Remove the �rst percentage of the posterior drawsx as burn in;

15 return Every 100th x(n) value

Using this base algorithm we are able to obtain approximately independent

draws from each of the posterior distributions.

In the proposal steps of this algorithm, �x is calculated by drawing a uniform

random value on (� �; � ). The choice of� was made using visual inspection

of the resulting trace plot of the chain for each dimension. If the chain was

moving very slowly and not appearing to converge around a single point then
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� was increased. If the chain stayed at the same values for long periods of

times and have a \skyscraper" look to it then� was decreased. The optimal

value for � that we ended on was� = 0:25 and this gave us a trace plot like

a \fuzzy caterpillar", as desired.

The required burn in percentage was also found using visual check of the

trace of the chain. Once the chain was no longer in a likelihood climb or

drop and it had reached a constant point it was uctuating around, we knew

the chain had reach convergence and each value in the chain was a draw

from the posterior distribution. From visual inspection we saw that for each

of these cases it was at the 10% point in the chain where convergence was

reached. Hence we removed 10% of the chain values and the remaining 90%

were now accepted as posterior draws.

The analytical results from Chapter 2 allow us to validate both the MCMC

implementation and inference of the posterior variance.
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For validation, the data will be simulated using the following parameters,

that will be staying constant through all of the following analysis in this

chapter.

n = 1000; m = 500; � =

0

B
@

3 2

2 5

1

C
A ; � 0 =

0

B
@

1 0

0 1

1

C
A ;

� =

0

B
@

2

5

1

C
A ; � 0 =

0

B
@

1

1

1

C
A (3.2)

For the �rst test, we simulated

x1; � � � ; xn � N (�; �)

and then used MCMC to sample from the posterior density

� (� jx1; � � � ; xn )

with a N (� 0; � 0) prior.

The estimated posterior mean and analytical posterior mean were

� 1 =

0

B
@

1:8969

4:9284

1

C
A � 2 =

0

B
@

1:8979

4:9292

1

C
A (3.3)

respectively. Where� 1 is the numerical estimate and� 2 is the analytical
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solution.

The estimated posterior variance matrix and analytical posterior variance

matrix were

� 1 =

0

B
@

0:003044 0:001951

0:001951 0:004773

1

C
A � 2 =

0

B
@

0:002987 0:001984

0:001984 0:004971

1

C
A (3.4)

respectively. Where �1 is the numerical estimate and �2 is the analytical

solution.

These means and variances are equal up to numerical error and thus help to

con�rm that the analytical form for the posterior distribution is matching

the distribution being sampled by the MCMC.

For the second test, we de�ned vectors

a =

0

B
@

1

2

1

C
A b=

0

B
@

2

1

1

C
A : (3.5)

We again simulated

x1; � � � ; xn � N (�; �)

and then used MCMC to sample from the posterior density

� (� jaT x1; � � � ; aT xm ; bT xm+1 ; � � � ; bT xn )
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with a N (� 0; � 0) prior.

The estimated posterior mean and analytical posterior mean were

� 1 =

0

B
@

2:0440

4:8602

1

C
A � 2 =

0

B
@

2:0452

4:878

1

C
A (3.6)

respectively. Where� 1 is the numerical estimate and� 2 is the analytical

solution.

The estimated posterior variance matrix and analytical variance matrix were

� 1 =

0

B
@

0:006041 � 0:000188

� 0:000188 0:010380

1

C
A � 2 =

0

B
@

0:005964 0

0 0:009901

1

C
A (3.7)

respectively. Where �1 is the numerical estimate and �2 is the analytical

solution.

These variance matrices can again be assumed to be equal up to numerical

error, once again con�rming the analytical form for the posterior distribution

is matching the distribution being sampled by the MCMC.
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3.2 Estimating optimal mixture proportions

from sampled data - Mean unknown

With knowing our posterior distribution that we are sampling from is cor-

rect, we begin analysing the best way to transform the data, by optimising

the m value. In order to keep this more general and not dependent onn,

we de�ne the proportion valuep = m
n to optimise over instead. We will use

the proposed score functions from 2.2 and use them to analyse the posterior

distribution's variance matrix.

The protocol for this experiment is as follows.
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Algorithm 2: Calculating scoring rule values over di�ering data mixture

proportions with the mean unknown
Result: Obtain scoring rule values

1 for i = 1:N do

2 Simulate x1; : : : ; xn from N (�; �);

3 for p=0.1,0.2,. . . ,0.9 do

4 Use MCMC to sample from

� (� jaT x1; � � � ; aT xm ; bT xm+1 ; � � � ; bT xn )

with a N (� 0; � 0) prior and de�ning m = dnpe;

5 Estimate the variance matrix and evaluate the scoring rules

6 end

7 end
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Figure 3.1: Trace Values of Posterior Variance Matrices shows an optimal
value nearp = 0:4

Figure 3.1 shows a plot of estimates for the trace of the posterior variance

matrix for each proportion p, for three replicated samples at each of 160

values of p. We can see there is a clear convex curve occurring with the

minimum occurring at a p value around 0.4. The data appears to have a

medium to strong relationship with the parabolic curve, allowing us to make

a more accurate prediction for the minimum. These data points also appear

to follow the trend of a convex function which we expected.

The next scoring rule we look at and analyse is the determinant of the the
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posterior distribution variance matrix.

Figure 3.2: Det1=n Values of Posterior Variance Matrices shows an optimal
value nearp = 0:5

Figure 3.2 shows a plot of estimates for thenth root of the determinant of the

posterior variance matrix for each proportionp, for three replicated samples

at each of 160 values ofp. We see there is a clear convex curve occurring

with the minimum occurring at a p value around 0.5. This again shows that

the optimal posterior distribution occurs with a mixture of data rather than

at a boundary value.

The �nal scoring rule we will analyse is the entropy of the posterior vari-
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ance. As this particular posterior distribution is still a normal distribution,

then that means we can use the known closed form for the entropy of it [7].

H =
1
2

ln det 2�e � (3.8)

Using this de�nition, we look at the entropy of all of the di�erent distribu-

tions de�ned with di�erent data mixture proportions.

As mentioned, for the multivariate case which we are analysing, there ex-

its a closed form for the entropy of the posterior distribution. For a more

general case, this will not exist and it de�nitely will not exist for the GBS

application which we hoped to use it for. This means if we wish to move

ahead further with entropy as the scoring rule then we will have to �nd a

method to solve for the entropy, potentially numerical integration.

We expect to see the entropy values having the same relationship as the

nth root of the determinant scoring rule. The reason for this is similar to

the comparison we see in the optimisation of the two rules. The entropy for

this particular distribution is a function of the determinant function as seen

in Equation 3.8.
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Figure 3.3: Entropy Values of Posterior Variance Matrices shows an optimal
value nearp = 0:5

Unsurprisingly, we do see that the relationship looks very similar to the de-

terminant score function and is following the same relationship.

The problem of �nding the best value for p is one of optimising a noisy

function using as few data points as possible, since every data point is ob-

tained using a computationally expensive MCMC run. A simple method is

to �t a quadratic function to the points and then optimise that. In the next

section we explore the suitability of this strategy.
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3.2.1 Optimal value of p for the given scoring rule

We use the same data plotted as in Figure 3.1 to obtain a �tted curve for

the data using both an empirical smoother (LOESS) and a quadratic �t.

The reason for choosing a quadratic to attempt to match is because of the

earlier work where we were able to show that the scoring rules of the posterior

variance are a convex function. The quadratic is an obvious convex function

with similar shape to the �tted LOESS curve.

Figure 3.4: LOESS Fitted Curve - Posterior Variance Trace Values

Using the linear model function we de�ne an approximate quadratic function
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for the �tted curve.

y = 1:218x2 � 0:9606x + 0:6410 (3.9)

This is a simple quadratic which can be used to analyse the trace values of

the posterior distribution's variance with di�erent data reductions. Before we

go analyse this function further, we will compare it with the original LOESS

curve to ensure that it is a good approximation.

Figure 3.5: LOESS Fitted Curve and Quadratic Function Comparison

This con�rms the quadratic function is a good approximation for these spe-

ci�c trace values and hence can be used to make inferences about the posterior
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distribution and its corresponding variance matrix.

Optimising this quadratic function, we obtain the following optimalp value,

p̂ =
0:9606
2:436

=
1601
4060

� 0:394335: (3.10)

Based on the trace score of the posterior variance matrix and these particu-

lar de�ned numerical values, the optimal mixing proportion for the sampled

data is 0.394.

Viewing the �tted quadratic, we observe that a broad range ofp values

actually are close to minimising the trace of the posterior distribution vari-

ance matrix. This optimal range is approximately (0:3; 0:5) and hence any

posterior distribution de�ned with this p will have a resulting near minimal

trace value.

We follow the same procedure that we did for the trace but now for the

determinant and using the LOESS method in order to �t a curve to Fig-

ure 3.2.
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Figure 3.6: LOESS Fitted Curve - Posterior Variance Det1=n Values

We obtain from this LOESS �t, the approximate formula for the �tted curve

as

y = 0:02645x2 � 0:0265x + 0:01413: (3.11)

Before we do the analysis of this curve, we ensure that it is a good approxi-

mation for the LOESS curve.
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Figure 3.7: LOESS Fitted Curve and Quadratic Function Comparison

This con�rms the quadratic function is a good approximation for these spe-

ci�c determinant values and hence can be used to make assumptions about

the posterior distribution and its corresponding variance matrix.

Optimising this quadratic function, we obtain the following optimalp value,

p̂ =
0:0265
0:0529

=
265
529

� 0:500945 (3.12)

What we conclude from this optimum, is that based on the determinant score

of the posterior variance and these particular de�ned numerical values, the
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optimal percentage of data reduction is at roughly 0.501.

Again, we see that the quadratic does have a broad range of values which

will nearly optimise the determinant. This range is approximately (0.3,0.7)

and hence any distribution de�ned with anyp value in this range will nearly

minimise the determinant.

When we apply the constants which we de�ned in Equation 3.2 to the op-

timum formula for the determinant in Equation 2.42 we get an analytical

minimum of 0.501. This matches perfectly with the numerical result we got

from the MCMC approach above. This in turn reinforces the accuracy of

both the analytic approach and the numerical approach for optimising the

determinant of the variance matrix.

The �tted curve will minimise at the same point if �tted to the entropy

plot as well. This is due to the similarity between the closed forms for the

determinant scoring rule and the entropy scoring rule of the multivariate

normal posterior distribution.

3.3 Estimating optimal mixture proportions

from sampled data - Variance unknown

In order to obtain di�erent values of the scoring rules, we need to numer-

ically de�ne the di�erent posterior distributions through MCMC and more
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speci�cally following Algorithm 1. As these distributions are assuming that

the mean is known and the variance matrix is being sampled, there will be

di�erent distributions required. In order to look at the variance matrix using

multivariate distributions, we will reshape it to be in vector form.
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@

� 2
1 � (1;2)

� (1;2) � 2
2

1
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A 7!
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� 2
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� 2
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� (1;2)

1

C
C
C
C
A

(3.13)

In a similar approach to Algorithm 2, we check the di�erent scoring rules of

the posterior in the case of the mean being known and the variance matrix

being inferred.
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Algorithm 3: Calculating scoring rule values over di�ering data mixture

proportions with the variance unknown
Result: Obtain scoring rule values

1 for i = 1:N do

2 Simulate x1; : : : ; xn from N (�; �);

3 for p=0.1,0.2,. . . ,0.9 do

4 Use MCMC to sample from

� (� jaT x1; � � � ; aT xm ; bT xm+1 ; � � � ; bT xn )

with a W � 1(	 ; � ) prior and de�ning m = dnpe;

5 Estimate the posterior variance matrix and evaluate the scoring

rules

6 end

7 end

For Algorithm 3, we require two more parameters to those that are de�ned

in Equation 3.2. They are required for the inverse-Wishart prior and they

are

	 =

0

B
@

5 0

0 5

1

C
A ; � = 3: (3.14)
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Figure 3.8: Trace Values of Posterior Variance Matrices
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Figure 3.9: Det1=n Values of Posterior Variance Matrices

59



The �rst thing we notice, is that there are no entropy values calculated. The

reason for this is because when the mean is known with the variance being

inferred with data reduction, it is no longer a basic known distribution and

hence there is no nice closed form for the entropy.

As we see with Figure 3.8 and Figure 3.9 , there is no obvious pattern visible

with the di�erent proportions for the data transformations. The reason for

this is because of the covariance term in the variance matrix. The problem

is for this example, the bivariate data is transformed to either look at the

�rst coordinate or to look at the second. So at no point are the coordinates

considered together. This means there is no chance for a comparison to occur

and hence there is no way for the covariance term of the variance matrix to

converge. This means the covariance term does a random walk throughout

the entire MCMC chain. This will create a random covariance term for each

of the di�erent distributions and thus make it is of no use to use any scoring

rule of the variance matrix of the distribution as it will be stochastic and

therefore unusable.

In order to resolve this problem, we �x the covariance term and only al-

low the two variance terms on the main diagonal of the variance matrix to

change. This solution to the problem has both positives and negatives with

the analysis of the variance matrix of the di�erent posterior distributions.

Firstly, the main positive is that there is now none of the sampling error and

randomness occurring through each MCMC run and hence that will make

the resulting evaluations more accurate and informative. The negative with
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doing this and keeping one of the terms constant, is that now the variance

in the third coordinate of the posterior variance is always going to be zero.

The problem with doing this is now any scoring rule which includes multi-

plication, e.g. the determinant function will return a zero value and not give

any information.

3.3.1 Variance Matrix Restriction

The restriction which we have mentioned was assuming the covariance term

of the variance matrix is constant and is equal to zero. Also, as previously

mentioned, we will only be analysing the trace score function as it is additive,

hence the zero value will not e�ect the other information obtained from the

other variance terms.
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(3.15)
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Figure 3.10: Trace Values of Restricted Posterior Variance Matrices

Figure 3.10 is now an improvement on Figure 3.8 as there is no longer the

stochastic covariance term and hence there is now a pattern over the di�erent

data reductions occurring. In order to help con�rm this pattern, we will

simulate this again with a larger number of simulations by decreasing �p

and doing three replicates for eachp.
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Figure 3.11: Trace Values of Restricted Posterior Variance Matrices, with
Increased Trials

From Figure 3.11, it appears that the variance increases asp increases, for

this situation that means as there is less of the second coordinate being con-

sidered. This matches with what we expect as in order to decrease variance,

we would need more of the more variable data point.

3.3.2 Optimal value of p for the given scoring rule

We again use LOESS in order to obtain a �tted curve to the data plotted in

Figure 3.11 and then derive an approximate function to represent the �tted

curve.
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Figure 3.12: LOESS Fitted Curve - Posterior Variance Trace Values

From this we obtain the approximate formula

y = 0:7153x2 � 0:4987x + 0:1776 (3.16)

To ensure that this is an accurate approximation for the LOESS curve, we

will compare it solely with the actual graph of the �tted curve.
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Figure 3.13: LOESS Fitted Curve and Quadratic Function Comparison

This con�rms the quadratic function is a good approximation for these spe-

ci�c trace values and hence can be used to make assumptions about the

posterior distribution and its corresponding variance matrix.

Optimising this quadratic function, we obtain the following optimalp value,

p̂ =
0:4987
1:4306

=
4987
14306

� 0:348595 (3.17)

What we conclude from this is that based on the trace function, in order to

minimise the variance of the posterior distribution with mean value unknown,
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we should reduce the data with 0.349 of the vectora and the rest times the

vectorb. However, any proportion in the range of (0:3; 0:5) will approximately

minimise the trace value.

66



3.4 Comparing Scoring Rules

In order to help determine which scoring rule should be used for the opti-

misation, we need to �nd methods and tests which can be used in order to

select the better of the possible scoring rules analysed.

For the following analysis' we will use the variance known with reduced data

case and still use the values de�ned in Equation 3.2.

3.4.1 Sensitivity of the Scoring Rules

In order to compare the sensitivity of both the determinant and the trace

over all of the posterior distributions covariance matrices, we will plot their

own respective values against each other. From this plot we will then be able

to see the sensitivity of the scoring rule by how they change over the possible

range of posterior distributions.
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Figure 3.14: Trace Vs Determinant Comparison, Di�erent Scale

From Figure 3.14, the �rst observation we can make is that there are points in

which the determinant scoring rule has returned the same value and which

the trace scoring rule has returned di�erent values. This is a positive for

the trace scoring rule as we are expecting to obtain di�erent results and are

wanting di�erentiation between the di�erent posterior distribution's.

However, it is important to note that the two scoring rules are on very dif-

ferent scales and hence we will also re-plot it with equal axis in order to see

the true comparison of the two rules.
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Figure 3.15: Trace Vs Determinant Comparison, Same Scale

Now that the axis are the same, we see a clear di�erence in the two scoring

rules. What this plot indicates is that as the trace values are changing over

the di�ering posterior distributions, the determinant values remain almost

unchanged over the di�erent distributions. This indicates that these two

scoring rules are on very di�erent scales and hence can not be compared on

the same scale.

Overall, the ability to di�erentiate between distributions given to us from

the trace scoring rule is a positive for using it to analyse the variance matrix.
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3.4.2 Accuracy over Repeat Simulations

Another test to be done in order to help us compare these two scoring rules

are to �x the value of p and then look at the variance of the results of both

of the scores. This process will be repeated over all of the di�erentp values

and we can see the stability of the scoring rule and again give an indication

to the viability of it.

3.4.2.1 Variance

The �rst of these checks that needs to be done on the possible scoring rules

is to see how much variation there is in repeated trials when thep value is

�xed in the repeats.

70



Figure 3.16: Variance of Trace and Determinant Scoring Rules over Repeat
Trials

What we see is that over a large portion of the domain, from 0.2 to 0.8, the

variance for both of these scoring rules is relatively consistent and also low.

We do see an increase in the trace values variance at the extreme ends of the

domain but however this is unlikely to be a negative as these values are not

likely to be where the partition is going to be made in order to optimise the

variance of the posterior distribution.

The reduced amount of variance we can see in the determinant function is

also going to be a fact of the lower sensitivity found in the previous section.
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3.4.2.2 Coe�cient of Variation

In order to check that the variance values are still proportionally small values

then we need to also look at the coe�cient of variation (CV) values in the

same way we looked at the variance above.

The CV is a way of measuring the variability of data while at the same time

eliminating units from this measure [1]. This means we can then fairly com-

pare the CV of di�erent data sets even if they have di�erent units themselves.

The units are eliminated by normalising the variance by dividing by the

mean of the data points for each di�erentp value.
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Figure 3.17: CV of Trace and Determinant Scoring Rules over Repeat Trials

We see that the corresponding values of the CV have increased by a factor

of 10 but both of them have stayed proportional to each other with the same

relationship. This means we can make the same conclusions that we did from

the variance plot and which both of these scores are equally good choices in

the more viable region of 0.2 to 0.8.

73



Chapter 4

Analysis of Phylogentic Tree

Posterior Distribution

In this chapter we extend the analysis to GBS analysis in Chapter 3 for in-

ferring species tree and ancestral demographics. This analysis is going to be

a proof of concept and hence will be completed on a simulated data set.

We will be using the recently published package SNAPPER [18], which can

be found in the BEAST2 package [2]. SNAPPER has been designed to take

independent biallelic (two state) markers and to return a sample from the

posterior distribution of species trees, divergence times and also ancestral

population sizes. The default for SNAPPER is to take SNP data, that is

that all the markers are assumed to be polymorphic (non-constant).

It was argued in [4] that ignoring constant sites led to a loss of important

information about population sizes. With GBS we have a choice for each and
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every ligation point of selecting a downstream site to be polymorphic or a

site purely at random, irrespective if it is polymorphic or not. In terms of our

simple experiment, choosing thei th site to be polymorphic is equivalent to

to choosingaT x i , whereas choosing thei th without any �ltering is equivalent

to choosingbT x i . We can de�ne and compute the likelihood for each site,

and we face the same question as earlier, what proportion of each data type

do we include?

The extraction of the di�erent types of marker from a GBS analysis requires

a signi�cant amount of bioinformatics work which falls outside of the scope

of this thesis, hence we use simulated data. The method for simulating the

SNP's is based on a given species tree. Data simulation will be carried out

using the program SimSnap [4]. This program requires the user to give both

a species tree for the markers to be simulated on and also the number of both

�ltered and un�ltered marker data points required. The �ltering process for

the marker simulator excludes constant sites.

We use the package SNAPPER [18] in the program BEAST2 [2] in order

to analyse the mixed �ltered and un�ltered markers and run a MCMC to

sample from the posterior distribution of tree parameters. We ran MCMC

for one million iterations with a thinning of one in a thousand. SNAPPER

outputs log �les from each of the posterior draws and a tree �le containing

all of the phylogenetic tree information. The posterior draw values which are

returned are the di�erent theta values, posterior probabilities, tree likelihood

values, prior values and tree heights and lengths. These posterior draw val-
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ues and their respective species trees will be analysed using both visual and

numeric inspection methods. To ease comparison with the earlier studies, we

do not sample species tree itself, but only the parameters of divergence times

and population sizes. These variables have proven di�cult to infer in earlier

studies, irrespective of the tree.

4.1 First Analysis: highly divergent sequences

Marker data will be simulated on a phylogeny (Figure 4.1) with 3 di�erent

species; A, B and C. The reason for not having more species in this analysis

is because it reduces computation time and allows a more in-depth investi-

gation.
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Figure 4.1: 3 Species Phylogenetic Tree

The main parameters which we are wanting to have comparable and wish

to see a relationship between are the population size (� ) values along each

branch which will be drawn from the posterior distribution, with the other

parameters, for example tree height, staying constant.

For this analysis, di�erent marker data sets were created with di�erent pro-

portions of un-�ltered data included, ranging from 0% to 100%. These data

sets were then ran through Snapper and the resulting posterior sample vari-

ance matrices were analysed by using the trace scoring rule.
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Figure 4.2: Trace Values of Estimated Posterior Variance Matrix

Figure 4.2 shows a plot of the trace of the estimated posterior variance ma-

trices for the � values. What we can see from this plot is that there are large

variance score values present for the posterior distributions de�ned with 0%

and 10% of un�ltered data used. In order to try and observe if there is any

visible trend ignoring these potentially non convergent chain score values and

plot the same data except remove the �rst two data points.
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Figure 4.3: Trace Values of Estimated Posterior Variance Matrix, omitting
p � 10%

There is a quadratic-like relationship with minimum around 30% un�ltered

data. In order to con�rm the presence of a quadratic-like relationship and

to get a more exact approximation for the minimising critical point we will

�t a line of best �t with a quadratic model.
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Figure 4.4: Fitted Quadratic Curve for Estimated Posterior Variance Trace
Values

This curve has the following equation which can be easily minimised

y = 0:01114x2 � 0:53247x + 12:93647: (4.1)

The percentage value in order to minimise this value is

53247
2228

� 23:899: (4.2)

What this can imply is if these values can be trusted considering the lack

of convergence in some of the chains, 24% of un�ltered data used for the

data set is the optimal in order to decrease the posterior variance. This is a
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signi�cant result as it demonstrates clearly that the current practice of using

0% un�ltered data is non-optimal.

4.2 Second Analysis: less divergent sequences

The branch lengths used in the previous experiment are longer that those

which would be expected in practice. Hence we conducted a second experi-

ment with branch lengths one tenth of the previous case (Figure 4.5).

Figure 4.5: Less Divergent 3 Species Phylogenetic Tree

To improve the reliability for the estimates of each posterior variance matrix

we ran three chains in parallel for each �ltration percentage.
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Figure 4.6: Trace Values versus Filtration Rates, with all Trials

Figure 4.6 plots the estimates of the traces for the di�erent posterior variance

matrices for each run. What we observe is that there are signi�cant outliers,

which we determined were due to lack of convergence.

In order to be able to see the true values from converged posterior draw val-

ues in more detail and �nd a quadratic model to approximate the pattern,

we remove these non convergent trace values. As we have multiple chains for

each percentage value, this will still allow us to observe a relationship.
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Figure 4.7: Trace Values versus Filtration Rates, with only Converged Trials

With this new plot for the trace values of the posterior variances in Figure

4.7, we start to see that there is a visible pattern. In order to analyse this

pattern in more detail and try and obtain the percentage value which will

minimise the trace, we will �t a quadratic curve in order to model this data.
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Figure 4.8: Trace Values versus Di�erent Filtration Rates, with Quadratic
Fitted Curve

This curve has the following analytic equation

y = 13:289x2 � 6:119x + 8:854 (4.3)

The percentage value in order to minimise the posterior trace is approxi-

mately 23:0228%. The positive result with this analysis with multiple chains

and the previous single chained analysis is that they have returned similar

percent of un�ltered data in order to optimise. This repeated result gives us

con�dence that we are observing the true optimum value.
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