
Translating between SQL and Tutorial D

Ahmed Yusuf Almulla

Dissertation Supervisor: Dr Nigel Stanger

A dissertation submitted as a partial fulfilment for the degree of Bachelor

of Applied Science with Honours in Software Engineering

UNIVERSITY OF OTAGO

Department of Applied Science

 ii

Copyright © by Ahmed Almulla

2007

 iii

Acknowledgments

I would like to take this opportunity to thank my supervisor Dr Nigel Stanger for the

great support and guidance he provided me throughout the course of my dissertation. I

would also like to appreciate the contribution of Dr Colin Aldridge in running the

research methodology seminars that provided me with a great deal of useful

knowledge. I thank Professor Martin Purvis for being the course coordinator of this

valuable course and showing his support. I also thank my friend, Abdulrahman

Shams, for the assistance he provided me in the implementation of my experiment

which led to the successful completion of my dissertation.

This work is dedicated to my family, friends and Software Engineering colleagues

who stood beside me throughout the course of my dissertation and showed their

support.

Finally, my greatest gratitude goes to my dear parents who put their faith in me and

supported me in my studies.

 iv

Abstract

The relational model of data has a strong influence on the database field and cannot

be discarded for any future direction regarding the development of databases (Date

and Darwen, 2007). Two relational database languages that are associated with this

model are the Structured Query Language (SQL) and Tutorial D. The purpose of this

dissertation is to translate between these two languages so that SQL clients can

interoperate with a Tutorial D database via SQL. Through studying the literature, it is

shown that such translation is important. It will allow the most popular relational

database language (i.e. SQL) to interoperate with a true relational database language

(i.e. Tutorial D) utilising its features to solve some of the deficiencies that exist in

SQL.

The main method conducted for this research is through implementing a translation

layer between SQL and Tutorial D using direct string manipulation. The translation

logic utilises some of the available methods for string manipulation to manipulate the

executed SQL statements and translate them to the corresponding Tutorial D

statements. The translation layer then takes care of executing the resultant Tutorial D

statements on a chosen Tutorial D database called Rel.

Testing the translation layer consisted of three steps. The first one is to test the

translation layer against valid SQL statements to study the feasibility aspect of such

translation. It is shown that all the chosen SQL statements for this step pass the test.

The second step is to test the translation layer as a solution to the SQL deficiencies

defined. It is shown that the test cases that are defined in this step pass the test, and

thus, the translation layer solves the deficiencies of SQL. Finally, the translation layer

is tested against robustness. All the invalid SQL statements defined in this step are not

translated and suitable error messages are shown.

Finally, the dissertation concluded with proving that the translation between SQL and

Tutorial D is feasible and can be a suitable approach to solve SQL deficiencies while

still using SQL.

 v

Table of Contents

Acknowledgments .. iii

Abstract..iv

Table of Contents ...v

List of Figures... viii

List of Tables ...ix

1. Introduction..1

1.1 Research Problem ..1

1.2 Research Objectives...1

1.3 Research Hypotheses and Scope..2

1.4 Research Importance..2

1.5 Research Methodology ..2

1.5.1 Literature Review: The First Part ...3

1.5.2 Literature Review: The Second Part ...3

1.5.3 Implementing the Translation Layer...4

1.5.4 Testing the Translation Layer ...4

1.5.5 Structure of the Report..4

2. Background ..6

2.1 The Relational Model of Data..6

2.1.1 The Relational Model Structure..6

2.1.2 Advantages of the Relational Model...7

2.1.3 Relational Model Importance ...8

2.2 The Structured Query Language – SQL ..9

2.3 Tutorial D...10

3. SQL Legacy and Standardisation ..13

3.1 Standardisation in General ...13

3.2 The SQL Standard..14

3.3 Summary..16

4. SQL Deficiencies ..17

4.1 Basic Scenario..17

4.2 Overview of the Deficiencies...18

4.2.1 First SQL Deficiency: Duplicate Rows ..18

4.2.2 Second SQL Deficiency: Specifying Unknown Values as NULL20

 vi

4.2.3 Third SQL Deficiency: Reliance on Column Ordering22

4.3 Summary..24

5. Tutorial D: A True Relational Database Language..25

5.1 The True Relational Features...25

5.1.1 First True Relational Feature: No Duplicate Tuples...................................25

5.1.2 Second True Relational Feature: No NULLs..26

5.1.3 Third True Relational Feature: No Attribute Ordering...............................27

5.2 Summary..28

6. Analysis and Findings..29

6.1 First Finding: SQL is the most widely used relational database language29

6.2 Second Finding: SQL is deficient ..29

6.3 Third Finding: Tutorial D is the solution...29

6.4 The Fundamental Problem...29

6.5 Suggested Solution...30

7. Previous Attempts at Translation...31

7.1 Translating between SQL and AmosQL..31

7.2 Translating between SQL and XQuery..32

7.3 Summary..34

8. Implementation of the Translation Layer ...35

8.1 The SQL Subset ...35

8.1.1 The SQL SELECT Statement ...35

8.1.2 The SQL INSERT Statement..36

8.1.3 The SQL UPDATE Statement ..37

8.1.4 The SQL DELETE Statement...38

8.2 The Translation Process...38

8.2.1 String Manipulation ..39

8.2.2 The Translation Logic...39

8.2.2.1 Translating the SELECT Statement...40

8.2.2.2 Translating the INSERT Statement ...41

8.2.2.3 Translating the UPDATE Statement..42

8.2.2.4 Translating the DELETE Statement ..43

8.2.3 The SQL-to-Tutorial D Interface ..44

8.2.4 Rel: An Open Source Tutorial D Database...45

8.2.5 Executing SQL Statements on Rel..46

 vii

8.3 Summary..46

9. Testing the Translation Layer ..47

9.1 Testing Procedure ..47

9.2 Testing Results...48

9.2.1 Testing the Feasibility Aspect of the Translation Layer49

9.2.2 Testing the Solution to SQL Deficiencies ..56

9.2.3 Testing the Robustness Aspect of the Translation Layer............................58

10. Analysis and Discussion of the Testing Results...62

10.1 The Feasibility Aspect ...62

10.2 The Solution to SQL Deficiencies Aspect ...62

10.3 The Robustness Aspect ..64

10.4 Summary..65

11. Conclusions and Future Work..66

12. References ...68

Appendix...71

Appendix 1: Employee Table - SQL “Create Table” Code.....................................71

Appendix 2: Employee Table - SQL “Insertion Script” Code.................................72

Appendix 3: Employee Relation - Tutorial D Code ..73

Appendix 4: Employee Relation -Tutorial D “Insertion Script” Code74

Appendix 5: The Translation Logic - Translate.java ...78

Appendix 6: Executing SQL Statements on Rel..89

Appendix 7: Handling Complex SQL statements..90

 viii

List of Figures

Figure 1: Employee Entity Relationship Diagram

Figure 2: SQL Deficiency - Duplicate Rows

Figure 3: NULL Value for Qualification

Figure 4: Average of Salaries

Figure 5: The New Average of Salaries

Figure 6: The SQL SELECT Statement

Figure 7: The SQL INSERT Statement

Figure 8: The SQL UPDATE Statement

Figure 9: The SQL DELETE Statement

Figure 10: The SQL-to-Tutorial D Interface

Figure 11: Rel Browser

 ix

List of Tables

Table 1: Testing Valid SQL SELECT Statements Translation

Table 2: Testing Valid SQL INSERT Statements Translation

Table 3: Testing Valid SQL UPDATE Statements Translation

Table 4: Testing Valid SQL DELETE Statements Translation

Table 5: Testing the Solution to SQL Deficiencies

Table 6: Testing Invalid SQL SELECT Statements Exception Handling

Table 7: Testing Invalid SQL INSERT Statements Exception Handling

Table 8: Testing Invalid SQL UPDATE Statements Exception Handling

Table 9: Testing Invalid SQL DELETE Statements Exception Handling

Table 10: Handling Complex SQL Statement

 1

1. Introduction

Since the introduction of the relational model of data (Codd, 1970), relational

database management systems came into existence and proved to be dominant in the

database field. These are software products that can be used in creating and managing

relational databases. These software products are all based on relational database

languages that give clients the ability to interact with data that are stored in relations

(Silberschatz, Korth and Sudarshan, 2002). There are many relational database

languages in the market but the most popular and standardised one is the Structured

Query Language (SQL). The purpose of this dissertation is to investigate the

feasibility and needs for implementing a translation layer between SQL and one of the

new relational database languages called Tutorial D.

1.1 Research Problem

There are many deficiencies and flaws surrounding the use of SQL as a relational

database language. In an attempt to avoid using SQL, Tutorial D was introduced as a

new relational database language that addresses SQL deficiencies and introduces new

features which realise the full potential of the relational model of data (Date and

Darwen, 2007). However, due to the popularity of SQL, adopting Tutorial D can be

difficult. Hence, the need to find a suitable mechanism to address these issues is

crucial. One suggested solution is to form a translation layer between SQL and

Tutorial D in order to allow legacy SQL clients to interoperate with Tutorial D

databases. However, this translation layer has not been implemented yet, and hence,

the need for more investigation surrounding the feasibility and needs of such

translation.

1.2 Research Objectives

Given the research problem, this dissertation aims to implement a translation layer

between SQL and Tutorial D allowing legacy SQL clients to interoperate with

Tutorial D databases. The research will first study the relevant literature to show the

importance of such a translation and the key factors that drive the need for

 2

implementing it. After completing the implementation of the translation, it will be

investigated in terms of showing how SQL deficiencies can be solved through

interoperating with Tutorial D via SQL.

1.3 Research Hypotheses and Scope

There are few questions to be addressed in this dissertation: Is the translation layer

between SQL and Tutorial D a feasible approach to preserve the interoperability of

the two languages? How can such translation be implemented? How important is this

translation layer and how can it solve the problems of SQL deficiencies?

The aim of the dissertation is to answer the previous questions. However, for the

purpose of this dissertation, the translation layer will only deal with a small subset of

the relational language to see if the translation layer is achievable in its basic form.

The subset that is investigated for translation is provided in Section 8.1 when

describing the implementation of translation.

1.4 Research Importance

If the translation layer is achievable, it will give the most popular and widely used

relational language, which is SQL, the ability to interoperate with next generation

database systems utilising their advantages of being true relational and solving SQL

deficiencies. Therefore, this research may lead to a better approach of manipulating

relational databases.

1.5 Research Methodology

The methodology undertaken for this research consists of a few stages in order to

address the research objectives described earlier. These stages are:

• reviewing the literature to study the importance of the research;

• reviewing the literature to study previous attempts made at translation;

• implementing the translation layer; and

• testing the translation layer.

 3

1.5.1 Literature Review: The First Part

The first stage of the methodology is a literature review relevant to this research. The

purpose of the literature review is to provide sufficient background information that

can aid in understanding the foundations that this research was based upon. In

addition, the research importance will be illustrated through reviewing the literature.

This spans across multiple sections and it is expected to result in the following

findings:

• SQL is the most widely used language for interacting with relational

databases;

• SQL has some deficiencies in complying with the relational model of data;

and

• Tutorial D is the next generation relational database language to address SQL

deficiencies.

After showing the above findings, a suggestion is provided to build a translation layer

between SQL and Tutorial D due to its importance.

1.5.2 Literature Review: The Second Part

The second part of the literature review is a shorter one. The purpose of it is to study

the feasibility of translation through studying two previous attempts that were

conducted between SQL and other database languages. One of them is between SQL

and AmosQL and the other one is between SQL and XQuery. The outcome of this

review is to show:

• the similarities of the attempt made at translation to the one that is conducted

for this research;

• the differences of the attempt made at translation from the one that is

conducted for this research; and

• the success of the attempt made at translation.

 4

1.5.3 Implementing the Translation Layer

The next stage of the methodology is to implement the translation layer between SQL

and Tutorial D after showing how important it is. The implementation goal is

achieved through building an interface that can accept SQL statements and execute

them on a Tutorial D database after conducting the translation. For this purpose, a

third generation programming language called Java is used to perform the translation

logic.

1.5.4 Testing the Translation Layer

Finally, the translation layer that was implemented is tested. The purpose of testing is

to gather results that can show:

• valid SQL statements for the subset chosen can be executed on a Tutorial D

database;

• invalid SQL statements for the subset chosen are not allowed to be executed

on a Tutorial D database; and

• the translation between SQL and Tutorial D solves the deficiencies of SQL

that are investigated in this dissertation.

1.5.5 Structure of the Report

This dissertation has 11 main sections. Section 1 provides a general introduction to

the research topic, its objectives, scope and importance. It also outlines a suitable

methodology that is followed for the course of this dissertation. In Section 2,

sufficient background material is provided to the reader. Section 3, 4 and 5 forms the

first part of the literature review. The issue of SQL legacy and standardisation is

covered in Section 3 while the deficiencies of SQL are explained in Section 4.

Tutorial D and its true relational features that solve those SQL deficiencies are

explained in Section 5. In Section 6, an analysis of the findings in the first part of the

literature is conducted. Section 7 comes next and it forms the second part of the

literature review by studying the previous attempts made at translation. Section 8

onwards form the original work made in this dissertation. In Section 8, the

implementation of the translation layer between SQL and Tutorial D is explained.

 5

Section 9 comes next and its purpose is to test the translation layer implemented and

show the results of testing. An analysis and discussion of these results is conducted in

Section 10. Finally, Section 11 of the dissertation outlines some conclusions and

implications regarding future work on the translation layer built for this dissertation.

 6

2. Background

This section provides detailed information of the relevant background related to the

study of translation between SQL and Tutorial D. It will first provide a background on

the relational model of data and its importance in the database field. Getting an

overview on the relational model of data is important because both of SQL and

Tutorial D are based upon this model. Finally, some background information will be

provided for each of SQL and Tutorial D. For those sections, only the relevant

material regarding the history and importance of those languages will be provided.

Detailed analysis for some of the issues regarding the two languages is provided in

later sections.

2.1 The Relational Model of Data

This dissertation is based on the widely accepted model of data called The Relational

Model which was published by Codd (1970). It came out as a motive to separate the

internal representation of data from the users of large data banks. Large data banks are

known nowadays as databases. For the purpose of this dissertation, the term databases

will be used when referring to large data banks.

As Codd suggests, the relational model can protect users from any knowledge related

to the physical data storage for databases. The following subsections describe the

relational model structure, its advantages and importance in the database field.

2.1.1 The Relational Model Structure

The relational model of data, as described by Codd, gives an abstracted view of the

data without any notion of its physical representation. This means that users are not

required to know the internal structure of the data and how they are stored. This

abstraction is achieved through the use of relations consisting of tuples that form the

necessary data an application program needs to interact with (Codd, 1970).

To explain, in the relational model of data, a relation can be defined as unordered set

of elements. These elements are known as tuples. Each tuple is defined as a set of

 7

attributes. Each attribute in a tuple contains a value that is drawn from a domain.

Finally, a domain is a pool of all the possible values that an attribute can have (Codd,

1990). However, an alternative description of the relational model structure exists. To

illustrate, it is noted that users perceive the structure of the relational model of data in

a different manner. Date (1988) describes users’ perception of the relational model as

a collection of tables which contain rows that have some column values. Those

column values represent data in the relational model.

The former description of the relational model uses the correct intended terms that

were originally defined by Codd (1970). These terms are used by Tutorial D when

implementing the relational model of data. Nevertheless, SQL uses the latter

description of the relational model. To avoid confusion, this dissertation will use the

terms relation, tuple and attribute when describing the relational model of data and

the Tutorial D implementation of it. On the other hand, the equivalent terms of table,

row and column will be used when describing the SQL implementation of the

relational model of data.

In addition, the relational model of data must abide by some integrity rules in order to

ensure a consistent state of the model which complies with the relational model

specification that was published by Codd. For the purpose of this dissertation, one

such integrity rule is crucial. This is the Entity Integrity which is about ensuring that

every tuple in the same relation is unique. In other words, there must be no two tuples

in the same relation having the same values across all attributes (Burns, 1990).

2.1.2 Advantages of the Relational Model

The relational model provides several advantages to the users of databases as Codd

discussed. Through separating the internal representation of data, application

programs can remain unchanged when any change should happen to the internal

representation of data. Furthermore, as Codd discussed, the relational model of data

acts as a suitable solution that replaces other models of data which are inadequate

because of their dependency on the physical internal structure of data. Such models

include the network models and tree-structured files. Thus, separating the internal

physical representation of data from the logical one is very crucial because of the

 8

different kinds of physical dependencies that an application program may end up

having. For example, the ordering of elements that are stored in the database may

affect the functionality of the application program when a change happens to the

ordering of those elements. This is referred to as ordering dependence. Similarly,

different physical dependencies besides the ordering of elements may affect the

application program and these may include indexing and access path dependencies.

All of those types of dependencies which are provided by Codd show how an

application program can largely depend on the physical representation of data which

is inefficient and can cause the application program to fail. Hence, the need for a

separation between the physical representation of data and the logical one is needed so

that application programs can interact with the logical representation of data without

the need to know about its physical structure and the changes made at that level.

2.1.3 Relational Model Importance

Since Codd defined the relational model of data and throughout the years, it became

evident, through the wide collection of the many database management systems that

are based on the relational model of data, that the relational model has a strong impact

on the database field. This is supported by a later argument made by Codd (1981) who

made a clear statement on how the relational model aids in conducting a sensible

logical database design before implementing the database. Thus, as Codd believes, the

relational model is the foundation for relational database systems which took off as

being the dominant database products in the market nowadays (Codd, 1990).

In addition, Researchers in the database field acknowledge the relational model of

data to be highly relevant to database theory nowadays. According to Date and

Darwen (2007), the relational model of data has a strong foundation that will remain

in use for the upcoming future. This is because of the numerous advantages of the

relational model of data in the database field. Apart from the advantages mentioned

earlier, Date (1988) points out many other advantages that emphasise on the

importance of the relational model of data. One of the advantages is the simplicity that

the relational model of data provides to the users in terms of usability. Usability refers

to the ability of unskilled users to use relational model systems for the purpose of

 9

managing data and obtaining results without the need of external help from an

administrator (Date, 1988).

Therefore, it can be seen that the relational model of data is important to the database

field. However, its importance cannot be utilised unless there is some form of a

commercial exploitation of the model. In order for the relational model to be

implemented and used commercially, some database query languages came out which

conformed to the relational model and gave a specification that database designers

and users can use for interacting with the databases. The database management

systems that utilise the relational model of data are subsequently known as relational

database management systems and the database query languages used for those types

of systems are known as relational database languages. This dissertation is related to

two of those relational database languages which are the Structured Query Language

(SQL) and Tutorial D. The following subsections will provide a background on these

two relational database languages.

2.2 The Structured Query Language – SQL

SQL is a language used for interacting with relational databases that are based on the

relational model of data. Interaction in this context means the ability to create, access

and manage data (Date and Darwen, 1997).

It all began when a company called IBM conducted a research in the field of

introducing a suitable language to interact with relational databases. As a result, SQL

was introduced and increasingly became popular as commercial database products

used it in the early and mid 1970s. These include non-IBM commercial products, such

as ORACLE which was developed by Oracle Corporation (Date and Darwen, 1997).

As Date and Darwen (1997) state, SQL has become the de facto standard for

interacting with databases. This is evident from the wide variety of relational database

management system products that are based on SQL, nowadays. In addition to

ORACLE, these products include IBM’s DB2 and Microsoft SQL Server (Silberschatz

et al., 2002).

 10

For the purpose of this dissertation, some issues that are related to SQL will be

provided in later sections.

2.3 Tutorial D

Tutorial D is a relational language proposed by Date and Darwen (2007) for the

purpose of forming a solid foundation for future database management systems.

It all started when Date and Darwen observed some of the trends which attempted

integrating object and relational technologies but in an ill-defined manner. The first of

these attempts was the Object-Oriented Database System Manifesto which was

proposed by Atkinson et al. (1989). It considered object-oriented database systems to

be theoretically and experimentally useful, and thus, need a common data model to

formalise those systems. According to Atkinson et al. (1989), the reason behind this is

that object-oriented database systems lacked a common data model before the

introduction of the Object-Oriented Database System Manifesto. However, Date and

Darwen (2000) criticised this approach to be ignoring the relational model of data,

and thus, not suitable for a future direction of database management systems to be

moved along. This is due to the importance of the relational model of data, as

described earlier.

The second attempt came along after the Object-Oriented Database System Manifesto

and was called the Third-Generation Database System Manifesto. This manifesto

realised the need for evolving the original relational model of data to treat objects as

any other data type of the model (Stonebraker et al., 1990). As this assertion suggests,

dealing with objects is important to the Third-Generation Database System Manifesto

because of their essential need in supporting business data processing applications. As

the authors claim, objects are necessary in two scenarios. One of those scenarios is to

store certain types of data elements, such as images, which are difficult to be stored in

the original relational model of data. The second scenario is that objects are necessary

to aggregate all of the related data elements into a single object in which it can be

manipulated easily by application programs (Stonebraker et al., 1990).

 11

Although this manifesto acknowledged the relational model of data and evolved it by

including the ability to store objects, Date and Darwen (2000) criticised it to be

accepting SQL as a relational language that is suitable for the evolved relational

model of data. This is because Date and Darwen (2000) believe that SQL is

considered to be a perversion of the relational model of data because of the many

deficiencies SQL has, and thus, it must be rejected when moving forward. Section 4

provides a detail explanation of those SQL deficiencies.

In short, Date and Darwen (2000) made some assertions based on the above

observations. The first assertion made is that integrating objects with the relational

model of data is necessary in the light of the recent events which include the

erroneous attempts that came from the previous two manifestos. Secondly, for any

attempt to move forward and evolve the relational model of data, SQL must be

rejected because of its deficiencies.

As a result, Date and Darwen proposed a third attempt of directing the next generation

of database management systems. A manifesto was formed and was called The Third

Manifesto with the purpose of forming a theoretically correct mechanism of building

object/relational database management systems which evolve from the original

relational model of data but not replace it because of its importance and relevance to

the database field (Date and Darwen, 2000). Therefore, the Third Manifesto builds on

the original ideas of the relational model of data and extends them for the purpose of

correcting the current trends of integrating object and relational technologies. As Date

and Darwen (2000) claim, the relational model of data needs no extension per se but

needs another relational language to support the object/relational features without

using the flawed SQL.

Subsequently, a new database programming language called Tutorial D was defined

to replace SQL. The purpose of Tutorial D is to form a solid foundation in which the

Third Manifesto can be built upon. This foundation must be originating from the roots

of the relational model of data that was proposed by Codd (1970) without any

existence of SQL (Date and Darwen, 2000). This is due to the many deficiencies that

SQL has which are described in Section 4.

 12

In terms of Tutorial D as a database language, it can be described as “a

computationally complete programming language with fully integrated database

functionality” (Date and Darwen, 2007, p.93). It is intended for education in order to

correct the common misconceptions provided earlier. In addition, it supports the

relational and object features of the manifesto through a list of features. For the

purpose of this dissertation, only the relevant relational features that address SQL

deficiencies and are considered to be proscriptions to the Third Manifesto are

provided (refer to Section 5).

 13

3. SQL Legacy and Standardisation

The first key factor that is related to this dissertation and its importance is SQL

standardization and how it influenced the popularity of SQL as a relational database

language. This section outlines how standardisation contributed towards SQL legacy

of being the most popular relational database language.

3.1 Standardisation in General

In general, a standard can be defined as “an approved model to be used for

comparison or judgement, and of established authority” (Soderstrom, 2002, p.1048).

As the definition implies, a standard can develop a formal agreement between several

parties to use a common model for the purpose of comparison and judgement.

Furthermore, other researchers in the standards field define a standard as “a

specification (or perhaps a product) that is widely accepted at least by some

identifiable market segment” (Eisenberg and Melton, 1998, p.54). As Soderstrom

(2002) believes, this can help businesses in synchronising their processes for co-

operation purposes and connecting their systems in a unified manner by the use of a

standard.

However, there could be many standards that an industry can choose from for any

given problem. The elements that characterise the most useful standard to be chosen

are outlined by Eisenberg and Melton (1998) who claim that an industry tend to

choose the most relevant standard that solves the given problem in a good but not

necessarily perfect manner and is available when needed. This is evidently true in the

information technology industry considering the latest standards that have been

adopted by businesses which include those standards that are developed by formal

standards organisations. The American National Standards Institute (ANSI) and The

International Organisation for Standardisation (ISO) are two of the most recognised

formal standards organisations (Eisenberg and Melton, 1998).

In addition, Eisenberg and Melton (1998) point out that ANSI and ISO standards

organisations can make the adoption of the developed standards faster. This is evident

 14

through looking at how ANSI and ISO standardised SQL which made it popular and

widely used. The following subsection details the standardisation of SQL.

3.2 The SQL Standard

Standardising SQL can be described as the process of making SQL the standard

relational database language that can be used in interacting with databases that are

based on the relational model of data. Date and Darwen (1997) describe this process

in two steps. The first step was making SQL the standard language for interacting

with relational databases. This was achieved through the ANSI standard in 1986. The

second step was making the SQL standard of ANSI accepted internationally and this

was done by ISO in 1987.

As a result, SQL became widely popular and supported by many relational databases

as the chosen relational language used for interaction. This wide acceptance of SQL

can be attributed to ANSI and ISO, in which it was mentioned in the previous section

that those two standards organisations can make the adoption of the developed

standards faster (Eisenberg and Melton, 1998). In addition, it was also mentioned in

the previous section that standardisation is desirable for many cases. In short, these

include using a common model, product or specification to co-operate in a unified

manner and solving a common problem in a good, relevant and timely manner.

Applying those principles to the SQL standard, it can be seen that the ANSI and ISO

SQL standards can give vendors, who are developing a relational database

management system but are hesitant of which relational language to choose from, the

choice of selecting SQL. This is due to what the SQL standard will provide from

specifying a common relational database language which can be supported by

multiple vendors, and thus, can lead to the increase of demand for the relational

database management systems that support SQL. It can also be seen that, despite SQL

deficiencies which are going to be outlined in later sections, SQL solves the common

problem of interacting with relational databases in a good, relevant and timely

manner.

 15

Those points are also supported by Date and Darwen (1997) who claim that because

of the common relational database language supported by multiple vendors through

the use of the SQL standard, many advantages are guaranteed. These include:

• Reduced training costs because of the ability to switch between a relational

database management system and another without the need for retraining.

This is due to the use of a common relational database language which is

SQL.

• Intersystem communication between different systems. Because of the SQL

standard, different relational database management systems can easily

communicate with each other.

• It is widely perceived that customers would go for the relational database

language that has been standardised to remove the complexity of choosing the

language and concentrating on choosing the best relational database

management system that meets their needs.

Hence, it is evident that SQL became popular as a relational database language

because of standardisation.

A final point regarding the popularity of SQL is that one might think that

standardising SQL by ANSI in 1986 and ISO in 1987 may have led other subsequent

relational languages to be standardised in a similar manner to SQL. However,

throughout the years, the original ANSI and ISO SQL standards were expanded to

include the numerous features that SQL introduced. Thus, the ANSI and ISO

standards were modified as needed (Date and Darwen, 1997). According to Eisenberg

and Melton (2000), three major editions of the SQL standard were published during

the period of 1986 and 1999 which are SQL-86, SQL-92 and SQL: 1999 standards. A

subsequent edition of the SQL standard was also added in 2003 and was called SQL:

2003 (ISO, 2003). This contributed towards keeping the ANSI and ISO SQL

standards in business and avoiding their obsoleteness. Therefore, as Date and Darwen

(1997) point out, this guaranteed the long lifetime of SQL and ensured its legacy.

 16

3.3 Summary

The popularity of SQL and its legacy of being the most widely used relational

database language can be attributed to the standardisation of the language. It is

important to take the legacy factor of SQL into consideration when attempting to

introduce new relational database languages. This is because of the difficulty of

adopting any new relational database language that comes after SQL because of its

legacy.

 17

4. SQL Deficiencies

The purpose of this section is to provide a detailed explanation of some of the

deficiencies and flaws that exist with SQL. The deficiencies provided are by no means

a complete list of all the SQL deficiencies as only those ones that are relevant to the

purpose of this dissertation were chosen. For this purpose, the SQL deficiencies that

are described were chosen on the basis of, firstly, if there are any violations in the

relational model of data due to the behaviour of SQL, and secondly, if the Third

Manifesto addressed those deficiencies in the list of proscriptions that Tutorial D

conforms to.

4.1 Basic Scenario

For the purpose of illustrating the deficiencies of SQL, a basic database with one table

was created. The purpose of this table is to store the records of employees in a

company. The data requirements for this table are illustrated in Figure 1.

Figure 1: Employee Entity Relationship Diagram

The above figure is an Entity Relationship Diagram (ERD) created using Barker

notation (Barker, 1990). It shows an entity called Employee corresponding to a table

with the same name when implemented with all the columns defined for that table. All

of the data stored in those columns are mandatory as they must be entered when the

EMPLOYEE
EMPLOYEE_ID

* FIRSTNAMES

* SURNAME

* STREET

* SUBURB

* PHONE

* EMAIL

* DATE_ENTERED

* DATE_EMPLOYED

o SALARY

o QUALIFICATION

 18

employee rows get created. However, for the purpose of illustrating SQL deficiencies,

the Salary and Qualification columns are optional meaning that it is not mandatory to

enter their values when the employee rows get created. The SQL code used to create

the Employee table is provided as an Appendix (refer to Appendix 1). In addition,

using an insertion script written in SQL, the Employee table was populated with

sufficient data (refer to Appendix 2).

4.2 Overview of the Deficiencies

Many researchers in the field of the relational model of data claim that SQL has

serious flaws that violate the relational model. For example, Codd states that “SQL

departs significantly from the relational model, and where it does, it is clearly SQL

that falls short” (Codd, 1990, p. 372). In addition, Date and Darwen claim that SQL

“fails to realize the full potential of the relational model” (Date, 1984, p.270).

To prove those claims and as mentioned earlier, a selected number of SQL

deficiencies were chosen for the purpose of this dissertation. These are:

• the appearance of duplicate rows in relations;

• the use of NULL for specifying unknown values; and

• the reliance on column ordering.

4.2.1 First SQL Deficiency: Duplicate Rows

In the relational model of data, a duplicate row can be defined as any identical row

that has the same values for all the columns when compared to another existing row in

the same relation.

As Codd (1990) states, duplicate rows are a violation of the relational model of data

and must be avoided. The basic problem of duplicate rows, as Codd describes, is that

duplication may lead to the confusion of users when interpreting the meaning of

duplicate rows. This is because duplicate rows are considered to be unwanted

redundancy of the data as it can be difficult to form a common meaning of those

redundant data. Date (1990) supports this claim by stating that duplicate rows may

 19

confuse users on which rows to choose from when retrieving a set of duplicate rows

as they will all appear the same to the users. Above all, duplicate rows are considered

to be a violation of the Entity Integrity rule of the relational model which was

mentioned earlier (refer to Section 2.1.1).

Hence, duplicate rows are considered to be a serious violation to the relational model

of data. In this regard, there is a flaw with SQL as it can allow duplicate rows to

appear to the users. This is illustrated through the following example using the basic

scenario described earlier:

A possible case that SQL users may need to do with the Employee table is to retrieve

the “Qualification” column to see all the possible qualifications that the employees

have. To achieve this purpose, a SELECT query on the Qualification column will give

the required result. This will return a relation containing the different values of

qualifications that are found in the Employee table. The query to be run for this is:

SELECT Qualification FROM Employee;

However, when running the above query on the database created for the scenario, the

result is a table which contains duplicate rows because of all employees having the

same qualification. This is shown in Figure 2.

Figure 2: SQL Deficiency - Duplicate Rows

Therefore, this is a violation of the relational model as mentioned earlier. Ideally, the

result of the above query should return a table with duplicate rows being eliminated so

that users would not get confused with the meaning of different duplicate rows when

 20

they all mean the same. Thus, duplicate rows can appear when using SQL and this is

considered to be a deficiency. This argument is also supported by Date and Darwen

(2007) as they state that duplicate rows can appear with SQL, and when they do, SQL

tables are not considered to be true relations because of the violation of the relational

model as Codd (1990) points out.

4.2.2 Second SQL Deficiency: Specifying Unknown Values as

NULL

In relational databases that use SQL, NULL can be referred to as any value that is

recorded as unknown in the database due to the incompleteness of information (Date,

1983). For example, it can be possible that a record contains one or more values that

are unknown at the time of inserting the record into the database, and thus, those

unknown values can be assigned NULL to solve the problem.

This can be illustrated through using the Employee table from the basic scenario

described earlier. For instance, when inserting a new record in the Employee table, it

is possible for the “Qualification” value to be unavailable for the new inserted

employee record. This is supported in the database design, as mentioned in the

scenario description, as the Qualification column is defined as optional. Thus, through

the use of NULL when specifying the Qualification value, it is possible to insert a

new employee record using the following INSERT statement:

INSERT INTO Employee (Employee_ID, Firstnames, Surname, Street, Suburb,

Phone, Email, Date_Entered, Date_Employed, Salary, Qualification) VALUES (7,

'John', 'Smith', '11 Ethel Benjamin Place', 'Dunedin', '(03) 497-0752', '-', '2007-09-29

09:13:00', '2007-09-29', 43610.0, NULL);

Consequently, when retrieving the Qualification of the new record that was inserted,

the result will show no value for the retrieved qualification, which is achieved through

the use of NULL; as shown in Figure 3.

 21

Figure 3: NULL Value for Qualification

However, specifying unknown values as NULL is considered to be a deficiency in

SQL. This is because of the many anomalies that can appear when using NULL as

stated by Date (1983). Those anomalies are outside the scope of this dissertation but it

is worthwhile to illustrate one of them for the purpose of showing that specifying

unknown values as NULL is considered to be a deficiency with SQL.

For this purpose, the chosen anomaly is pointed out by Date (1983) by claiming that

values that are specified as NULL are always eliminated from the argument to a built-

in function. Examples of built-in functions include SUM and AVG. The former

calculates the sum of the values of the column passed as an argument to the function

whereas the latter calculates the average of those values.

For example, one query that may arise after inserting the employee records is to

calculate and return the average value of employees’ salaries. Using the AVG built-in

function, this can be achieved using the following SQL statement:

SELECT AVG(Salary) FROM Employee;

The result of the above SQL statement will return a single value showing the average

of employees’ salaries; as shown in Figure 4.

Figure 4: Average of Salaries

 22

However, when a new employee is recorded, it can be possible that the salary value is

unknown, and when using SQL, this can be achieved through the use of NULL when

specifying the Salary value, as follows:

INSERT INTO Employee (Employee_ID, Firstnames, Surname, Street, Suburb,

Phone, Email, Date_Entered, Date_Employed, Salary, Qualification) VALUES (8,

'John', 'Smith', '11 Ethel Benjamin Place', 'Dunedin', '(03) 497-0752', '-', '2007-09-29

09:13:00', '2007-09-29', NULL, 'Senior');

As a result, the new employee must be counted in for calculating a new average value

using the same SQL statement used earlier. It is expected that the new average value

will be different from the previous one because of the addition of a new employee.

However, the average value is found to be the same as the old one; as shown in Figure

5.

Figure 5: The New Average of Salaries

This can only mean that due to the NULL value of Salary for the new employee, it

was eliminated from the argument to AVG function. This behaviour of SQL is

considered to be inconsistent, as Date (1983) describes, as there is no guarantee that

all of the records will be considered for the AVG function because of the existence of

values specified as NULL. Therefore, this can lead to undesired incorrect results.

4.2.3 Third SQL Deficiency: Reliance on Column Ordering

In the relational model of data, specifying the column order is not important when

having to retrieve their values or insert new values in them. Date (2003) supports this

argument by claiming that a proper relational language pays no attention to column

ordering. The assertion made by Date is valid because of the fact that a “proper”

relational language means that the language itself is a concrete realisation of the

 23

relational model of data and conforms to it. Having said that, as the relational model

of data does not require columns in a relation to be specified in a particular order

(Codd, 1990), a proper relational language must do the same.

However, SQL falls short in this regard by violating the principle of column ordering.

This is because in some cases, users must remember the order of columns from left to

right when using SQL (Date, 2003).

To illustrate, when inserting a new Employee record using SQL, it is possible to only

specify the column values without having to specify the column headings, as follows:

INSERT INTO Employee VALUES (9, 'John', 'Smith', '11 Ethel Benjamin Place',

'Dunedin', '(03) 497-0752', '-', '2007-09-29 09:13:00', '2007-09-29', 43610.0,

'Senior');

However, when doing this, the values that are entered rely on the original order of the

columns. The original order of columns is the “left-to-right” order they were specified

in when creating the Employee table.

Consequently, this can have some negative outcomes on users as Codd (1990) points

out. This includes putting the burden on users to remember the correct order of

columns which can get difficult when having a large number of columns in a relation.

In addition, Date (2003) adds to the negative outcomes of this SQL flaw by pointing

out that relying on column ordering when doing an insert can lead to incorrect results

if the original ordering of columns changed but the order of columns in the SQL

INSERT statement did not.

Fortunately, SQL defines a solution for the above problem by allowing users to

specify the column names instead of relying on column ordering. For example, the

previous SQL statement can be written as:

 24

INSERT INTO Employee (Employee_ID, Firstnames, Surname, Street, Suburb,

Phone, Email, Date_Entered, Date_Employed, Salary, Qualification) VALUES (9,

'John', 'Smith', '11 Ethel Benjamin Place', 'Dunedin', '(03) 497-0752', '-', '2007-09-29

09:13:00', '2007-09-29', 43610.0, 'Senior');

Thus, column names can be specified in the SQL INSERT statement and this can be

done in any order. For example, the previous SQL statement can also be written as

follows with a different column ordering:

INSERT INTO Employee (Employee_ID, Surname, Firstnames, Suburb, Street, Email,

Phone, Date_Entered, Date_Employed, Salary, Qualification) VALUES (9, 'Smith',

'John', 'Dunedin', '11 Ethel Benjamin Place', '-', '(03) 497-0752', '2007-09-29

09:13:00', '2007-09-29', 43610.0, 'Senior');

However, the choice of not specifying the column names as originally described is

still available for use and is considered to be a flaw in the language. In addition to the

negative outcomes that this flaw has, it is considered to be a violation of the relational

model of data as described earlier and must be avoided.

4.3 Summary

It is evident that SQL is deficient in conforming to the relational model of data. Some

of these deficiencies include the appearance of duplicate rows in relations, the use of

NULL for specifying unknown values, and the reliance on column ordering. Hence,

the need for a new relational database language for any step to move forward is

crucial.

 25

5. Tutorial D: A True Relational Database Language

Tutorial D is a relational database language that was proposed as an outcome of the

Third Manifesto to form a solid foundation for future database systems in which

objects and relational features can be integrated and utilised in a correct manner (refer

to Section 2.3). For this reason, it is called a ‘true’ relational database language (Date

and Darwen, 2007). For the purpose of this dissertation, only the relevant relational

features that SQL has deficiencies in and addressed by Tutorial D are described.

Therefore, the provided features of Tutorial D will not include any object or

additional relational features because they are outside the scope of this research.

This section will give an overview of the relational features of Tutorial D that address

the SQL deficiencies that were mentioned.

5.1 The True Relational Features

For the purpose of illustrating the true relational features of Tutorial D, the same

scenario that was used for illustrating the SQL deficiencies is used (refer to Section

4.1). Using Tutorial D, a relation called Employee is created and then populated with

some tuples (refer to Appendix 3 & 4).

The features of Tutorial D that are provided in this section show how Tutorial D

addresses the deficiencies of SQL mentioned in Section 4. According to Date and

Darwen (2007), these include:

• no duplicate tuples;

• no NULLs; and

• no attribute ordering.

5.1.1 First True Relational Feature: No Duplicate Tuples

Date and Darwen (2007) point out that Tutorial D prevents the appearance of

duplicate tuples in a relation. This can be illustrated through applying the same

 26

scenario used earlier when showing the SQL deficiency of duplicate rows (refer to

Section 4.2.1).

To illustrate, when retrieving the Qualification value, the following Tutorial D

statement can be used:

Employee {Qualification}

This returns a relation with one tuple as follows:

RELATION {Qualification CHAR} {

 TUPLE {Qualification "Senior"}}

Although there are many other tuples with the same Qualification value, returning

them in the result will lead to duplicate tuples. Therefore, Tutorial D eliminated those

duplicates before showing the final result of the retrieval. Thus, Tutorial D addresses

the SQL deficiency of duplicate rows and conforms to the relational model in this

aspect.

5.1.2 Second True Relational Feature: No NULLs

All attributes in Tutorial D have values and those cannot be NULL (Date and Darwen,

2007). This can be illustrated through applying the same scenario used earlier when

showing the SQL deficiency of specifying unknown values as NULL (refer to Section

4.2.2).

To illustrate, when inserting a new employee record with a NULL salary, as follows:

INSERT Employee RELATION

{TUPLE {Employee_ID 39, Firstnames "John", Surname "Smith", Street "11 Ethel

Benjamin Place", Suburb "Dunedin", Phone "(03) 497-0752", Email "-",

Date_Entered "2007-09-29 09:13:00", Date_Employed "2007-09-29", Salary NULL,

Qualification "Senior"}};

 27

Tutorial D will return an error saying:

"Semantic error: Unable to find catalog entry for NULL"

This means that NULL is not defined in Tutorial D, and thus, values are not allowed

to be NULL when inserted into Tutorial D relations. Hence, this addresses the SQL

deficiency of specifying unknown values as NULL.

5.1.3 Third True Relational Feature: No Attribute Ordering

Date and Darwen (2007) point out that Tutorial D has no concept of a relation that

pays attention to ordinal position of attributes. This is because attributes in Tutorial D

are not ordered which is considered to be a true relational feature because the

relational model of data pays no attention to attribute ordering. Consequently, instead

of distinguishing attributes by their ordinal position, they are distinguishable by name

(Date and Darwen, 2007).

This is illustrated through applying the same scenario used earlier when showing the

SQL deficiency of reliance on column ordering (refer to Section 4.2.3).

To illustrate, when inserting a new employee record with Tutorial D, the only

mechanism to do this is to distinguish the attributes by name instead of their ordinal

positions. For example, inserting the following tuple using the attributes’ names is

valid in Tutorial D:

INSERT Employee RELATION

{TUPLE {Employee_ID 39, Firstnames "John", Surname "Smith", Street "11 Ethel

Benjamin Place", Suburb "Dunedin", Phone "(03) 497-0752", Email "-",

Date_Entered "2007-09-29 09:13:00", Date_Employed "2007-09-29", Salary

43610.0, Qualification "Senior"}};

Running the above Tutorial D statement will insert one tuple in the specified relation

and will return the following message:

“Inserted 1 tuple”

 28

However, relying on ordinal position of attributes is invalid in Tutorial D. For

instance, when executing the previous Tutorial D statement without identifying the

attributes’ names and relying on their ordinal position will return an error, as follows:

INSERT Employee RELATION

{TUPLE {40, "John", "Smith", "11 Ethel Benjamin Place", "Dunedin", "(03) 497-

0752", "-", "2007-09-29 09:13:00", "2007-09-29", 43610.0, "Senior"}};

The Tutorial D error returned says:

“Parse error: Encountered "40" at line 9, column 9.

Was expecting one of:

 <IDENTIFIER>“

Therefore, Tutorial D avoids referring to attributes by their ordinal position and the

only approach for referring to attributes is by specifying their names. Thus, Tutorial D

addresses the SQL deficiency of reliance on column ordering and conforms to the

relational model in this aspect.

5.2 Summary

To conclude this section, it is found that Tutorial D addresses the SQL deficiencies

that were described in Section 4. This is achieved through providing true relational

features that include rejecting duplicate tuples, NULLs and attribute ordering. Hence,

utilising Tutorial D can be useful in order to conform to the relational model of data

and avoid SQL deficiencies.

 29

6. Analysis and Findings

After analysing the literature, a number of findings emerged. The purpose of this

section is to summarise these findings and report the fundamental problem that needs

to be addressed during the investigation of this research.

6.1 First Finding: SQL is the most widely used relational

database language

Due to the issue of standardisation, SQL has a legacy of being the most widely used

relational database language. This can make the adoption of any new relational

database languages that are introduced after SQL difficult.

6.2 Second Finding: SQL is deficient

SQL has some deficiencies in conforming to the relational model of data. It is evident

that solving those deficiencies is important because of their numerous problems.

6.3 Third Finding: Tutorial D is the solution

Tutorial D is a new relational database language that was introduced for the purpose

of integrating objects and relational features, and also to address SQL deficiencies. It

provides true relational features that realise the full potential of the relational model of

data. The literature review concentrated on the main features that address the SQL

deficiencies that were reviewed.

Based on the findings, the fundamental problem that this dissertation is based upon

emerges.

6.4 The Fundamental Problem

SQL must be rejected as a language for next generation database systems due to its

deficiencies. Date and Darwen support this claim as they state “We reject SQL as a

 30

long-term foundation for the future” (Date and Darwen, 2007, p.227). Hence, the

introduction of Tutorial D as the next generation relational database language.

Although Tutorial D is found to be a suitable alternative to SQL because it addresses

SQL deficiencies in conforming to the relational model of data, adopting it as the

relational language for next generation database systems can be difficult due to the

issue of SQL standardisation which made SQL popular and dominant as a relational

database language.

6.5 Suggested Solution

In an attempt to utilise Tutorial D features that address SQL deficiencies but at the

same time use SQL to interact with relational databases because of its legacy, a

translation layer between the two languages can prove to be a worthwhile approach.

To explain, the suggested translation layer can be formed between SQL and a Tutorial

D database. In other words, the translation layer can accept SQL statements and

execute them on a Tutorial D database via a translation process.

This dissertation will first investigate the feasibility of implementing the translation

layer through concentrating on a subset of the relational language. If the translation

layer is proved to be feasible, this will allow legacy SQL clients to interoperate with

the next generation database systems utilising their features. In addition, the

dissertation will investigate the usefulness of the translation layer through studying

the SQL deficiencies described earlier and how they are solved when SQL statements

get executed on a Tutorial D database.

 31

7. Previous Attempts at Translation

Translating between SQL and other database languages has been attempted

beforehand and was proven to be feasible. This section will outline two such attempts

at translation and how they were conducted. The purpose of this is to critically analyse

these attempts before conducting the translation between SQL and Tutorial D which is

the core study of this dissertation project.

7.1 Translating between SQL and AmosQL

Translating between SQL and AmosQL was conducted by Jagerskogh (2005) for the

purpose of creating an SQL front-end that can enable using SQL to run queries on a

mediator system.

To begin with, Jagerskogh (2005) describes a mediator as a system which allows the

execution of queries over a collection of heterogeneous data sources. The study

concentrated on a particular mediator system called Amos II which uses a query

language called AmosQL. In addition, the purpose of translating SQL to AmosQL is

to be able to use SQL as the query language that sits on top of the Amos II mediator

system. The desirability of choosing SQL was because of its popularity as a database

query language as it has been standardised (Jagerskogh, 2005). Therefore, it can be

seen that the issue of SQL standardisation is very similar to the assertion made in this

dissertation regarding SQL legacy.

However, the method of conducting the translation between SQL and AmosQL is

different from the one followed in this dissertation. To explain, translating SQL to

AmosQL happens by translating SQL statements into internal representations that are

interpreted at the AmosQL side producing the required results (Jagerskogh, 2005).

This is different from the approach undertaken in this dissertation when translating

between SQL and Tutorial D. The approach followed here is a direct string

manipulation of SQL statements to produce Tutorial D statements without

transforming the SQL statements into internal representations first. This will be

described in more detail in Section 8.2. However, the former approach that is used for

translating between SQL and AmosQL is useful when there is a need to translate a

 32

large subset of the query language rather than a small subset of it. This is because it

may get difficult to translate every possible SQL statement directly because of the

complexity of the language. Thus, the approach undertaken by Jagerskogh (2005) is

considered to be suitable for translating a large subset of the SQL language to

AmosQL and can also considered to be suitable for translating a large subset of the

SQL language to Tutorial D. However, due to the limited scope of this dissertation

and the concentration on translating a small subset of the SQL language, the approach

undertaken by Jagerskogh (2005) will not be considered when translating between

SQL and Tutorial D.

The method of translation conducted by Jagerskogh (2005) led to successful results.

When the translation was evaluated, it was found that 72% of SQL statements

executed correctly. The error rate found is due to not implementing some of the

functions that are used in the SQL statements used for testing (Jagerskogh, 2005).

This is acceptable as the scope of the translation was not set to include the entire SQL

language but a large subset of it.

7.2 Translating between SQL and XQuery

Translating between SQL and XQuery is another attempt made at translation. Its goal,

as described by Jigyasu et al. (2006), is to enable the interaction with multiple XML-

based views of heterogeneous information sources using SQL. XML stands for the

Extensible Markup Language which is becoming the standard format for data

interchange. It is noted that the current mechanism of handling such interaction is

through XQuery which is becoming the standard language for querying XML data

(Jigyasu et al., 2006).

Therefore, the approach undertaken by Jigyasu et al. is to enable this interaction by

using SQL due to its legacy and popularity. Hence, translation is needed between SQL

and XQuery in order to use SQL for the purpose of querying XML-based data using

XQuery. Thus, it can be seen that the objective of this translation is very similar to the

one undertaken in the previous section when translating SQL to AmosQL and also to

one of the objectives of the translation undertaken for this dissertation. This objective

 33

is to use the standard legacy language SQL to interact with underlying data sources

that are under the control of another query language, which is XQuery in this case.

In terms of the approach undertaken for this translation, it is found that it is different

from the one followed in this dissertation. Translating SQL to XQuery was conducted

by capturing the pieces of semantic information that SQL has and then storing them

and processing them as needed. To explain, a progressive step-wise translation was

conducted in order to achieve this. The first step is to perform SQL recognition and

build an abstract representation of the SQL semantics. This can be an abstract syntax

tree and after building it, the appropriate SQL semantics of information represented in

the tree can be moved to specific locations in the same tree in preparation for the next

step. The final step comes next and it performs XQuery expression generation on the

moved SQL semantics of information (Jigyasu et al., 2006).

Therefore, it can be seen that the actual translation is effectively conducted in the third

step when generating the XQuery expressions as the first two steps are merely a

preparation for the translation process in order to carefully capture the semantics of

information before translation. This approach has some similarities to the one

undertaken for this dissertation for the purpose of translating between SQL and

Tutorial D. In this regard, the preparation step is very important because it checks the

input SQL statements for validity when performing the SQL recognition. Thus, the

translation between SQL and Tutorial D took this step into consideration. However,

building an abstract syntax tree to handle the semantics of information is not

necessary for a small scope of the relational language, and thus, was discarded when

implementing the translation layer between SQL and Tutorial D. As an alternative, a

direct string manipulation is a suitable approach for such translation and was followed

in this dissertation. This will be explained in more detail in Section 8.2. Nevertheless,

there is still a need for some auxiliary data structures to be used in the translation

logic conducted for the purpose of this dissertation and this is also described in

Section 8.2.

Finally, the approach conducted by Jigyasu et al. (2006) led to successful results. It

was shown that such translation is feasible and can be done with a variety of SQL

statements, including multi-table queries.

 34

7.3 Summary

In summary, translating between SQL and other database languages is not a new area

in the database field. Two of the previous attempts made at translation were studied

for the purpose of pointing out the similarities to and differences of those attempts

with the one made in this dissertation. In addition, it was shown that those attempts

were feasible and led to successful results. After showing this, the next step of the

methodology followed in this dissertation is to implement the translation layer

between SQL and Tutorial D. This is outlined in the following section.

 35

8. Implementation of the Translation Layer

After studying the relevant issues from the literature, the next step is to implement the

translation layer between SQL and Tutorial D. This section outlines this process.

8.1 The SQL Subset

Before implementing the translation between SQL and Tutorial D, it is important to

understand the subset of the SQL language that is considered for translation for the

purpose of this research. It was mentioned in the scope of the research that the

translation layer will only deal with a small subset of the relational language. In SQL,

this includes simple statements of the following:

• SELECT statements;

• INSERT statements;

• UPDATE statements; and

• DELETE statements

The following subsections outline the basic structure for these statements that is used

for translation.

8.1.1 The SQL SELECT Statement

The SQL SELECT statement is used for the purpose of retrieving data. Data can be

retrieved from multiple tables at once. However, for the purpose of this research, only

single table queries were considered.

The basic structure of the SELECT statement that is used for translation in this

research is simple as shown in Figure 6. It begins with a SELECT keyword and a

select list which contains the column names or a “*” if wanting to select all the

columns. The FROM keyword comes next which specifies the table reference which

the columns will be selected from. If there is a need to limit the number of rows by a

restrict operation, a WHERE clause is specified next with the condition that the

restriction is based upon.

 36

It is also noted that the full SELECT statement specified by the SQL standard

includes several other clauses, such as GROUP BY and ORDER BY (ISO, 2003).

However, for the sake of simplicity and to reduce complexity, these clauses have not

been included in the translation. Selecting from multiple tables in the same SELECT

statement also has not been included in the translation for the sake of simplicity. Thus,

the translation layer only handles the basic structure of the SELECT statement which

is described earlier and shown in Figure 6.

Figure 6: The SQL SELECT Statement

8.1.2 The SQL INSERT Statement

The purpose of this statement is to insert new rows into a table. New rows can be

inserted one at a time by relying on the ordinal position of columns or by specifying

column names. This is shown in Figure 7.

Yes

No

SELECT

WHERE

FROMSelect list

Condition

Restrict?

Table reference

 37

Figure 7: The SQL INSERT Statement

8.1.3 The SQL UPDATE Statement

The purpose of this statement is for changing the existing values in a table. This is

specified in the update’s SET clause. In addition, updating can happen for all the rows

in a table or restricted to a number of rows based on a WHERE clause. This is shown

in Figure 8.

Figure 8: The SQL UPDATE Statement

No

Yes

INSERT INTO Columns list

VALUES

Table Ordinal position of columns?

Values l ist

No

Yes

UPDATE Update SET clauseTable

Condition

Restrict?

WHERE

 38

8.1.4 The SQL DELETE Statement

This statement is used to delete rows from a table. Like SELECT and UPDATE, the

DELETE statement can also restrict the deletion to certain rows based on a condition.

If the restrict option is not specified, then all the rows in the specified table will be

deleted. The structure of the DELETE statement is shown in Figure 9.

Figure 9: The SQL DELETE Statement

8.2 The Translation Process

Java was chosen as the programming language to write the application that forms the

translation layer between the two languages. The process of building the translation

layer consists of several steps. These are:

• understanding string manipulation;

• writing the translation logic in Java;

• designing the interface for translation;

• selecting an open source Tutorial D database product; and

• executing SQL statements on the Tutorial D database.

The following subsections detail the translation process.

No

Yes

DELETE FROM Restrict?Table

WHERE

Condition

 39

8.2.1 String Manipulation

The translation between SQL and Tutorial D was conducted through string

manipulation. This means that each SQL statement is treated as a string object in Java.

To explain, a string in Java is a class that can represent text and manipulate it through

many methods that can be called on the string object. Thus, by manipulating the SQL

string object, a different string object can be formed and returned. Through some

defined logic, it is easy to set the returned string object to be the resultant Tutorial D

statement. Thus, translation can happen through string manipulation. These are the

main string manipulation methods used for the purpose of such translation:

• indexOf(String str): returns the position of the first occurrence of the string

object that is passed as an argument. This is useful for locating the position

of keywords in the SQL statement.

• substring (int beginIndex, int endIndex): returns a new string which is a

substring starting at the begin index and ending at the end index which are

specified as arguments. This can be used to manipulate a portion of the SQL

statement.

• charAt(int index): returns the character value found at the index passed as

an argument.

• contains(CharSequence s): returns a true or false value depending on

whether a string object contains the specified character sequence passed as

an argument. This is useful for confirming if the SQL statement contains a

specified keyword or not.

8.2.2 The Translation Logic

The second step of translation after understanding string manipulation is writing the

translation logic in Java. For this purpose, a new class called Translate.java was

created to perform the translation. The complete Java code written for this class is

provided in Appendix 5.

The purpose of the translation logic class is to accept an SQL statement as a string

object and return the equivalent Tutorial D statement as a new string object. This is

done through the string manipulation described earlier. The translation logic also

 40

handles invalid SQL statements by throwing suitable exceptions that terminate the

logic before conducting the translation. This can ensure that the SQL statement is

valid before translating it to a Tutorial D statement. The following subsections outline

the translation logic for each of the types of SQL statements found in the subset

described earlier.

8.2.2.1 Translating the SELECT Statement

The logic handles the translation of the SELECT statement by starting with the

WHERE clause. If the WHERE clause does not exist in the statement, the table

reference is found between the FROM keyword and the end of statement. Otherwise,

it is found between the FROM keyword and the WHERE clause. In both cases, the

logic checks if there are any columns that are selected in the select list. If any, these

are returned as the last portion of the Tutorial D statement.

In general, the translation logic translates SELECT statements to Tutorial D

statements as follows:

SQL:

SELECT <select list> FROM <Table reference> WHERE <Condition>;\

Tutorial D:

(<Table reference> [<Condition>]) {<select list>}

For the purpose of illustration, the Employee scenario can be used to show the

translation of the SELECT Statement as follows:

SQL:

SELECT Firstnames, Surname, Qualification FROM Employee WHERE

Employee_ID = 1;

Resultant Tutorial D:

(Employee[Employee_ID = 1]) {Firstnames, Surname, Qualification}

 41

8.2.2.2 Translating the INSERT Statement

Translating the INSERT Statement is handled by first storing the columns list and

values list into auxiliary data structures. This is because Tutorial D always specifies

each value by the column name, unlike SQL where this is optional. For this purpose,

the chosen auxiliary data structure is an array list. Thus, the translation of the INSERT

statement begins by storing the columns into an array list and the corresponding

values into another array list. After completing this process, each column name and its

corresponding value is fetched from the array lists and appended to the resultant

Tutorial D statement.

In general, the translation logic translates INSERT statements to Tutorial D

statements as follows (for a columns list size of N):

SQL:

INSERT INTO <Table> (<Columns list>) VALUES (<Values list>);

Tutorial D:

<Table> += TUPLE {<Column1> <Value1>, <Column2> <Value2>…

<ColumnN> <ValueN>};

For the purpose of illustration, the Employee scenario can be used to show the

translation of the INSERT Statement as follows:

SQL:

INSERT INTO Employee (Employee_ID, Firstnames, Surname, Street, Suburb,

Phone, Email, Date_Entered, Date_Employed, Salary, Qualification) VALUES (40,

'John', 'Smith', '11 Ethel Benjamin Place', 'Dunedin', '(03) 497-0752', '-', '2007-09-29

09:13:00', '2007-09-29', 43610.0, 'Senior');

 42

Resultant Tutorial D:

Employee += TUPLE {Employee_ID 40, Firstnames "John", Surname "Smith", Street

"11 Ethel Benjamin Place", Suburb "Dunedin", Phone "(03) 497-0752", Email "-",

Date_Entered "2007-09-29 09:13:00", Date_Employed "2007-09-29", Salary

43610.0, Qualification "Senior"};

8.2.2.3 Translating the UPDATE Statement

In a similar manner to translating the INSERT statement, the logic handles the

translation of the UPDATE statement by storing the column names and values found

in the SET clause into array lists. If the WHERE clause exists, the condition is

specified at the beginning of the Tutorial D statement. Then the column names and

values are fetched from the array lists and appended to the resultant Tutorial D

statement.

In general, the translation logic translates UPDATE statements to Tutorial D

statements as follows:

SQL:

UPDATE <Table> SET <columns and new values> WHERE (<Condition>);

Tutorial D:

<Table> @= [<Condition>] (columns and new values);

For the purpose of illustration, the Employee scenario can be used to show the

translation of the UPDATE Statement as follows:

SQL:

UPDATE Employee SET Qualification = ‘Senior’ WHERE Employee_ID = 1;

Resultant Tutorial D:

Employee @= [Employee_ID = 1] (Qualification := "Senior");

 43

8.2.2.4 Translating the DELETE Statement

In a similar manner to translating the SELECT statement, the logic handles the

translation of the DELETE statement by checking if the WHERE clause exists. If it

does, then the condition is specified in the Tutorial D statement. If not, then the

keyword ALL is appended to the statement to delete all the tuples from the specified

relation in Tutorial D.

In general, the translation logic translates DELETE statements to Tutorial D

statements as follows:

SQL:

DELETE FROM <Table> WHERE <Condition>;

Tutorial D:

<Table> -= [<Condition>];

If the WHERE clause does not exist, then the translation is handled as follows:

SQL:

DELETE FROM <Table>;

Tutorial D:

<Table> -= ALL;

For the purpose of illustration, the Employee scenario can be used to show the

translation of the DELETE Statement as follows:

SQL:

DELETE FROM Employee WHERE Employee_ID = 1;

Resultant Tutorial D:

Employee -= [Employee_ID = 1];

 44

8.2.3 The SQL-to-Tutorial D Interface

The next step of translation is to provide the user interface which allows users to

execute SQL statements on a Tutorial D database. For the purpose of this dissertation,

the user interface that was built is simple and easy to use as shown in Figure 10.

Figure 10: The SQL-to-Tutorial D Interface

As shown in the Figure, the SQL-to-Tutorial D interface has three main options.

Firstly, users can enter an SQL statement in the top text area and by clicking on

‘Execute’, the statement is translated using the logic provided earlier. The result of

this is a Tutorial D statement that will appear in the bottom text area which is not

editable. This Tutorial D statement will get executed automatically on a Tutorial D

database. Secondly, users can clear the text for both text areas by clicking on the

‘Clear Text’ button. Finally, the ‘Exit’ button will exit the application if clicked. The

following sections will outline the process of executing the resultant Tutorial D

statement on a Tutorial D database.

 45

8.2.4 Rel: An Open Source Tutorial D Database1

For the purpose of executing the resultant Tutorial D statements, Rel was chosen as

the Tutorial D database. Rel is an open source relational database server that is based

on Tutorial D. It can be seen as an implementation of Tutorial D that can allow

creating and managing true relational databases.

Rel is implemented in Java, and because of this, it was easily integrated with the SQL-

to-Tutorial D interface that was built for the purpose of this research. The Rel

components that were integrated consist of two parts. These are a database server and

a browser. The purpose of the Rel database server is for executing the Tutorial D

statements whereas the Rel browser shows the results on screen.

For the purpose of this research, the Rel browser component is invoked whenever the

SQL-to-Tutorial D interface is executed. Thus, in addition to the SQL-to-Tutorial D

window that will appear when starting up the application, another window for the Rel

browser appears on screen. The Rel browser window is shown in Figure 11.

Figure 11: Rel Browser

1 Rel Official Website: http://dbappbuilder.sourceforge.net/Rel.html

 46

8.2.5 Executing SQL Statements on Rel

The code snippet that handles the execution of SQL statements on Rel is provided in

Appendix 6.

To explain this process, after integrating the Rel components with the SQL-to-

Tutorial D interface, the final step is to execute the SQL statements on Rel. Executing

SQL statements means that the resultant Tutorial D statements that are produced after

translation and displayed in the bottom text area in the SQL-to-Tutorial D interface

get executed on Rel. In order to do this, a few modifications on the open source Java

library for the integrated Rel browser were necessary. This is completely legitimate as

it is mentioned in the official website of Rel1 that the open source Java library of Rel

is free and can be modified under the terms of the GNU General Public License2.

In this regard, only two additions were done for the purpose of getting a reference to

the necessary objects of the running browser that can enable the execution of Tutorial

D statements through the SQL-to-Tutorial D interface. Thus, two getter methods were

added to the integrated Rel browser library for the purpose of getting the references

needed. After the references to the necessary objects were retrieved, the same method

that is used for executing the Tutorial D statements on the database server component

of Rel was invoked on the obtained references from the SQL-to-Tutorial D interface.

The method passes the resultant Tutorial D statement after translation as an argument

which will then be executed on the Rel database server and the result will be

displayed on the Rel browser.

8.3 Summary

To summarise, this section demonstrated how such a translation between SQL and

Tutorial D can be implemented when having a small subset of the relational language.

The process is broken up into several steps which lead to the overall task of executing

SQL statements on a Tutorial D database. However, testing the translation solution is

a necessary task which is the purpose of the following section.

1 Rel Official Website: http://dbappbuilder.sourceforge.net/Rel.html

2 GNU General Public License Website: http://www.gnu.org/copyleft/gpl.html

 47

9. Testing the Translation Layer

Following the implementation of the translation layer between SQL and Tutorial D is

the testing stage of the methodology (refer to Section 1.5.4). This is an important

activity in order to ensure the successful operation of such translation and to achieve

the objectives of this research (refer to Section 1.2).

Therefore, the purpose of this section is to outline the testing procedure and results.

The aim of this is to answer the remaining questions that were raised earlier in Section

1.3 and have not been answered yet by either the Literature Review or the

Implementation stages. In particular, testing aims to provide findings that can lead to

the following conclusions:

• the translation layer between SQL and Tutorial D is a feasible approach to

preserve the interoperability of the two languages; and

• SQL deficiencies can be solved through interoperating with Tutorial D via

SQL.

9.1 Testing Procedure

Before staring the testing procedure, a preliminary step is necessary to set up the

Tutorial D database by creating the necessary relations and loading them with data.

For the purpose of testing, it is assumed that the same Employee relation used earlier

is used again in testing the translation layer. After ensuring that the Employee relation

exists in the Tutorial D database running on the Rel database server component of the

translation layer, the testing procedure can be started.

The testing procedure was divided into several steps. The first step is to test the

translation layer in terms of feasibility. This means that the translation layer must be

tested against a combination of valid SQL statements that should be executed on Rel

after translating them to the corresponding Tutorial D statements. The combination of

valid SQL statements was chosen on the basis of covering all the cases handled by the

translation layer and which were defined in the SQL subset chosen for this research

 48

(refer to Section 8.1). The aim of this step is to show that all the chosen SQL

statements in the combination chosen pass the test and are translated to Tutorial D

statements that are automatically executed on Rel giving the correct desired results.

Section 9.2.1 details the results of this step of testing.

The second step is to test whether the SQL deficiencies defined in Section 4 are

solved when interoperating with Tutorial D via SQL. In theory, they should be solved

because Tutorial D addresses those deficiencies as described in Section 5. However,

this still needs to be tested and shown through the use of the translation layer.

Therefore, a combination of suitable SQL statements was also chosen for this

purpose. Section 9.2.2 details the results of this step of testing.

Finally, the third step of testing the translation layer is testing the robustness of the

SQL-to-Tutorial D interface. This means that the interface should catch all the invalid

SQL statements before applying the translation logic and return a suitable error

message. By doing this, invalid SQL statements are prohibited from translation and

this is desirable because, for example, users will get notified if the submitted SQL

statement is invalid. Otherwise, it might be difficult to know where the error comes

from if it was not caught by the interface and the invalid SQL statement was

translated and executed on Rel which can lead to undesired behaviour. Therefore, a

combination of invalid SQL statements was chosen for the purpose of testing this

aspect of the translation layer. Section 9.2.3 details the results of this step of testing.

9.2 Testing Results

This subsection details the results gathered from testing the translation layer. It

follows the same structure defined above in the testing procedure. Therefore, this

subsection is divided as follows:

• testing the feasibility aspect of the translation layer;

• testing the solution to SQL deficiencies; and

• testing the robustness aspect of the translation layer.

 49

9.2.1 Testing the Feasibility Aspect of the Translation Layer

For each type of the SQL operations that are defined in the SQL subset chosen for this

research, a combination of SQL statements was chosen to test the feasibility of the

translation layer between SQL and Tutorial D. Those statements are valid and they

can be run on any database that uses SQL. In addition, they were carefully chosen to

cover all the cases that should be handled by the translation layer. Tables 1 to 4 detail

the testing process and results of those valid SQL statements for each of the

combination chosen for valid SELECT, INSERT, UPDATE and DELETE statements.

To begin with, valid SQL SELECT statements were tested first. Table 1 shows the

results of this. It is important to note that the combination of SQL statements chosen

for this purpose covers all the possible cases that are handled by the translation layer.

For the combination of SELECT statements, this includes the basic case of selecting

all the tuples from the relation with all its attributes (i.e. case number VS1),

projecting certain attributes of the relation (i.e. case numbers VS5 & VS6) and

restricting the number of tuples in the relation based on a condition (i.e. case numbers

VS2, VS3 & VS4). A combination of both projection and restriction operations is

also included (i.e. case numbers VS7, VS8 & VS9). Finally, a case that returns an

empty relation with no tuples was also tested (i.e. case number VS10).

Valid SQL INSERT statements were tested next. Table 2 shows the results of this.

There were only two cases that needed to be tested. The first one is the normal

INSERT statement case with the entire attributes list defined (i.e. case number VI1).

The second one is the case of having the attributes defined in a different order (i.e.

case number VI2).

Valid SQL UPDATE statements were also tested. Table 3 shows the results of this.

Few cases were needed for testing valid UPDATE statements. This includes the basic

case of updating one attribute value of a relation for all the tuples (i.e. case number

VU1), the case of restricting the number of tuples to be updated by specifying a

condition (i.e. case numbers VU2, VU3 & VU4), the case of updating multiple

attribute values of a relation for all the tuples (i.e.VU5) and the case of updating

 50

multiple attribute values of a relation for a restricted number of tuples based on a

condition (i.e. case number VU6).

Finally, valid SQL DELETE statements were tested. Table 4 shows the results of this.

Two cases were needed in order to test valid DELETE statements. The first one is the

case of deleting a restricted number of tuples in the relation based on a condition (i.e.

case numbers VD1, VD2, VD3 & VD4). The second one is the case of deleting all the

tuples in the relation (i.e. case number VD5).

5
1

N
o
.

S
Q

L
 S

ta
te

m
en

t
R

es
u

lt
a
n

t
T

u
to

ri
a
l

D
 S

ta
te

m
en

t
R

el
 R

es
u

lt
 (

o
n

 t
h

e
R

el
 B

ro
w

se
r)

O

u
tc

o
m

e

(P
a
ss

 o
r

F
a
il

)

V
S

1

S
E

L
E

C
T

 *
 F

R
O

M
 E

m
p
lo

y
ee

;
E

m
p
lo

y
ee

A

 r
el

at
io

n
 o

f
al

l
tu

p
le

s
w

it
h
 a

ll

at
tr

ib
u
te

 v
al

u
es

 f
o
r

th
e

R
el

at
io

n

E
m

p
lo

y
ee

 i
s

d
is

p
la

y
ed

P
as

s

V
S

2

S
E

L
E

C
T

 *
 F

R
O

M
 E

m
p
lo

y
ee

 W
H

E
R

E

E
m

p
lo

y
ee

_
ID

 =
 1

;
(E

m
p
lo

y
ee

[E
m

p
lo

y
ee

_
ID

 =
 1

])

A
 r

el
at

io
n
 o

f
o
n
e

tu
p
le

 w
it

h
 a

ll

at
tr

ib
u
te

 v
al

u
es

 f
o
r

th
e

R
el

at
io

n

E
m

p
lo

y
ee

 i
s

d
is

p
la

y
ed

P
as

s

V
S

3

S
E

L
E

C
T

 *
 F

R
O

M
 E

m
p
lo

y
ee

 W
H

E
R

E

F
ir

st
n
am

es
 =

 ‘
S

ew
al

’
A

N
D

 S
u
rn

am
e

=
 ‘

K
ir

b
y
’;

(E

m
p
lo

y
ee

[F
ir

st
n
am

es
 =

 "
S

ew
al

"
an

d
 S

u
rn

am
e

=
 "

K
ir

b
y
"]

)
A

 r
el

at
io

n
 o

f
o
n
e

tu
p
le

 w
it

h
 a

ll

at
tr

ib
u
te

 v
al

u
es

 f
o
r

th
e

R
el

at
io

n

E
m

p
lo

y
ee

 i
s

d
is

p
la

y
ed

P
as

s

V
S

4

S
E

L
E

C
T

 *
 F

R
O

M
 E

m
p
lo

y
ee

 W
H

E
R

E

E
m

p
lo

y
ee

_
ID

 =
 1

 O
R

 E
m

p
lo

y
ee

_
ID

 =
 2

;

(E
m

p
lo

y
ee

[E
m

p
lo

y
ee

_
ID

 =
 1

 O
R

E

m
p
lo

y
ee

_
ID

 =
 2

])

A
 r

el
at

io
n
 o

f
tw

o
 t

u
p
le

s
w

it
h
 a

ll

at
tr

ib
u
te

 v
al

u
es

 f
o
r

th
e

R
el

at
io

n

E
m

p
lo

y
ee

 i
s

d
is

p
la

y
ed

P
as

s

V
S

5

S
E

L
E

C
T

 E
m

p
lo

y
ee

_
ID

 F
R

O
M

 E
m

p
lo

y
ee

;
E

m
p
lo

y
ee

{
E

m
p
lo

y
ee

_
ID

}

A
 r

el
at

io
n
 o

f
al

l
tu

p
le

s
w

it
h
 o

n
e

at
tr

ib
u
te

 v
al

u
e

fo
r

th
e

R
el

at
io

n

E
m

p
lo

y
ee

 i
s

d
is

p
la

y
ed

P
as

s

V
S

6

S
E

L
E

C
T

 E
m

p
lo

y
ee

_
ID

,
F

ir
st

n
am

es
,
S

u
rn

am
e,

S

al
ar

y
 F

R
O

M
 E

m
p
lo

y
ee

;
E

m
p
lo

y
ee

{
E

m
p
lo

y
ee

_
ID

,
F

ir
st

n
am

es
,
S

u
rn

am
e,

 S
al

ar
y
}

A
 r

el
at

io
n
 o

f
al

l
tu

p
le

s
w

it
h
 f

o
u
r

at
tr

ib
u
te

 v
al

u
es

 f
o
r

th
e

R
el

at
io

n

E
m

p
lo

y
ee

 i
s

d
is

p
la

y
ed

P
as

s

V
S

7

S
E

L
E

C
T

 E
m

p
lo

y
ee

_
ID

,
F

ir
st

n
am

es
,
S

u
rn

am
e,

S

al
ar

y
 F

R
O

M
 E

m
p
lo

y
ee

 W
H

E
R

E

E
m

p
lo

y
ee

_
ID

 =
 1

;

(E
m

p
lo

y
ee

[E
m

p
lo

y
ee

_
ID

 =
 1

])

{
E

m
p
lo

y
ee

_
ID

,
F

ir
st

n
am

es
,

S
u
rn

am
e,

 S
al

ar
y
}

A
 r

el
at

io
n
 o

f
o
n
e

tu
p
le

 w
it

h
 f

o
u
r

at
tr

ib
u
te

 v
al

u
es

 f
o
r

th
e

R
el

at
io

n

E
m

p
lo

y
ee

 i
s

d
is

p
la

y
ed

P
as

s

5
2

V
S

8

S
E

L
E

C
T

 E
m

p
lo

y
ee

_
ID

,
F

ir
st

n
am

es
,
S

u
rn

am
e,

S

al
ar

y
 F

R
O

M
 E

m
p
lo

y
ee

 W
H

E
R

E
 F

ir
st

n
am

es
 =

‘S

ew
al

’
A

N
D

 S
u
rn

am
e

=
 ‘

K
ir

b
y
’;

(E
m

p
lo

y
ee

[F
ir

st
n
am

es
 =

 "
S

ew
al

"
A

N
D

 S
u
rn

am
e

=
 "

K
ir

b
y
"]

)
{
E

m
p
lo

y
ee

_
ID

,
F

ir
st

n
am

es
,

S
u
rn

am
e,

 S
al

ar
y
}

A
 r

el
at

io
n
 o

f
o
n
e

tu
p
le

 w
it

h
 f

o
u
r

at
tr

ib
u
te

 v
al

u
es

 f
o
r

th
e

R
el

at
io

n

E
m

p
lo

y
ee

 i
s

d
is

p
la

y
ed

P
as

s

V
S

9

S
E

L
E

C
T

 E
m

p
lo

y
ee

_
ID

,
F

ir
st

n
am

es
,
S

u
rn

am
e,

S

al
ar

y
 F

R
O

M
 E

m
p
lo

y
ee

 W
H

E
R

E

E
m

p
lo

y
ee

_
ID

 =
 1

 O
R

 E
m

p
lo

y
ee

_
ID

 =
 2

;

(E
m

p
lo

y
ee

[E
m

p
lo

y
ee

_
ID

 =
 1

 O
R

E

m
p
lo

y
ee

_
ID

 =
 2

])
 {

E
m

p
lo

y
ee

_
ID

,
F

ir
st

n
am

es
,
S

u
rn

am
e,

 S
al

ar
y
}

A
 r

el
at

io
n
 o

f
tw

o
 t

u
p
le

s
w

it
h
 f

o
u
r

at
tr

ib
u
te

 v
al

u
es

 f
o
r

th
e

R
el

at
io

n

E
m

p
lo

y
ee

 i
s

d
is

p
la

y
ed

P
as

s

V
S

1
0

S
E

L
E

C
T

 *
 F

R
O

M
 E

m
p
lo

y
ee

 W
H

E
R

E

E
m

p
lo

y
ee

_
ID

 =
 1

0
0
;

(E
m

p
lo

y
ee

[E
m

p
lo

y
ee

_
ID

 =
 1

0
0
])

A

n
 e

m
p
ty

 r
el

at
io

n
 (

a
re

la
ti

o
n
 w

it
h

n
o
 t

u
p
le

s)
 b

ec
au

se
 t

h
er

e
is

 n
o

E
m

p
lo

y
ee

 t
u
p
le

 w
it

h
 a

n

E
m

p
ly

ee
_

ID
 a

tt
ri

b
u
te

 v
al

u
e

o
f

1
0
0

P
as

s

T
a
b

le
 1

:
T

es
ti

n
g
 V

al
id

 S
Q

L
 S

E
L

E
C

T
 S

ta
te

m
en

ts
 T

ra
n
sl

at
io

n

5
3

N
o
.

S
Q

L
 S

ta
te

m
en

t
R

es
u

lt
a
n

t
T

u
to

ri
a
l

D
 S

ta
te

m
en

t
R

el
 R

es
u

lt
 (

o
n

 t
h

e
R

el
 B

ro
w

se
r)

O

u
tc

o
m

e

(P
a
ss

 o
r

F
a
il

)

V
I1

IN

S
E

R
T

 I
N

T
O

 E
m

p
lo

y
ee

 (
E

m
p
lo

y
ee

_
ID

,
F

ir
st

n
am

es
,
S

u
rn

am
e,

 S
tr

ee
t,

 S
u
b
u
rb

,
P

h
o
n
e,

E

m
ai

l,
 D

at
e_

E
n
te

re
d
,
D

at
e_

E
m

p
lo

y
ed

,
S

al
ar

y
,

Q
u
al

if
ic

at
io

n
)

V
A

L
U

E
S

 (
4
0
,
'J

o
h
n
',

'S
m

it
h
',

'1
1

E
th

el
 B

en
ja

m
in

 P
la

ce
',

'D
u
n
ed

in
',

'(
0
3
)

4
9
7
-

0
7
5
2
',

'-
',

'2
0
0
7

-0
9
-2

9
 0

9
:1

3
:0

0
',

'2
0
0
7
-0

9
-2

9
',

4
3
6
1
0
.0

,
'S

en
io

r'
);

E
m

p
lo

y
ee

 +
=

 T
U

P
L

E

{
E

m
p
lo

y
ee

_
ID

 4
0
,

F
ir

st
n
am

es

"J
o
h
n
",

 S
u
rn

am
e

"S
m

it
h
",

 S
tr

ee
t

"1
1

E
th

el
 B

en
ja

m
in

 P
la

ce
",

 S
u
b
u
rb

"D

u
n
ed

in
",

 P
h
o
n
e

"(
0
3

)
4
9
7
-0

7
5
2
",

E

m
ai

l
"-

",
 D

at
e_

E
n
te

re
d
 "

2
0
0
7
-0

9
-

2
9
 0

9
:1

3
:0

0
",

 D
at

e_
E

m
p

lo
y
ed

"2

0
0
7
-0

9
-2

9
",

 S
al

ar
y
 4

3
6
1
0
.0

,
Q

u
al

if
ic

at
io

n
 "

S
en

io
r"

}
;

In
se

rt
ed

 1
 t

u
p
le

.
P

as
s

V
I2

IN

S
E

R
T

 I
N

T
O

 E
m

p
lo

y
ee

 (
E

m
p
lo

y
ee

_
ID

,
S

u
rn

am
e,

 F
ir

st
n
am

es
,
S

u
b
u
rb

,
S

tr
ee

t,
 E

m
ai

l,

P
h
o
n
e,

 D
at

e_
E

n
te

re
d
,
D

at
e_

E
m

p
lo

y
ed

,
S

al
ar

y
,

Q
u
al

if
ic

at
io

n
)

V
A

L
U

E
S

 (
4
1
,
'S

m
it

h
',

'J
o
h
n
',

'D
u
n

ed
in

',
'1

1
 E

th
el

 B
en

ja
m

in
 P

la
ce

',
'-

',
'(
0
3

)
4
9
7
-0

7
5
2
',

'2
0
0
7

-0
9
-2

9
 0

9
:1

3
:0

0
',

'2
0
0
7
-0

9
-2

9
',

4
3
6
1
0
.0

,
'S

en
io

r'
);

E
m

p
lo

y
ee

 +
=

 T
U

P
L

E

{
E

m
p
lo

y
ee

_
ID

 4
1
,
S

u
rn

am
e

"S
m

it
h
",

 F
ir

st
n
am

es
 "

Jo
h
n
",

 S
u
b
u
rb

"D

u
n
ed

in
",

 S
tr

ee
t

"1
1
 E

th
el

B

en
ja

m
in

 P
la

ce
",

 E
m

ai
l

"-
",

 P
h
o
n
e

"(
0
3
)

4
9
7

-0
7
5
2

",
 D

at
e_

E
n
te

re
d

"2
0
0
7
-0

9
-2

9
 0

9
:1

3
:0

0
",

D

at
e_

E
m

p
lo

y
ed

 "
2
0
0
7
-0

9
-2

9
",

S

al
ar

y
 4

3
6
1
0
.0

,
Q

u
al

if
ic

at
io

n

"S
en

io
r"

}
;

In
se

rt
ed

 1
 t

u
p
le

.
P

as
s

T

a
b

le
 2

:
T

es
ti

n
g
 V

al
id

 S
Q

L
 I

N
S

E
R

T
 S

ta
te

m
en

ts
 T

ra
n
sl

at
io

n

5
4

N
o
.

S
Q

L
 S

ta
te

m
en

t
R

es
u

lt
a
n

t
T

u
to

ri
a
l

D
 S

ta
te

m
en

t
R

el
 R

es
u

lt
 (

o
n

 t
h

e
R

el
 B

ro
w

se
r)

O

u
tc

o
m

e

(P
a
ss

 o
r

F
a
il

)

V
U

1

U
P

D
A

T
E

 E
m

p
lo

y
ee

 S
E

T
 Q

u
al

if
ic

at
io

n
 =

‘J

u
n
io

r’
;

E
m

p
lo

y
ee

 @
=

 (
Q

u
al

if
ic

at
io

n
 :

=

"J
u
n
io

r"
);

U

p
d
at

ed
 4

1
 t

u
p
le

s.

P
as

s

V
U

2

U
P

D
A

T
E

 E
m

p
lo

y
ee

 S
E

T
 Q

u
al

if
ic

at
io

n
 =

‘S

en
io

r’
 W

H
E

R
E

 E
m

p
lo

y
ee

_
ID

 =
 1

;
E

m
p
lo

y
ee

 @
=

 [
E

m
p
lo

y
ee

_
ID

 =
 1

]
(Q

u
al

if
ic

at
io

n
 :

=
 "

S
en

io
r"

);

U
p
d
at

ed
 1

 t
u
p
le

.

P
as

s

V
U

3

U
P

D
A

T
E

 E
m

p
lo

y
ee

 S
E

T
 Q

u
al

if
ic

at
io

n
 =

‘S

en
io

r’
 W

H
E

R
E

 F
ir

st
n
am

es
 =

 ‘
S

ew
al

’
A

N
D

S

u
rn

am
e

=
 ‘

K
ir

b
y
’;

E
m

p
lo

y
ee

 @
=

 [
F

ir
st

n
am

es
 =

"S

ew
al

"
A

N
D

 S
u
rn

am
e

=
 "

K
ir

b
y
"]

(Q

u
al

if
ic

at
io

n
 :

=
 "

S
en

io
r"

);

U
p
d
at

ed
 1

 t
u
p
le

.

P
as

s

V
U

4

U
P

D
A

T
E

 E
m

p
lo

y
ee

 S
E

T
 Q

u
al

if
ic

at
io

n
 =

‘S

en
io

r’
 W

H
E

R
E

 F
ir

st
n
am

es
 =

 ‘
S

ew
al

’
A

N
D

S

u
rn

am
e

=
 ‘

K
ir

b
y
’

O
R

 E
m

p
lo

y
ee

_
ID

 =
 4

;

E
m

p
lo

y
ee

 @
=

 [
F

ir
st

n
am

es
 =

"S

ew
al

"
A

N
D

 S
u
rn

am
e

=
 "

K
ir

b
y
"

O
R

 E
m

p
lo

y
ee

_
ID

 =
 4

]
(Q

u
al

if
ic

at
io

n
 :

=
 "

S
en

io
r"

);

U
p
d
at

ed
 2

 t
u
p
le

s.

P
as

s

V
U

5

U
P

D
A

T
E

 E
m

p
lo

y
ee

 S
E

T
 Q

u
al

if
ic

at
io

n
 =

‘S

en
io

r’
,
S

al
ar

y
 =

4
3
6
1
0

.0
,
E

m
ai

l
=

‘n

o
em

ai
l@

n
o
w

h
er

e.
co

m
’;

E
m

p
lo

y
ee

 @
=

 (
Q

u
al

if
ic

at
io

n
 :

=

"S
en

io
r"

,
 S

al
ar

y
 :

=
 4

3
6
1

0
.0

,
 E

m
ai

l
:=

 "
n
o
em

ai
l@

n
o
w

h
er

e.
co

m
")

;

U
p
d
at

ed
 4

1
 t

u
p
le

s.

P
as

s

V
U

6

U
P

D
A

T
E

 E
m

p
lo

y
ee

 S
E

T
 Q

u
al

if
ic

at
io

n
 =

‘S

en
io

r’
,
S

al
ar

y
 =

4
3
6
1
0

.0
,
E

m
ai

l
=

‘n

o
em

ai
l@

n
o
w

h
er

e.
co

m
’

W
H

E
R

E
 F

ir
st

n
am

es

=
 ‘

S
ew

al
’

A
N

D
 S

u
rn

am
e

=
 ‘

K
ir

b
y
’

O
R

E

m
p
lo

y
ee

_
ID

 =
 4

;

E
m

p
lo

y
ee

 @
=

 [
F

ir
st

n
am

es
 =

"S

ew
al

"
A

N
D

 S
u
rn

am
e

=
 "

K
ir

b
y
"

O
R

 E
m

p
lo

y
ee

_
ID

 =
 4

]
(Q

u
al

if
ic

at
io

n
 :

=
 "

S
en

io
r"

,
 S

al
ar

y
 :

=

4
3
6
1
0
.0

,
 E

m
ai

l
:=

"n

o
em

ai
l@

n
o
w

h
er

e.
co

m
")

;

U
p
d
at

ed
 1

 t
u
p
le

.
P

as
s

T

a
b

le
 3

:
T

es
ti

n
g
 V

al
id

 S
Q

L
 U

P
D

A
T

E
 S

ta
te

m
en

ts
 T

ra
n
sl

at
io

n

5
5

N
o
.

S
Q

L
 S

ta
te

m
en

t
R

es
u

lt
a
n

t
T

u
to

ri
a
l

D
 S

ta
te

m
en

t
R

el
 R

es
u

lt
 (

o
n

 t
h

e
R

el
 B

ro
w

se
r)

O

u
tc

o
m

e

(P
a
ss

 o
r

F
a
il

)

V
D

1

D
E

L
E

T
E

 F
R

O
M

 E
m

p
lo

y
ee

 W
H

E
R

E

E
m

p
lo

y
ee

_
ID

 =
 1

;
E

m
p
lo

y
ee

 -
=

 [
E

m
p
lo

y
ee

_
ID

 =
 1

];

D
el

et
ed

 1
 t

u
p
le

.
P

as
s

V
D

2

D
E

L
E

T
E

 F
R

O
M

 E
m

p
lo

y
ee

 W
H

E
R

E

F
ir

st
n
am

es
 =

 ‘
Jo

h
n
’

an
d
 S

u
rn

am
e

=
 ‘

S
m

it
h
’;

E

m
p
lo

y
ee

 -
=

 [
F

ir
st

n
am

es
 =

 "
Jo

h
n
"

an
d
 S

u
rn

am
e

=
 "

S
m

it
h
"]

;
D

el
et

ed
 7

 t
u
p
le

s.

P
as

s

V
D

3

D
E

L
E

T
E

 F
R

O
M

 E
m

p
lo

y
ee

 W
H

E
R

E

E
m

p
lo

y
ee

_
ID

 =
 2

 O
R

 E
m

p
lo

y
ee

_
ID

 =
 3

;
E

m
p
lo

y
ee

 -
=

 [
E

m
p
lo

y
ee

_
ID

 =
 2

 O
R

E

m
p
lo

y
ee

_
ID

 =
 3

];

D
el

et
ed

 2
 t

u
p
le

s.

P
as

s

V
D

4

D
E

L
E

T
E

 F
R

O
M

 E
m

p
lo

y
ee

 W
H

E
R

E

Q
u
al

if
ic

at
io

n
 <

>
 ‘

S
en

io
r’

;
E

m
p
lo

y
ee

 -
=

 [
Q

u
al

if
ic

at
io

n
 <

>

"S
en

io
r"

];

D
el

et
ed

 0
 t

u
p
le

s.

P
as

s

V
D

5

D
E

L
E

T
E

 F
R

O
M

 E
m

p
lo

y
ee

;
E

m
p
lo

y
ee

-=
 A

L
L

;
D

el
et

ed
 3

8
 t

u
p
le

s.

P

as
s

T

a
b

le
 4

:
T

es
ti

n
g
 V

al
id

 S
Q

L
 D

E
L

E
T

E
 S

ta
te

m
en

ts
 T

ra
n
sl

at
io

n

 56

9.2.2 Testing the Solution to SQL Deficiencies

One of the research objectives of this dissertation is to investigate the translation layer

in terms of showing how SQL deficiencies can be solved. After studying the

literature, it was shown that Tutorial D addresses those deficiencies through

introducing true relational features that are not achieved by SQL (refer to Section 5).

However, SQL cannot be simply discarded because of the legacy factor, and thus, a

suggested solution to this problem was to utilise the translation layer between the two

languages so that legacy SQL clients can still use SQL but interact with a Tutorial D

database to solve SQL deficiencies (refer to Section 6.5). Thus, after testing the

feasibility aspect of the translation layer, the translation layer is tested in terms of

solving the SQL deficiencies. Few cases were needed to test this aspect; as shown in

Table 5.

5
7

N
o
.

S
Q

L
 S

ta
te

m
en

t
R

es
u

lt
a
n

t
T

u
to

ri
a
l

D
 S

ta
te

m
en

t
R

el
 R

es
u

lt
 (

o
n

 t
h

e
R

el
 B

ro
w

se
r)

T
R

1

S
E

L
E

C
T

 Q
u
al

if
ic

at
io

n
 F

R
O

M
 E

m
p
lo

y
ee

;
E

m
p
lo

y
ee

{
Q

u
al

if
ic

at
io

n
}

A
 r

el
at

io
n
 o

f
o
n
ly

 o
n
e

tu
p
le

 w
it

h

o
n
e

at
tr

ib
u
te

 v
al

u
e

fo
r

th
e

R
el

at
io

n
 E

m
p
lo

y
ee

 i
s

d
is

p
la

y
ed

i.

e.

R
E

L
A

T
IO

N
 {

Q
u

al
if

ic
at

io
n
 C

H
A

R
}
 {

 T

U
P

L
E

 {
Q

u
al

if
ic

at
io

n
 "

S
en

io
r"

}
}

T
R

2

IN
S

E
R

T
 I

N
T

O
 E

m
p
lo

y
ee

 (
E

m
p
lo

y
ee

_
ID

,
F

ir
st

n
am

es
,
S

u
rn

am
e,

 S
tr

ee
t,

 S
u
b
u
rb

,
P

h
o
n
e,

E

m
ai

l,
 D

at
e_

E
n
te

re
d
,
D

at
e_

E
m

p
lo

y
ed

,
S

al
ar

y
,

Q
u
al

if
ic

at
io

n
)

V
A

L
U

E
S

 (
4
3
,
'J

o
h
n
',

'S
m

it
h
',

'1
1

E
th

el
 B

en
ja

m
in

 P
la

ce
',

'D
u
n
ed

in
',

'(
0
3
)

4
9
7
-

0
7
5
2
',

'-
',

'2
0
0
7

-0
9
-2

9
 0

9
:1

3
:0

0
',

'2
0
0
7
-0

9
-2

9
',

4
3
6
1
0
.0

,
N

U
L

L
);

E
m

p
lo

y
ee

 +
=

 T
U

P
L

E
 {

E
m

p
lo

y
ee

_
ID

 4
0
,

F
ir

st
n
am

es
 "

Jo
h
n
",

 S
u
rn

am
e

"S
m

it
h
",

S

tr
ee

t
"1

1
 E

th
el

 B
en

ja
m

in
 P

la
ce

",
 S

u
b
u
rb

"D

u
n
ed

in
",

 P
h
o
n
e

"(
0
3

)
4
9
7
-0

7
5
2
",

 E
m

ai
l

"-
",

 D
at

e_
E

n
te

re
d
 "

2
0
0
7
-0

9
-2

9
 0

9
:1

3
:0

0
",

D

at
e_

E
m

p
lo

y
ed

 "
2
0
0
7
-0

9
-2

9
",

 S
al

ar
y

4
3
6
1
0
.0

,
Q

u
al

if
ic

at
io

n
 N

U
L

L
}
;

E
R

R
O

R
 "

S
em

an
ti

c
er

ro
r:

 U
n
ab

le
 t

o
 f

in
d

ca
ta

lo
g
 e

n
tr

y
 f

o
r

N
U

L
L

"

T
R

3

IN
S

E
R

T
 I

N
T

O
 E

m
p
lo

y
ee

 V
A

L
U

E
S

 (
4
4
,

'J
o
h
n
',

'S
m

it
h
',

'1
1
 E

th
el

 B
en

ja
m

in
 P

la
ce

',
'D

u
n
ed

in
',

'(
0
3

)
4
9
7
-0

7
5
2

',
'-

',
'2

0
0
7

-0
9
-2

9
 0

9
:1

3
:0

0
',

'2
0
0
7
-0

9
-2

9
',

4
3
6
1
0
.0

,
'S

en
io

r'
);

E
m

p
lo

y
ee

+

=
 T

U
P

L
E

 {
4
3
,

"J
o
h
n
",

 "
S

m
it

h
",

 "
1
1

E
th

el
 B

en
ja

m
in

 P
la

ce
",

 "
D

u
n
ed

in
",

 "
(0

3
)

4
9
7
-0

7
5
2
",

 "
-"

,
"2

0
0
7
-0

9
-2

9
 0

9
:1

3
:0

0
",

"2

0
0
7
-0

9
-2

9
",

 4
3
6
1
0
.0

,
"S

en
io

r"
}
;

E
R

R
O

R
 "

P
ar

se
 e

rr
o
r:

 E
n

co
u
n
te

re
d
 "

4
3

"
at

li

n
e

4
,
co

lu
m

n
 1

1
.

W
as

 e
x

p
ec

ti
n
g
 o

n
e

o
f:

<

ID
E

N
T

IF
IE

R
>

 .
..

"}

"
..
.

"

T

a
b

le
 5

:
T

es
ti

n
g
 t

h
e

S
o
lu

ti
o
n
 t

o
 S

Q
L

 D
ef

ic
ie

n
ci

es

 58

9.2.3 Testing the Robustness Aspect of the Translation Layer

For each type of the SQL operations that are defined in the SQL subset chosen for this

research, a combination of SQL statements was chosen to test the robustness of the

translation layer between SQL and Tutorial D. Those statements are invalid and they

should be caught by the SQL-to-Tutorial D interface, and hence, they should not be

translated. They cover most of the common cases that any SQL interface should deal

with to ensure the robustness of the interface. Tables 6 to 9 detail the testing process

and results of those invalid SQL statements for each of the combination chosen for

invalid SELECT, INSERT, UPDATE and DELETE statements.

5
9

N
o
.

S
Q

L
 S

ta
te

m
en

t
R

es
u

lt
a
n

t
T

u
to

ri
a
l

D

S
ta

te
m

en
t

E
rr

o
r

M
es

sa
g
e

E
x
ce

p
ti

o
n

 c
a
u

g
h

t

(y
es

 o
r

n
o
)

IS
1

S
E

L
E

C
T

 *
 W

H
E

R
E

 E
m

p
lo

y
ee

_
ID

 =
 1

;
N

o
n
e

F
R

O
M

 k
ey

w
o
rd

 n
o
t

fo
u
n

d
 w

h
er

e
ex

p
ec

te
d

Y
es

IS
2

S
E

L
E

C
T

 *
 W

H
E

R
E

 E
m

p
lo

y
ee

_
ID

 =
 1

 F
R

O
M

E

m
p
lo

y
ee

;
N

o
n
e

F
R

O
M

 k
ey

w
o
rd

 n
o
t

fo
u
n

d
 w

h
er

e
ex

p
ec

te
d

Y
es

IS
3

S
E

L
E

C
T

 F
R

O
M

 E
m

p
lo

y
ee

;
N

o
n
e

m
is

si
n
g
 e

x
p
re

ss
io

n

Y

es

IS
4

S
E

L
E

C
T

 E
m

p
lo

y
ee

_
ID

 F
ir

st
n
am

es
 S

u
rn

am
e

F
R

O
M

 E
m

p
lo

y
ee

;
N

o
n
e

m
is

si
n
g
 e

x
p
re

ss
io

n

Y
es

IS
5

S
E

L
E

C
T

 E
m

p
lo

y
ee

_
ID

,
F

ir
st

n
am

es
,
S

u
rn

am
e

F
R

O
M

 *
E

m
p
lo

y
ee

;

N
o
n
e

in
v
al

id
 S

Q
L

 s
ta

te
m

en
t

Y
es

IS
6

S
E

L
E

C
T

 F
ir

st
n
am

es
,
S

u
rn

am
e

F
R

O
M

*
E

m
p
lo

y
ee

 W
H

E
R

E
 E

m
p
lo

y
ee

_
ID

 =
 1

;
N

o
n
e

in
v
al

id
 S

Q
L

 s
ta

te
m

en
t

Y
es

T

a
b

le
 6

:
T

es
ti

n
g
 I

n
v
al

id
 S

Q
L

 S
E

L
E

C
T

 S
ta

te
m

en
ts

 E
x

ce
p
ti

o
n
 H

an
d
li

n
g

6
0

N
o
.

S
Q

L
 S

ta
te

m
en

t
R

es
u

lt
a
n

t
T

u
to

ri
a
l

D

S
ta

te
m

en
t

E
rr

o
r

M
es

sa
g
e

E
x
ce

p
ti

o
n

 c
a
u

g
h

t

(y
es

 o
r

n
o
)

II
1

IN

S
E

R
T

 I
N

T
O

 E
m

p
lo

y
ee

 (
E

m
p
lo

y
ee

_
ID

,
F

ir
st

n
am

es
,
S

u
rn

am
e,

 S
tr

ee
t,

 S
u
b
u
rb

,
P

h
o
n
e,

E

m
ai

l,
 D

at
e_

E
n
te

re
d
,
D

at
e_

E
m

p
lo

y
ed

,
S

al
ar

y
,

Q
u
al

if
ic

at
io

n
,

IR
D

_
N

o
)

(4
5
,
'J

o
h
n
',

'S
m

it
h
',

'1
1

E
th

el
 B

en
ja

m
in

 P
la

ce
',

'D
u
n
ed

in
',

'(
0
3
)

4
9
7
-

0
7
5
2
',

'-
',

'2
0
0
7

-0
9
-2

9
 0

9
:1

3
:0

0
',

'2
0
0
7
-0

9
-2

9
',

4
3
6
1
0
.0

,
'S

en
io

r'
);

N
o
n
e

m
is

si
n
g
 V

A
L

U
E

S
 k

ey
w

o
rd

Y

es

II
2

IN

S
E

R
T

 I
N

T
O

 E
m

p
lo

y
ee

 (
E

m
p
lo

y
ee

_
ID

,
F

ir
st

n
am

es
,
S

u
rn

am
e,

 S
tr

ee
t,

 S
u
b
u
rb

,
P

h
o
n
e,

E

m
ai

l,
 D

at
e_

E
n
te

re
d
,
D

at
e_

E
m

p
lo

y
ed

,
S

al
ar

y
,

Q
u
al

if
ic

at
io

n
,

IR
D

_
N

o
)

V
A

L
U

E
S

 (
4
6
,

'J
o
h
n
',

'S
m

it
h
',

'1
1
 E

th
el

 B
en

ja
m

in
 P

la
ce

',
'D

u
n
ed

in
',

'(
0
3

)
4
9
7
-0

7
5
2

',
'-

',
'2

0
0
7

-0
9
-2

9
 0

9
:1

3
:0

0
',

'2
0
0
7
-0

9
-2

9
',

4
3
6
1
0
.0

,
'S

en
io

r'
);

N
o
n
e

n
o
t

en
o
u
g
h
 v

al
u
es

Y

es

II
3

IN

S
E

R
T

 I
N

T
O

 E
m

p
lo

y
ee

 (
E

m
p
lo

y
ee

_
ID

,
F

ir
st

n
am

es
,
S

u
rn

am
e,

 S
tr

ee
t,

 S
u
b
u
rb

,
P

h
o
n
e,

E

m
ai

l,
 D

at
e_

E
n
te

re
d
,
D

at
e_

E
m

p
lo

y
ed

,
S

al
ar

y
,

Q
u
al

if
ic

at
io

n
)

V
A

L
U

E
S

 (
4
7
,
'J

o
h
n
',

'S
m

it
h
',

'1
1

E
th

el
 B

en
ja

m
in

 P
la

ce
',

'D
u
n
ed

in
',

'(
0
3
)

4
9
7
-

0
7
5
2
',

'-
',

'2
0
0
7

-0
9
-2

9
 0

9
:1

3
:0

0
',

'2
0
0
7
-0

9
-2

9
',

4
3
6
1
0
.0

,
'S

en
io

r'
,
’4

5
-1

2
5
-5

4
6
’)

;

N
o
n
e

to

o
 m

an
y
 v

al
u

es

Y

es

T

a
b

le
 7

:
T

es
ti

n
g
 I

n
v
al

id
 S

Q
L

 I
N

S
E

R
T

 S
ta

te
m

en
ts

 E
x

ce
p
ti

o
n
 H

an
d
li

n
g

6
1

N
o
.

S
Q

L
 S

ta
te

m
en

t
R

es
u

lt
a
n

t
T

u
to

ri
a
l

D

S
ta

te
m

en
t

E
rr

o
r

M
es

sa
g
e

E
x
ce

p
ti

o
n

 c
a
u

g
h

t

(y
es

 o
r

n
o
)

IU
1

U
P

D
A

T
E

 E
m

p
lo

y
ee

 Q
u

al
if

ic
at

io
n
 =

 ‘
S

en
io

r’
,

S
al

ar
y
 =

4
3
6
1
0
.0

,
E

m
ai

l
=

‘n

o
em

ai
l@

n
o
w

h
er

e.
co

m
’;

N
o
n
e

m
is

si
n
g
 S

E
T

 k
ey

w
o
rd

Y

es

IU
2

U
P

D
A

T
E

 S
E

T
 Q

u
al

if
ic

at
io

n
 =

 ‘
S

en
io

r’
,
S

al
ar

y

=

4
3
6
1
0
.0

,
E

m
ai

l
=

 ‘
n
o
em

ai
l@

n
o
w

h
er

e.
co

m
’;

N

o
n
e

in
v
al

id
 t

ab
le

 n
am

e

Y
es

T

a
b

le
 8

:
T

es
ti

n
g
 I

n
v
al

id
 S

Q
L

 U
P

D
A

T
E

 S
ta

te
m

en
ts

 E
x

ce
p
ti

o
n
 H

an
d
li

n
g

N
o
.

S
Q

L
 S

ta
te

m
en

t
R

es
u

lt
a
n

t
T

u
to

ri
a
l

D

S
ta

te
m

en
t

E
rr

o
r

M
es

sa
g
e

E
x
ce

p
ti

o
n

 c
a
u

g
h

t

(y
es

 o
r

n
o
)

ID
1

D
E

L
E

T
E

 F
R

O
M

;

N
o
n
e

in
v
al

id
 t

ab
le

 n
am

e

Y
es

ID
2

D
E

L
E

T
E

 F
R

O
M

 W
H

E
R

E
 E

m
p
lo

y
ee

_
ID

 =
 1

;
N

o
n
e

in
v
al

id
 t

ab
le

 n
am

e

Y

es

T

a
b

le
 9

:
T

es
ti

n
g
 I

n
v
al

id
 S

Q
L

 D
E

L
E

T
E

 S
ta

te
m

en
ts

 E
x

ce
p
ti

o
n
 H

an
d
li

n
g

 62

10. Analysis and Discussion of the Testing Results

The purpose of this section is to analyse and discuss the results gathered from the

previous section after testing the translation layer between SQL and Tutorial D.

10.1 The Feasibility Aspect

From the gathered testing results shown in Tables 1 to 4, it can be seen that the

translation layer is feasible. From the tables, it was shown that all valid SQL

statements are translated to valid Tutorial D statements. Those valid Tutorial D

statements are then executed automatically on the Rel database server, showing the

result on the Rel browser. In particular, the result of executing the valid SQL

SELECT statements is displaying the resultant relation in the Rel browser window.

For the other types of SQL statements, the result will be the desired behaviour sought

from the executed statements. If it was an INSERT statement, the result will be a

newly inserted tuple into the specified relation in Rel. Moreover, if it was an

UPDATE statement, the result will be updating the necessary tuples of the specified

relation in Rel. Finally, if it was a DELETE statement, the result will be deleting the

necessary tuples from the specified relation in Rel.

As can be seen in Tables 1 to 4, all those cases defined earlier pass and the Employee

relation created in Rel can be manipulated using SQL. Hence, the translation layer is

a feasible approach to ensure the interoperability between SQL and Tutorial D.

10.2 The Solution to SQL Deficiencies Aspect

From the gathered testing results shown in Table 5, it can be seen that the translation

layer works as a solution to the deficiencies of SQL. To begin with, the translation

layer is tested to see whether the duplicate rows deficiency is solved or not (i.e. case

number TR1). Because SQL statements are executed on Rel which is a Tutorial D

database, the relevant relational model terminologies that are associated with Tutorial

D will be used. Therefore, rows are tuples in Tutorial D and the deficiency at hand

can be referred to as the duplicate tuples deficiency.

 63

When executing the SQL statement defined in TR1 using the SQL-to-Tutorial D

interface, it will be translated to the corresponding Tutorial D statement because the

original SQL statement is considered to be valid. Subsequently, the resultant Tutorial

D statement will be executed automatically on Rel returning a relation with one tuple

as specified in TR1. Although there are many other tuples with the same Qualification

value, returning them in the result will lead to duplicate tuples. This true relational

feature of eliminating duplicate tuples is associated with Tutorial D and was

explained in Section 5.1.1. Therefore, it can be seen that this deficiency is solved

through the translation layer while still using SQL.

Secondly, the translation layer is tested to see whether values specified as NULL are

avoided or not. This is tested by specifying an unknown value of Qualification as

NULL (i.e. case number TR2). When executing this SQL statement, it is considered

to be valid and will be translated to the corresponding Tutorial D statement without

discarding NULL. However, all attributes in Tutorial D cannot have values specified

as NULL which is a true relational feature as discussed earlier (refer to Section 5.1.2).

In this case, the resultant Tutorial D statement will be executed on Rel but will return

an error saying that the catalog entry for NULL cannot be found. Thus, legacy SQL

clients are forced not to use NULL when specifying values and this is achieved

through the translation layer.

Finally, the translation layer is tested to see whether the SQL deficiency of the

reliance on column ordering is solved or not. Columns are attributes in Tutorial D so

this deficiency effectively means the reliance on attribute ordering because SQL

statements are executed on Rel which is a Tutorial D database. This is tested through

executing an SQL INSERT statement that only specifies the values without their

corresponding attributes list (i.e. case number TR3). This means that distinguishing

the values rely on the ordinal position of attributes. However, the only mechanism to

distinguish values in Tutorial D is by their attribute names as there is no reliance on

attribute ordering (refer to Section 5.1.3). Nevertheless, the INSERT SQL statement

in TR3 is considered to be valid and translated to the corresponding Tutorial D

statement. The resultant Tutorial D statement, however, is considered to be invalid

and when it is executed automatically, a parse error will be returned; as shown in

TR3. Therefore, legacy SQL clients are forced to use the only mechanism of insertion

 64

which is by relying on the attribute names instead of their ordinal position and this is

achieved through the translation layer.

10.3 The Robustness Aspect

From the gathered testing results shown in Table 6 to 9, it can be seen that the

translation layer is robust in terms of not translating invalid SQL statements and

returning suitable error messages. To begin with, invalid SQL SELECT statements

were tested first. Table 6 shows the results of this. It can be seen that the interface

handles all the exceptions specified and returns suitable error messages. For the

exceptions of not specifying the FROM keyword or if it was specified in the wrong

place, an error message saying “FROM keyword not found where expected” will be

displayed (i.e. case numbers IS1 & IS2). In addition, if the attributes list was missing

from the SELECT statement or if the attributes are not separated from each other by

commas, an error message saying “missing expression” will be displayed (i.e. case

numbers IS3 & IS4). Finally, for the case of specifying a star sign aside the table

name, an error message saying “invalid SQL statement” will be displayed (i.e. case

numbers IS5 & IS6). All of those exceptions are caught by the interface and not

translated to Tutorial D statements making the debugging process easier.

Secondly, invalid SQL INSERT statements were tested next. Table 7 shows the

results of this. There were only three exceptions that needed to be tested. The first one

is when the VALUES keyword is missing from the INSERT statement (i.e. case

number II1). This is caught by the interface showing the error message “missing

VALUES keyword”. Furthermore, another exception that needs to be caught in

invalid INSERT statements is the case of having more attributes in the attributes list

than values (i.e. case number II2). In this case, the interface catches the exception and

returns an error saying “not enough values. Finally, having more values than

attributes is considered to be invalid and needs to be caught (i.e. case number II3).

This is done by the interface and an error message saying “too many values” is

shown.

Thirdly, invalid SQL UPDATE statements were also tested. Table 8 shows the results

of this. There were only two exceptions that needed to be tested. This includes

 65

missing the SET keyword from the UPDATE statement (i.e. case number IU1). In

this case the interface returns an error saying “missing SET keyword”, and thus, this

exception is caught by the interface. The other exception is when the table name is

not specified in the UPDATE statement (i.e. case number IU2). This will display an

error saying “invalid table name”, and hence, this exception is caught by the interface.

Finally, invalid SQL DELETE statements were tested. Table 9 shows the results of

this. There were only two exceptions that needed to be tested. Both of them are

similar and test the case of not specifying the table name in the DELETE statement

(i.e. case numbers ID1 & ID2). Both exceptions are caught by the interface and an

error message saying “invalid table name” is shown.

Therefore, the translation layer that was implemented is made robust in terms of not

allowing invalid SQL statements to be translated to Tutorial D statements, and thus,

they are not executed on Rel. Suitable error messages will be shown to the user which

can make the debugging process of finding the source of errors an easier process.

10.4 Summary

Through analysing the testing results gathered from the previous section, it was

shown that the translation layer between SQL and Tutorial D is a feasible approach to

preserve the interoperability between the two languages. This was shown through

testing the execution of valid SQL statements using the SQL-to-Tutorial D interface

built and showing that they are translated to valid Tutorial D statements, using the

translation logic defined. These resultant Tutorial D statements are then executed

automatically on the integrated database server component of Rel showing the results

in the browser window component of Rel. In addition, it was shown that SQL

deficiencies are solved through interoperating with Tutorial D utilising the true

relational features of it. Finally, the translation layer is tested against robustness. It

was shown that it is made robust by not allowing invalid SQL statements to be

translated and returning a suitable error message to the SQL users.

 66

11. Conclusions and Future Work

Translating between SQL and Tutorial D can provide many advantages in the

database field. The basic advantage is embracing the relational model of data and

moving towards the right direction in the database field. It was shown that the

relational model of data is a powerful and efficient model that will remain in use for

the upcoming future, and therefore, cannot be ignored. Although SQL is the most

widely used relational database language in this regard because of its standardisation,

it falls short in many aspects and is deficient in complying with the relational model

of data. Although, Tutorial D came into existence and one of its objectives was to

address those deficiencies of SQL, its adoption can be difficult because of the legacy

factor of SQL. Thus, translating between SQL and Tutorial D extends the basic

advantage mentioned earlier and can be a suitable solution for this problem.

This dissertation aimed at implementing a translation layer between SQL and Tutorial

D and studying its importance and needs in solving SQL deficiencies. It first provided

a review on the relevant literature regarding SQL legacy, SQL deficiencies and how

Tutorial D addresses them. It then studied other attempts made at translation between

SQL and other database languages, such as AmosQL and XQuery. The core of the

dissertation came next as a translation layer between SQL and Tutorial D was

implemented through direct string manipulation. After testing the implemented

translation layer, it was shown that such translation is feasible.

Hence, legacy SQL clients can now use the translation layer built to execute SQL

statements on a Tutorial D database utilising the true relational features of Tutorial D.

What is more, SQL deficiencies that are addressed by Tutorial D are solved through

using the translation layer, while at the same time, SQL is still used because of its

legacy. Thus, the translation layer between SQL and Tutorial D is a feasible approach

to preserve the interoperability of the two languages and can lead to a better way of

manipulating relational databases.

However, due to the limited scope of this dissertation, the translation layer built has

some limitations that can be considered for future work. As mentioned in the scope of

 67

the dissertation, the translation layer aims at translating a small subset of the

relational language. Thus, there are some complex SQL statements that are not

handled by the translation layer built fir this research. These include joining multiple

tables in the SELECT query, ordering and grouping the result of the SQL SELECT

statement. Although these complex SQL statements are not handled by the translation

layer, the SQL-to-Tutorial D interface of the translation layer was built to catch those

complex SQL statements and return a message to the users saying that the statements

they have executed are not currently handled by the translation layer. Appendix 7

provides some examples of these complex SQL statements and the messages returned

to the users. In addition to these complex SQL statements, the translation layer was

built with the assumption that the relations to be manipulated already exist at the

Tutorial D end as the translation layer does not handle the creation of relations

through SQL.

All of the above limitations can imply a suitable extension on the translation layer for

future work. However, it can be a better approach to attempt translating those by

following one of the approaches mentioned earlier when translating SQL to AmosQL

and SQL to XQuery. This is because both approaches considered a large subset of the

relational language and are proven to be feasible. Further work and study on this is

still need to be conducted in future.

To sum up, this dissertation implemented a translation layer between SQL and

Tutorial D based on a small subset of the relational language. Other objectives of the

dissertation were also achieved and questions were answered as mentioned above.

Thus, this dissertation showed that translating between SQL and Tutorial D can be a

feasible and a suitable approach to solve some of the problems that exist in the

current trends of manipulating relational databases.

 68

12. References

Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D., & Zdonik,

S. (1989). The object-oriented database system manifesto, in Proceedings of

the First International Conference on Deductive and Object-Oriented

Databases (DOOD'89). Kyoto, Japan, Dec 4-6, 223-240.

Barker, R. (1990). Case*Method: Entity relationship modelling. USA: Addison-

Wesley Inc.

Burns, R. K. (1990). Referential secrecy. IEEE, Symposium on Security and Privacy,

133-142.

Codd, E. F. (1970). A relational model of data for large shared data banks.

Communications of the ACM, 13(6), 377-387.

Codd, E. F. (1981). Data models in database management. ACM SIGMOD Record,

11(2), 112-114.

Codd, E. F. (1990). The relational model for database management: version 2.

Massachusetts, USA: Addison Wesley Longman Inc.

Date, C. J. (1983). Null values in database management. In C. J. Date (Ed.),

Relational database: Selected writings. Massachusetts, USA: Addison-Wesley.

Date, C. J. (1984). A critique of the SQL database language. In C. J. Date (Ed.),

Relational database: Selected writings. Massachusetts, USA: Addison-Wesley.

Date, C. J. (1988). Why relational. In C. J. Date & A. Warden (Ed.), Relational

database: Writings. Massachusetts, USA: Addison-Wesley.

Date, C. J. (1990). Why duplicate rows are prohibited. In C. J. Date & A. Warden,

Relational database: Writings. Massachusetts, USA: Addison-Wesley.

 69

Date, C. J. (2003). A sweet disorder. In C. J. Date (Ed.), Date on database: Writings

2000 – 2006. California, USA: Apress.

Date, C. J., & Darwen, H. (1997). A guide to the SQL standard (4th ed.). USA:

Addison-Wesley Inc.

Date, C. J., & Darwen, H. (2000). Foundation for future database systems: The third

Manifesto (2nd ed.). Massachusetts, USA: Addison Wesley Longman Inc.

Date, C. J., & Darwen, H. (2007). Databases, types, and the relational model: The

third manifesto (3rd ed.). USA: Pearson Education, Inc.

Eisenberg, A., & Melton, J. (1998). Standards in practice. ACM SIGMOND Record.

27(3), 53-58.

Eisenberg, A., & Melton, J. (2000). SQL standardization: The next steps. ACM

SIGMOND Record, 29(1): 63-67.

GNU General Public License. (2007). Retrieved September 13, 2007, from

http://www.gnu.org/copyleft/gpl.html

ISO (2003) Database Language SQL, International standard ISO/IEC 9075:2003.

International Organisation for Standardisation (ISO). Geneva, Switzerland.

Jagerskogh, M. (2005). Translating SQL expressions to functional queries in a

mediator database system. Unpublished master’s thesis, Uppsala University,

Uppsala, Sweden.

Jigyasu, S., Banerjee, S., Borkar, V., Carey, M., Dixit, K., Malkani, A. & Thatte, S.

(2006). SQL to XQuery translation in the AquaLogic data services platform, in

Proceedings of the 22nd International Conference on Data Engineering

(ICDE'06). p. 97.

 70

Rel: An implementation of Date and Darwen’s Tutorial D. (2007). Retrieved August

29, 2007, from http://dbappbuilder.sourceforge.net/Rel.html

Silberschatz, A., Korth, H., & Sudarshan, S. (2002). Database System Concepts. (4th

Ed.). Singapore: McGraw-Hill

Soderstrom, E. (2002). Standardising the business vocabulary of standards, ACM

SIGMOND Record, 1048-1052.

Stonebraker, M., Rowe, L. A., Lindsay, B., Gray, J., Carey, M., Brodie, M.,

Bernstein, P., & Beech, D. (1990) Third-generation database system manifesto.

ACM SIGMOD Record, 19(3), 31-44.

 71

Appendix

Appendix 1: Employee Table - SQL “Create Table” Code

/*
* Employee table SQL "Create Table" Code
*/

CREATE TABLE Employee (
 Employee_ID INTEGER NOT NULL,
 Firstnames VARCHAR(32) NOT NULL,
 Surname VARCHAR(32) NOT NULL,
 Street VARCHAR(32) NOT NULL,
 Suburb VARCHAR(32) NOT NULL,
 Phone VARCHAR(32) NOT NULL,
 Email VARCHAR(32) NOT NULL,
 Date_Entered VARCHAR(32) NOT NULL,
 Date_Employed VARCHAR(32) NOT NULL,
 Salary NUMBER(7,2),
 Qualification VARCHAR(32),

 CONSTRAINT Employee_PK PRIMARY KEY (Employee_ID)
);

 72

Appendix 2: Employee Table - SQL “Insertion Script” Code

/*
* Employee table SQL “Insertion Script” Code
*/

INSERT INTO Employee (Employee_ID, Firstnames, Surname, Street, Suburb,
Phone, Email, Date_Entered, Date_Employed, Salary, Qualification)
VALUES (1, 'Sewal', 'Kirby', '40 Ashmore Road', 'Mornington', '(03) 427-6515', '-',
'1996-10-15 08:11:00', '1996-11-27', 41688.0, 'Senior');

INSERT INTO Employee (Employee_ID, Firstnames, Surname, Street, Suburb,
Phone, Email, Date_Entered, Date_Employed, Salary, Qualification)
VALUES (2, 'Philadelphia', 'Allsop', '5/36 Nicholson Road', 'Northfield', '(03) 483-
2144', '-', '2001-06-01 08:43:00', '2001-07-11', 41100.0, 'Senior');

INSERT INTO Employee (Employee_ID, Firstnames, Surname, Street, Suburb,
Phone, Email, Date_Entered, Date_Employed, Salary, Qualification)
VALUES (3, 'Raoul', 'Brocket', '137 Maybank Road', 'Mornington', '(03) 486-8179', '-
', '1990-11-11 09:01:00', '1990-11-15', 34538.0, 'Senior');

INSERT INTO Employee (Employee_ID, Firstnames, Surname, Street, Suburb,
Phone, Email, Date_Entered, Date_Employed, Salary, Qualification)
VALUES (4, 'Gwladys', 'Corkran', '47B Brooklyn Street', 'Roseneath', '(03) 487-4680',
'-', '1995-05-18 09:01:00', '1995-07-06', 41964.0, 'Senior');

INSERT INTO Employee (Employee_ID, Firstnames, Surname, Street, Suburb,
Phone, Email, Date_Entered, Date_Employed, Salary, Qualification)
VALUES (5, 'Boris', 'Belt', '76 Green Terrace', 'Kensington', '(03) 460-9801', '-',
'1990-08-12 08:40:00', '1990-09-29', 31049.0, 'Senior');

INSERT INTO Employee (Employee_ID, Firstnames, Surname, Street, Suburb,
Phone, Email, Date_Entered, Date_Employed, Salary, Qualification)
VALUES (6, 'Jane', 'Dassen', '12 Chapman Heights', 'Brentwood', '(03) 497-0752', '-',
'1990-08-16 09:13:00', '1990-09-10', 43610.0, 'Senior');

 73

Appendix 3: Employee Relation - Tutorial D Code

/*
 File: $Id: employee-schema.d
 Base relation definition.
*/

VAR Employee REAL RELATION
{
 Employee_ID INTEGER,
 Firstnames CHAR,
 Surname CHAR,
 Street CHAR,
 Suburb CHAR,
 Phone CHAR,
 Email CHAR,
 Date_Entered CHAR,
 Date_Employed CHAR,
 Salary RATIONAL,
 Qualification CHAR
} Key {Employee_ID};

 74

Appendix 4: Employee Relation -Tutorial D “Insertion Script”

Code

/*
 File: $Id: employee-data.d

*/

DELETE Employee;

INSERT Employee RELATION
{
 TUPLE { Employee_ID 1, Firstnames "Sewal", Surname "Kirby", Street "40
Ashmore Road", Suburb "Mornington", Phone "(03) 427-6515", Email "-",
Date_Entered "1996-10-15 08:11:00", Date_Employed "1996-11-27", Salary 41688.0,
Qualification "Senior" },
 TUPLE { Employee_ID 2, Firstnames "Philadelphia", Surname "Allsop",
Street "5/36 Nicholson Road", Suburb "Northfield", Phone "(03) 483-2144", Email "-
", Date_Entered "2001-06-01 08:43:00", Date_Employed "2001-07-11", Salary
41100.0, Qualification "Senior" },
 TUPLE { Employee_ID 3, Firstnames "Raoul", Surname "Brocket", Street
"137 Maybank Road", Suburb "Mornington", Phone "(03) 486-8179", Email "-",
Date_Entered "1990-11-11 09:01:00", Date_Employed "1990-11-15", Salary 34538.0,
Qualification "Senior" },
 TUPLE { Employee_ID 4, Firstnames "Gwladys", Surname "Corkran", Street
"47B Brooklyn Street", Suburb "Roseneath", Phone "(03) 487-4680", Email "-",
Date_Entered "1995-05-18 09:01:00", Date_Employed "1995-07-06", Salary 41964.0,
Qualification "Senior" },
 TUPLE { Employee_ID 5, Firstnames "Boris", Surname "Belt", Street "76
Green Terrace", Suburb "Kensington", Phone "(03) 460-9801", Email "-",
Date_Entered "1990-08-12 08:40:00", Date_Employed "1990-09-29", Salary 31049.0,
Qualification "Senior" },
 TUPLE { Employee_ID 6, Firstnames "Jane", Surname "Dassen", Street "12
Chapman Heights", Suburb "Brentwood", Phone "(03) 497-0752", Email "-",
Date_Entered "1990-08-16 09:13:00", Date_Employed "1990-09-10", Salary 43610.0,
Qualification "Senior" },
 TUPLE { Employee_ID 7, Firstnames "Sextus", Surname "Derbie", Street
"65A Columbia Lane", Suburb "Roseneath", Phone "(03) 460-9377", Email "-",
Date_Entered "2000-04-07 08:08:00", Date_Employed "2000-04-27", Salary 27470.0,
Qualification "Senior" },
 TUPLE { Employee_ID 8, Firstnames "Evelyn", Surname "Fairbirn", Street
"144 Buford Road", Suburb "Mornington", Phone "(03) 424-3714", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 9, Firstnames "Ewen", Surname "Larroche", Street
"57 Oxford Crescent", Suburb "Northfield", Phone "(03) 438-7290", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },

 75

 TUPLE { Employee_ID 10, Firstnames "Glynis", Surname "Henare", Street
"14 Brighton Street", Suburb "Newington", Phone "(03) 431-4824", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 11, Firstnames "Frank", Surname "Cecchi", Street
"111 Passmore Road", Suburb "Richmond", Phone "(03) 461-0765", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 12, Firstnames "Tess", Surname "Lapslie", Street "52
Somerville Street", Suburb "Lovemore Heights", Phone "(03) 410-4089", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 13, Firstnames "Rufus", Surname "Scown", Street "26
Seaforth Road", Suburb "Kew", Phone "(03) 485-1727", Email "-", Date_Entered
"2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0, Qualification
"Senior" },
 TUPLE { Employee_ID 14, Firstnames "Loretta", Surname "Nader", Street
"1/85 Ranfurly Street", Suburb "Armadale", Phone "(03) 484-3624", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 15, Firstnames "Stanley", Surname "Malcolm", Street
"70 Fenton Street", Suburb "Hampstead", Phone "(03) 423-7709", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 16, Firstnames "Berenice", Surname "Niksic", Street
"116 Mulford Avenue", Suburb "Epping", Phone "(03) 478-1067", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 17, Firstnames "Sharon", Surname "Purwo", Street
"65 Goodall Street", Suburb "Glencoe", Phone "(03) 448-8020", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 18, Firstnames "Quenild", Surname "Hopwood",
Street "11C Churchill Avenue", Suburb "Mornington", Phone "(03) 425-8442", Email
"-", Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary
34844.0, Qualification "Senior" },
 TUPLE { Employee_ID 19, Firstnames "Darby", Surname "Macassey", Street
"6/15 Barton Crescent", Suburb "Walmer", Phone "(03) 415-2526", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 20, Firstnames "Gloria", Surname "Gribben", Street
"148 Vine Street", Suburb "Ipswitch", Phone "(03) 449-2910", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 21, Firstnames "Ned", Surname "Hitchings", Street
"33 Oates Street", Suburb "Forbury", Phone "(03) 428-0389", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 22, Firstnames "Ada", Surname "Julian", Street "75
Marlowe Road", Suburb "St Kilda", Phone "(03) 470-8323", Email "-", Date_Entered

 76

"2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0, Qualification
"Senior" },
 TUPLE { Employee_ID 23, Firstnames "Leopold", Surname "Horder", Street
"134 Sycamore Road", Suburb "Woodstock", Phone "(03) 482-9772", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 24, Firstnames "Eleanora", Surname "Napper", Street
"28 Bentley Road", Suburb "Grange Hill", Phone "(03) 482-8003", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 25, Firstnames "Randal", Surname "Hyndman",
Street "7/121 Wharfdale Place", Suburb "Albany", Phone "(03) 438-6641", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 26, Firstnames "Marina", Surname "Doust", Street
"28 Jubilee Road", Suburb "Kensington", Phone "(03) 418-3421", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 27, Firstnames "Barney", Surname "Gilbert", Street
"126B Russell Road", Suburb "Newington", Phone "(03) 497-2641", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 28, Firstnames "Astrid", Surname "Gurnsey", Street
"89 Evans Street", Suburb "Armadale", Phone "(03) 415-3640", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 29, Firstnames "Eugene", Surname "Kumar", Street
"43 Factory Lane", Suburb "St Bathans", Phone "(03) 489-1922", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 30, Firstnames "Ivy", Surname "Couch", Street "28
Church Terrace", Suburb "Northfield", Phone "(03) 450-6125", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 31, Firstnames "Achilles", Surname "Abdul", Street
"44 Seaview Road", Suburb "Roseneath", Phone "(03) 474-6025", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 32, Firstnames "Arabella", Surname "Busch", Street
"6/62 Ashmore Street", Suburb "Rosebank", Phone "(03) 403-6576", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 33, Firstnames "Melchior", Surname "Ball", Street
"68 Beach Heights", Suburb "Lovemore Heights", Phone "(03) 454-2762", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 34, Firstnames "Consuelo", Surname "Bacher", Street
"134A Tweed Crescent", Suburb "Brentwood", Phone "(03) 408-8430", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },

 77

 TUPLE { Employee_ID 35, Firstnames "Aubrey", Surname "Ballock", Street
"48 Banks Road", Suburb "Caversham", Phone "(03) 440-5507", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 36, Firstnames "Minerva", Surname "Aitken", Street
"80 Wesley Street", Suburb "Richmond", Phone "(03) 478-4075", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 37, Firstnames "Jehu", Surname "Ayoub", Street "121
Brooklyn Street", Suburb "Glenview", Phone "(03) 466-4738", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" },
 TUPLE { Employee_ID 38, Firstnames "Flavia", Surname "Abnernethy",
Street "47 Nicholson Street", Suburb "Kew", Phone "(03) 407-7879", Email "-",
Date_Entered "2001-06-26 08:08:00", Date_Employed "2001-08-06", Salary 34844.0,
Qualification "Senior" }
};

 78

Appendix 5: The Translation Logic - Translate.java

/*

 * Created on Aug 29, 2007

 *

 * The purpose of this class is to handle the translation logic

 *

 * @author: Ahmed Almulla

 */

package translator;

import java.util.ArrayList;

public class Translate {

 private String TutDString = "";

 private String TutDStringResult = "";

 public String EvaluateExpr(String SQLString)

 throws IllegalArgumentException {

 /*

 * Trim the SQLString from the whitespaces in the beginning

 * and the end and convert to UpperCase so that case will be

 * ignored

 * This satisfies the case insensetivity of SQL

 */

 String trimmedSQLString = SQLString.trim();

 String preparedSQLString = prepareSQLString(trimmedSQLString);

 String UpperCaseSQLString = preparedSQLString.toUpperCase();

 if (UpperCaseSQLString.indexOf("SELECT") == 0) {

 TutDStringResult = TranslateSelect(preparedSQLString);

 } else if (UpperCaseSQLString.indexOf("INSERT INTO") == 0) {

 TutDStringResult = TranslateInsert(preparedSQLString);

 } else if (UpperCaseSQLString.indexOf("UPDATE") == 0) {

 TutDStringResult = TranslateUpdate(preparedSQLString);

 } else if (UpperCaseSQLString.indexOf("DELETE FROM") == 0) {

 TutDStringResult = TranslateDelete(preparedSQLString);

 } else {

 throw new IllegalArgumentException(

 "This translation layer was "

+ "designed to only handle simple SELECT,

INSERT, UPDATE and DELETE statements");

 }

 return TutDStringResult;

 }

 public String TranslateSelect(String SQLString)

 throws IllegalArgumentException {

 TutDString = "";

 int SELECTIndex = SQLString.toUpperCase().indexOf("SELECT");

 int FROMIndex = SQLString.toUpperCase().indexOf("FROM");

 int WHEREIndex = SQLString.toUpperCase().indexOf("WHERE");

 int STARIndex = SQLString.indexOf("*");

 int terminationIndex = SQLString.lastIndexOf(";");

 /*

 79

 * The following are the exception cases that are checked

 * before translation The cases are for Invalid SQL SELECT

 * statements

 * Some of the cases are invalid for the purpose of this

 * translation layer (e.g no complicated SELECT statements)

 * If any of them occur, the translation never happens and an

 * apprpriate error message is thrown

 */

 if (FROMIndex == -1) {

 throw new IllegalArgumentException(

 "FROM keyword not found where expected");

 }

 while ((SQLString.charAt(FROMIndex - 1) != ' ' || SQLString

 .charAt(FROMIndex + 4) != ' ')) {

// this is not the FROMIndex wanted

FROMIndex = SQLString.toUpperCase().indexOf("FROM",

FROMIndex+1);

 if (FROMIndex == -1) {

 throw new IllegalArgumentException(

 "FROM keyword not found where expected");

 }

 }

 if (FROMIndex - 1 == SELECTIndex + 6) {

throw new IllegalArgumentException("missing

expression");

 }

 if (WHEREIndex != -1) {

 while (SQLString.charAt(WHEREIndex - 1) != ' '

 || SQLString.charAt(WHEREIndex + 5) != ' ') {

// this is

 // not the

 // WHEREIndex

 // wanted

 WHEREIndex =

SQLString.toUpperCase().indexOf("WHERE",

 WHEREIndex + 1);

 if (WHEREIndex == -1) {

 break;

 }

 }

 }

 if (FROMIndex > WHEREIndex && WHEREIndex > 0) {

 throw new IllegalArgumentException(

 "FROM keyword not found where expected");

 }

 /*

 * Checking the columns

 */

 String columnsCheck = SQLString.substring(SELECTIndex + 7,

 FROMIndex - 1);

 if (columnsCheck.charAt(columnsCheck.length() - 1) == ',') {

throw new IllegalArgumentException("missing

expression");

 }

 80

 for (int i = 0; i < columnsCheck.length(); i++) {

 if (columnsCheck.charAt(i) == ' '

 && columnsCheck.charAt(i - 1) != ','

 && columnsCheck.charAt(i + 1) != ',') {

throw new IllegalArgumentException("missing

expression");

 }

 }

 if (WHEREIndex != -1) {

if (SQLString.substring(FROMIndex,

WHEREIndex).contains("*")) {

throw new IllegalArgumentException("invalid

SQLStatement");

 }

 } else {

if

(SQLString.substring(FROMIndex,terminationIndex).contain

s("*")) {

throw new IllegalArgumentException("invalid SQL

Statement");

 }

 }

 /*

 * The translation layer was designed to handle simple

 * SELECTstatements

* The following exception cases prevents the user from using

* some of the complicated SELECT statements

 *

 * No use of: ORDER BY clause

 */

 int ORDERIndex = SQLString.toUpperCase().indexOf("ORDER");

 if (ORDERIndex != -1) {

 while (SQLString.charAt(ORDERIndex - 1) != ' '

 || SQLString.charAt(ORDERIndex + 5) != ' ') {

// this is

 // not the

 // ORDERIndex

 // wanted

 ORDERIndex =

SQLString.toUpperCase().indexOf("ORDER",

 ORDERIndex + 1);

 if (ORDERIndex == -1) {

 break;

 }

 }

 }

 if (ORDERIndex != -1) {

 throw new IllegalArgumentException(

 "This translation layer was not designed to handle

ORDER BY clause");

 }

 /*

 * No use of: GROUP BY clause

 */

 int GROUPIndex = SQLString.toUpperCase().indexOf("GROUP");

 if (GROUPIndex != -1) {

 while (SQLString.charAt(GROUPIndex - 1) != ' '

 || SQLString.charAt(GROUPIndex + 5) != ' ') {

 81

// this is

 // not the

 // GROUPIndex

 // wanted

 GROUPIndex =

SQLString.toUpperCase().indexOf("GROUP",

 GROUPIndex + 1);

 if (GROUPIndex == -1) {

 break;

 }

 }

 }

 if (GROUPIndex != -1) {

 throw new IllegalArgumentException(

"This translation layer was not designed to handle GROUP BY

clause");

 }

 /*

 * No use of: JOIN, Cartesian product

 */

 if (WHEREIndex == -1) {

 if

(SQLString.substring(FROMIndex + 5,

terminationIndex).contains(

 ",")

 || SQLString.substring(FROMIndex + 5, terminationIndex)

 .contains(" ")) {

 throw new IllegalArgumentException(

"This translation layer was designed to only handle single

table queries");

 }

 } else {

 if (SQLString.substring(FROMIndex + 5, WHEREIndex - 1)

 .contains(",")

 ||

SQLString.substring(FROMIndex + 5, WHEREIndex - 1)

 .contains(" ")) {

 throw new IllegalArgumentException(

"This translation layer was designed to only handle single

table queries");

 }

 }

 /*

 * The following code handles the SQL SELECT statement

 * translation

 */

 if (WHEREIndex == -1) { // no restriction on the selection

TutDString += SQLString.substring(FROMIndex + 5,

terminationIndex);

if (STARIndex == -1 || STARIndex > FROMIndex) { // projection

// on the

 // selection

 TutDString += "{"

+ SQLString.substring(SELECTIndex + 7,

FROMIndex - 1)

 + "}";

 }

 } else { // restriction on the selection

 82

 /*

 * Replacing single quotation signs to double quotation signs

 * that are used in Tutorial D

 */

String SQLStringRestriction =

SQLString.substring(WHEREIndex + 6,

 terminationIndex);

 for (int i = 0; i < SQLStringRestriction.length(); i++)

{

 String s1 = "‘";

 String s2 = "’";

 String s3 = "'";

 char quotationSign = '"';

 if (SQLStringRestriction.charAt(i) == s1.charAt(0)

|| SQLStringRestriction.charAt(i) ==

s2.charAt(0)

|| SQLStringRestriction.charAt(i) ==

s3.charAt(0)) {

SQLStringRestriction =

SQLStringRestriction.substring(0, i)

 + quotationSign

 + SQLStringRestriction.substring(i + 1);

 }

 }

 TutDString += "("

+ SQLString.substring(FROMIndex + 5, WHEREIndex -

1) + "["

 + SQLStringRestriction + "])";

 if (SQLString.charAt(SELECTIndex + 7) != '*') {

// projection on the

 // selection

 TutDString += " {"

+ SQLString.substring(SELECTIndex + 7,

FROMIndex - 1)

 + "}";

 }

 }

 return TutDString;

 }

 public String TranslateInsert(String SQLString) {

 TutDString = "";

 ArrayList<String> columnFields = new ArrayList<String>();

 ArrayList<String> columnValues = new ArrayList<String>();

 String columnField = "";

 String columnValue = "";

int INSERTIndex = SQLString.toUpperCase().indexOf("INSERT

INTO");

 int VALUESIndex = SQLString.toUpperCase().indexOf("VALUES");

 int columnsStartIndex = SQLString.toUpperCase().indexOf("(");

 int terminationIndex = SQLString.lastIndexOf(";");

 /*

 * Checking the VALUES keyword

 */

 if (VALUESIndex == -1) {

throw new IllegalArgumentException("missing VALUES

keyword");

 83

 }

 if (SQLString.charAt(VALUESIndex - 1) != ')'

 && SQLString.charAt(VALUESIndex + 6) != '(') {

 while ((SQLString.charAt(VALUESIndex - 1) !=

' ' || SQLString

 .charAt(VALUESIndex + 6) != ' ')

 && SQLString.charAt(VALUESIndex - 3) != ')'

&& SQLString.charAt(VALUESIndex - 4)

!= ')') { // this is

 // not the

 // VALUESIndex

 // wanted

 VALUESIndex =

SQLString.toUpperCase().indexOf("VALUES",

 VALUESIndex + 1);

 if (VALUESIndex == -1) {

throw new IllegalArgumentException("missing

VALUES keyword");

 }

 }

 }

TutDString += SQLString.substring(INSERTIndex + 12,

columnsStartIndex)

 + "+= TUPLE {";

 /*

 * Storing the column fields in an ArrayList

 */

 for (int i = columnsStartIndex + 1; i < VALUESIndex; i++) {

 if (SQLString.charAt(i) == ')') {

 columnFields.add(columnField);

} else if (SQLString.charAt(i) != ' ' && SQLString.charAt(i)

!= ',') {

 columnField += SQLString.charAt(i);

 } else if (SQLString.charAt(i) != ' ') {

 columnFields.add(columnField);

 columnField = "";

 }

 }

 /*

 * Storing the column values in an ArrayList

 */

 for (int i = VALUESIndex + 6; i < terminationIndex; i++) {

 if (SQLString.substring(i, i + 1).contains("'")

|| SQLString.substring(i, i +

1).contains("‘")

|| SQLString.substring(i, i +

1).contains("’")) {

 char quoteSign = '"';

 columnValue += quoteSign;

 } else if (columnValue.compareTo("") != 0) {

 if (columnValue.charAt(0) == '"') {

 if

(columnValue.charAt(columnValue.length() - 1) == '"'

 && columnValue.length() > 1) {

 columnValues.add(columnValue);

 columnValue = "";

 } else {

 84

 columnValue += SQLString.charAt(i);

 }

 }

 }

if ((columnValue.compareTo("") != 0 && columnValue.charAt(0)

!= '"')

 || columnValue.compareTo("") == 0) {

 if (SQLString.charAt(i) == ')'

 && columnValue.compareTo("") != 0) {

 columnValues.add(columnValue);

 } else if (SQLString.charAt(i) != ' '

 && SQLString.charAt(i) != ','

 && SQLString.charAt(i) != '(') {

 columnValue += SQLString.charAt(i);

 } else if (SQLString.charAt(i) != ' '

 && SQLString.charAt(i) != '('

 && columnValue.compareTo("") != 0) {

 columnValues.add(columnValue);

 columnValue = "";

 }

 }

 }

 if (columnFields.size() == 0) {

TutDString = SQLString.substring(INSERTIndex + 12,

VALUESIndex)

 + "+= TUPLE {";

 for (int i = 0; i < columnValues.size(); i++) {

 TutDString += columnValues.get(i);

 if (i == columnValues.size() - 1) {

 TutDString += "};";

 } else {

 TutDString += ", ";

 }

 }

 } else if (columnFields.size() == columnValues.size()) {

 for (int i = 0; i < columnFields.size(); i++) {

TutDString += columnFields.get(i) + " " +

columnValues.get(i);

 if (i == columnFields.size() - 1) {

 TutDString += "};";

 } else {

 TutDString += ", ";

 }

 }

 } else if (columnFields.size() > columnValues.size()) {

// an exception case

 throw new IllegalArgumentException("not enough values");

 } else if (columnFields.size() < columnValues.size()) {

// an exception case

 throw new IllegalArgumentException("too many values");

 } else {

 TutDString = "";

 }

 return TutDString;

 }

 public String TranslateUpdate(String SQLString) {

 TutDString = "";

 85

 int UPDATEIndex = SQLString.toUpperCase().indexOf("UPDATE");

 int SETIndex = SQLString.toUpperCase().indexOf("SET");

 int WHEREIndex = SQLString.toUpperCase().indexOf("WHERE");

 int terminationIndex = SQLString.lastIndexOf(";");

 if (SETIndex == -1) {

throw new IllegalArgumentException("missing SET

keyword");

 }

 while (SQLString.charAt(SETIndex - 1) != ' '

|| SQLString.charAt(SETIndex + 3) != ' ') {

// this is not the SETIndex wanted

SETIndex = SQLString.toUpperCase().indexOf("SET",

SETIndex + 1);

 if (SETIndex == -1) {

throw new IllegalArgumentException("missing SET

keyword");

 }

 }

 if (SETIndex == UPDATEIndex + 7) {

throw new IllegalArgumentException("invalid table

name");

 }

 if (WHEREIndex != -1) {

 while (SQLString.charAt(WHEREIndex - 1) != ' '

|| SQLString.charAt(WHEREIndex + 5) != ' ') {

// this is

 // not the

 // WHEREIndex

 // wanted

 WHEREIndex =

SQLString.toUpperCase().indexOf("WHERE",

 WHEREIndex + 1);

 if (WHEREIndex == -1) {

 break;

 }

 }

 }

 /*

 * Replacing single quotation signs to double quotation

 * signs that are

 * used in Tutorial D

 */

 for (int i = 0; i < SQLString.length(); i++) {

 String s1 = "‘";

 String s2 = "’";

 String s3 = "'";

 char quotationSign = '"';

 if (SQLString.charAt(i) == s1.charAt(0)

 || SQLString.charAt(i) == s2.charAt(0)

 || SQLString.charAt(i) == s3.charAt(0)) {

SQLString = SQLString.substring(0, i) +

quotationSign

 + SQLString.substring(i + 1);

 }

 }

 86

TutDString += SQLString.substring(UPDATEIndex + 7,

SETIndex - 1)

 + " @= ";

 String prepareSetString = "";

 if (WHEREIndex != -1) {

 TutDString += "["

+ SQLString.substring(WHEREIndex + 6,

terminationIndex)

 + "] ";

 prepareSetString = SQLString

 .substring(SETIndex + 4, WHEREIndex - 1);

 } else {

 prepareSetString = SQLString.substring(SETIndex + 4,

 terminationIndex);

 }

 ArrayList<String> columnFields = new ArrayList<String>();

 ArrayList<String> columnValues = new ArrayList<String>();

 while (prepareSetString.indexOf("=") != -1) {

 int equalSignIndex = prepareSetString.indexOf("=");

int commaIndex =

prepareSetString.toUpperCase().indexOf(",");

columnFields.add(prepareSetString.substring(0,

equalSignIndex));

 if (commaIndex != -1) {

 columnValues.add(prepareSetString.substring(equalSignIndex+1,

 commaIndex));

prepareSetString =

prepareSetString.substring(commaIndex+1);

 } else {

 columnValues.add(prepareSetString.substring(equalSignIndex+1,

 prepareSetString.length()));

 break;

 }

 }

 String finalSetString = "";

 if (columnFields.size() == columnValues.size()) {

 for (int i = 0; i < columnFields.size(); i++) {

 finalSetString += columnFields.get(i) + ":="

 + columnValues.get(i);

 if (i != columnFields.size() - 1) {

 finalSetString += ", ";

 }

 }

 }

 TutDString += "(" + finalSetString + ");";

 return TutDString;

 }

 public String TranslateDelete(String SQLString) {

 TutDString = "";

 87

int DELETEIndex = SQLString.toUpperCase().indexOf("DELETE

FROM");

 int WHEREIndex = SQLString.toUpperCase().indexOf("WHERE");

 int terminationIndex = SQLString.lastIndexOf(";");

 /*

 * Replacing single quotation signs to double quotation signs

 * that are

 * used in Tutorial D

 */

 for (int i = 0; i < SQLString.length(); i++) {

 String s1 = "‘";

 String s2 = "’";

 String s3 = "'";

 char quotationSign = '"';

 if (SQLString.charAt(i) == s1.charAt(0)

 || SQLString.charAt(i) == s2.charAt(0)

 || SQLString.charAt(i) == s3.charAt(0)) {

SQLString = SQLString.substring(0, i) +

quotationSign

 + SQLString.substring(i + 1);

 }

 }

 if (WHEREIndex != -1) {

 while (SQLString.charAt(WHEREIndex - 1) != ' '

 || SQLString.charAt(WHEREIndex + 5) != ' ') {

// this is

 // not the

 // WHEREIndex

 // wanted

 WHEREIndex =

SQLString.toUpperCase().indexOf("WHERE",

 WHEREIndex + 1);

 if (WHEREIndex == -1) {

 break;

 }

 }

 }

 if (WHEREIndex != -1) {

 if (DELETEIndex + 12 == WHEREIndex) {

throw new IllegalArgumentException("invalid table

name");

 }

 TutDString +=

SQLString.substring(DELETEIndex + 12, WHEREIndex)

 + "-= ["

 + SQLString.substring(WHEREIndex + 6, terminationIndex)

 + "];";

 } else { // Delete all records

 if (DELETEIndex + 11 == terminationIndex

 || DELETEIndex + 12 == terminationIndex) {

throw new IllegalArgumentException("invalid table

name");

 }

 TutDString += SQLString.substring(DELETEIndex + 12,

 terminationIndex)

 + "-= ALL;";

 }

 88

 return TutDString;

 }

 /*

 * This method gets rid of the subsequent whitespaces that may

 * appear in a SQL statement before translation

 */

 public String prepareSQLString(String SQLString) {

 String newSQLString = "";

 ArrayList<String> characterArray = new ArrayList<String>();

 for (int i = 0; i < SQLString.length(); i++) {

 String s = "" + SQLString.charAt(i);

 characterArray.add(s);

 }

 for (int i = 0; i < characterArray.size(); i++) {

 while ((characterArray.get(i)).compareTo(" ") == 0

&& (characterArray.get(i +

1)).compareTo(" ") == 0) {

 characterArray.remove(i + 1);

 }

 }

 for (int i = 0; i < characterArray.size(); i++) {

 newSQLString += characterArray.get(i);

 }

 /*

 * inserting ";" in the end if the user did not enter it

 */

 int lastTerminationIndex = newSQLString.lastIndexOf(";");

 if (lastTerminationIndex != newSQLString.length() - 1) {

 newSQLString += ";";

 }

 return newSQLString;

 }

}

 89

Appendix 6: Executing SQL Statements on Rel

/**

 * This method initializes btnExecute

 *

 * @return javax.swing.JButton

 */

 private JButton getBtnExecute() {

 if (btnExecute == null) {

 btnExecute = new JButton();

 btnExecute.setBounds(new Rectangle(121, 165, 205, 42));

 btnExecute.setText("Execute");

 btnExecute.setText("Execute");

 btnExecute.addActionListener(new

java.awt.event.ActionListener() {

public void

actionPerformed(java.awt.event.ActionEvent e) {

 System.out.println("actionPerformed()");

// TODO Auto-generated Event stub

actionPerformed()

 txtTutD.setText("");

 SQLString = txtSQL.getText();

 Translate t = new Translate();

 try {

TutDString =

t.EvaluateExpr(SQLString);

 txtTutD.setText(TutDString);

 /* Running the Translated SQL statement into Rel */

 String runMe = txtTutD.getText().trim();

PanelCommandline pcl =

browser.getPanelCommandline();

 remote = pcl.getRemote();

 if (runMe.indexOf(';') >= 0) {

 remote.run(runMe);

 } else {

 remote.evaluate(runMe);

 }

 } catch (IllegalArgumentException e1) {

JOptionPane.showMessageDialog(new

JFrame(), e1.getMessage(),

 "error", JOptionPane.ERROR_MESSAGE);

 } catch (IOException ioe) {

 System.out.println(ioe.toString());

 }

 }

 });

 }

 return btnExecute;

 }

 90

Appendix 7: Handling Complex SQL statements

SQL Statement Resulted

Tutorial D

Statement

Error Message

SELECT * FROM
Employee ORDER BY
Firstnames;

None This translation layer was not
designed to handle ORDER BY clause

SELECT count(*),
Qualification FROM
Employee GROUP BY
Qualification;

None This translation layer was not
designed to handle GROUP BY clause

SELECT * FROM
Employee, Company;

None This translation layer was designed to
only handle single table queries

SELECT * FROM
Employee NATURAL
JOIN Company;

None This translation layer was designed to
only handle single table queries

Table 10: Handling Complex SQL Statements

