Glutamate Receptors in the Medial Temporal Lobe Following Bilateral Vestibular Deafferentation

Georgina Wilson

A Thesis submitted for the degree of Master of Science Pharmacology and Toxicology At the University of Otago, Dunedin, New Zealand.

June 2011
Abstract

Dysfunction of the vestibular system can be caused by a number of conditions including Meniere’s disease and aminoglycoside antibiotic induced damage. Bilateral vestibular damage results in symptoms such as vertigo, dysequilibrium and dysfunctional eye movements. Studies of vestibular loss have also documented decreases in the volume of the hippocampus, and electrophysiological changes such as alterations in place cell activity and theta rhythm. The hippocampus is an area of the brain associated with memory and learning, and vestibular damage can result in long-term cognitive problems, including spatial and non-spatial memory deficits. It is poorly understood what molecular changes occur in the hippocampus that lead to these alterations in function and structure. This study measured N-methyl-D-aspartic acid (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors levels in the entorhinal cortex (EC), perirhinal cortex, frontal cortex (FC) and the CA1, CA2/3 and dentate gyrus (DG) sub-regions of the rat hippocampus, at 24 hours, 72 hours, 1 week and 1 month following bilateral vestibular deafferentation (BVD) surgery. NMDA and AMPA receptor subunit levels were assessed because they are the two of the most important classes of ionotropic glutamate receptors in the hippocampus and are known to be involved in synaptic plasticity and memory. The protein kinase CaMKII and its active form, phosphorylated CaMKII, were also measured post-BVD, as it is a downstream signalling molecule that has a role in both NMDA and AMPA receptor activity. There was no significant difference between BVD and sham animals in the expression of individual receptor subunits in any of the brain regions at any time point following a one way analysis of variance. However, two multivariate statistical analysis techniques were used to analyse the relationship between variables within the treatment groups linear discriminant analysis detected a linear discriminant function based on 8 variables from these data that could distinguish between BVD and sham rats with 100% accuracy. These variables were: CaMKII at 24 hours in the DG, GluR2 at 1 week in the CA1, GluR4 at 1 month in the EC, NR1 at 1 week in the CA1, NR1 at 1 week in the DG, NR1 at 1 month in the DG, NR1 at 1 month in the FC and NR2B at 1 month in the FC. Cluster analysis provided further information on the relationship between these 8 variables following BVD surgery. These results indicate that while the expression of individual glutamate receptor subunits did not change significantly when comparing BVD rats with controls that had undergone sham surgery, there was a change in the relationship between these variables following bilateral vestibular loss. Although BVD results in a number of electrophysiological and behavioural alterations, the
neurochemical changes appear to be more subtle and spread across a number of brain regions. Further studies need to be performed to assess changes in NMDAR and AMPAR affinity, efficacy and neuronal location in the medial temporal lobe of BVD animals.
Acknowledgements

This thesis is dedicated to my parents. Without you this thesis would never have been started much less finished. No words can express how much your love, wisdom and unfailing support has meant over the years.

To Paul for being so enthusiastic and encouraging. For always making time to talk about statistics, to bounce ideas off or just have a chat. For reading and re-reading my drafts more times than anyone should have to and putting up with my awful grammar.

To Yiwen for performing the surgeries and for everything you taught me. For being available at all hours, for your patience and constant support and for keeping me going when it kept going wrong.

To Jean Ha Baek for teaching me so many techniques particularly the all important Western blotting and for performing tissue preparation on the 24 hour, 1 week and 1 month BVD and control tissue.

To the people that looked over and proof read my thesis particularly Emily, Chris and Catherine, thank you so much for your input, support and incredible kindness. My writing would be a lot poorer without you.

To my desk buddies Jessica, Morgayn and Lucy for the support, encouragement and the sugary treats. You had a lot to do with keeping me sane.

To the people in my lab group Cynthia, Sangeeta, Irene, Shaeza, and Lisa for being great company and incredibly helpful.

To the rest of my friends and family and the Pharmacology department for their encouragement and support.
Table of contents

Abstract i
Acknowledgements iii
Table of Contents iv
List of Figures viii
Abbreviations x

1 Introduction 1

1.1 The vestibular system 2
1.2 Vestibular dysfunction 4
 1.2.1 Vestibular damage and compensation 4
 1.2.1.1 Unilateral vestibular damage 5
 1.2.1.2 Bilateral vestibular damage 5
 1.2.2 The vestibular system and spatial memory and navigation 6
 1.2.2.1 Differences between unilateral and bilateral vestibular damage 9
1.3 Hippocampus and spatial memory 10
 1.3.1 Memory and glutamate in the hippocampus 13
 1.3.1.1 NMDA receptors 13
 1.3.1.2 AMPA receptors 13
 1.3.1.3 Glutamate receptors and LTP 14
 1.3.1.4 Glutamate receptors and spatial memory 16
 1.3.1.5 CaMKII and pCaMKII 17
1.4 Vestibular-Hippocampal Connections 18
 1.4.1 Potential Pathways 19
 1.4.2 The Hippocampus, Vestibular System and Spatial Navigation 22
1.5 Effects of Vestibular Damage on the Hippocampus 22
 1.5.1 Unilateral Vestibular Deafferentation 23
 1.5.1.1 Neurochemical 23
 1.5.1.2 Electrophysiological 25
 1.5.2 Bilateral Vestibular Deafferentation 26
1.5.2.1 Neurochemical

1.5.2.2 Electrophysiological

1.5.2.2.1 Place Cells

1.5.2.2.2 Theta Rhythm

1.6 Conclusion

1.7 Aims

2 Methods

2.1 Animals

2.3 Surgery

2.4 Tissue Preparation

2.4.1 Standard tissue preparation of 24 hour, 72 hours and 1 week tissue

2.4.2 Membrane Preparation of 1 month tissue

2.5 Western Blotting

2.6 Statistics

3 Results

3.1 Protein and subunit expression in the hippocampus at 24 hours, 72 hours and 1 week post-BVD

3.1.1 CaMKII expression levels in the hippocampus at following BVD surgery

3.1.2 pCaMKII expression levels in the hippocampus following BVD surgery

3.1.3 GluR1 expression levels in the hippocampus following BVD surgery

3.1.4 GluR2 expression levels in the hippocampus following BVD surgery

3.1.5 GluR3 expression levels in the hippocampus following BVD surgery

3.1.6 GluR4 expression levels in the hippocampus following BVD surgery

3.1.7 NR1 expression levels in the hippocampus following BVD surgery

3.1.8 NR2A expression levels in the hippocampus following BVD surgery

3.1.9 NR2B expression levels in the hippocampus following BVD surgery
3.2 Protein and subunit expression in the medial temporal lobe at 1 month

3.2.1 GluR1 expression levels in the medial and temporal lobes following BVD surgery

3.2.2 GluR2 expression levels in the medial and temporal lobes following BVD surgery

3.2.3 GluR3 expression levels in the medial and temporal lobes following BVD surgery

3.2.4 GluR4 expression levels in the medial and temporal lobes following BVD surgery

3.2.5 NR1 expression levels in the medial and temporal lobes following BVD surgery

3.2.6 NR2A expression levels in the medial and temporal lobes following BVD surgery

3.2.7 NR2B expression levels in the medial and temporal lobes following BVD surgery

3.3 Linear Discriminant Analysis

3.4 Cluster Analysis

4 Discussion

4.1 Interpretation of results

4.1.1 Interpretation of linear discriminant analysis

4.1.2 Interpretation of cluster analysis

4.2 Comparison to previous literature

4.2.1 Other vestibular lesion studies

4.2.2 Long term potentiation following bilateral vestibular deafferentation

4.3 Critical Evaluation of my research

4.3.1 Bilateral vestibular damage in human patients compared to the animal model

4.3.2 Sham control rats

4.3.3 Tissue preparation

4.3.4 Western blotting
4.3.5 Confounding factors of study

4.4 Future research

4.4.1 Time points

4.4.2 Western Blotting protocol

4.4.3 Brain regions

4.4.4 Alternative techniques

4.4.5 Other NMDA receptor subunits

4.5 Conclusion

5 References
List of Figures and tables

Figures

Figure 1.1: A simplified diagram of the vestibular system 3
Figure 1.2: The hippocampal formation and connections to the frontal cortex 12
Figure 1.3: Putative vestibulo-hippocampal pathways 21

Figure 3.1: CaMKII expression levels in the hippocampus 24 hours following BVD surgery 41
Figure 3.2: CaMKII expression levels in the hippocampus 72 hours following BVD surgery 41
Figure 3.3: CaMKII expression levels in the hippocampus 1 week following BVD surgery 42
Figure 3.4: pCaMKII expression levels in the hippocampus 24 hours following BVD surgery 42
Figure 3.5: pCaMKII expression levels in the hippocampus 72 hours following BVD surgery 43
Figure 3.6: pCaMKII expression levels in the hippocampus 1 week following BVD surgery 43
Figure 3.7: GluR1 expression levels in the hippocampus 24 hours following BVD surgery 44
Figure 3.8: GluR1 expression levels in the hippocampus 72 hours following BVD surgery 44
Figure 3.9: GluR1 expression levels in the hippocampus 1 week following BVD surgery 45
Figure 3.10: GluR2 expression levels in the hippocampus 24 hours following BVD surgery 45
Figure 3.11: GluR2 expression levels in the hippocampus 72 hours following BVD surgery 46
Figure 3.12: GluR2 expression levels in the hippocampus 1 week following BVD surgery 46
Figure 3.13: GluR3 expression levels in the hippocampus 24 hours following BVD surgery 47
Figure 3.14: GluR3 expression levels in the hippocampus 72 hours following BVD surgery 47
Figure 3.15: GluR3 expression levels in the hippocampus 1 week following BVD surgery 48
Figure 3.16: GluR4 expression levels in the hippocampus 24 hours following BVD surgery 48
Figure 3.17: GluR4 expression levels in the hippocampus 72 hours following BVD surgery 49
Figure 3.18: GluR4 expression levels in the hippocampus 1 week following BVD surgery 49
Figure 3.19: NR1 expression levels in the hippocampus 24 hours following BVD surgery 50
Figure 3.20: NR1 expression levels in the hippocampus 72 hours following BVD surgery 50
Figure 3.21: NR1 expression levels in the hippocampus 1 week following BVD surgery 51
Figure 3.22: NR2A expression levels in the hippocampus 24 hours following BVD surgery 51
Figure 3.23: NR2A expression levels in the hippocampus 72 hours following BVD surgery 52
Figure 3.24: NR2A expression levels in the hippocampus 1 week following BVD surgery
Figure 3.25: NR2B expression levels in the hippocampus 24 hours following BVD surgery
Figure 3.26: NR2B expression levels in the hippocampus 72 hours following BVD surgery
Figure 3.27: NR2B expression levels in the hippocampus 1 week following BVD surgery
Figure 3.28: GluR1 expression levels in the medial temporal lobe following BVD surgery
Figure 3.29: GluR2 expression levels in the medial temporal lobe following BVD surgery
Figure 3.30: GluR3 expression levels in the medial temporal lobe following BVD surgery
Figure 3.31: GluR4 expression levels in the medial temporal lobe following BVD surgery
Figure 3.32: NR1 expression levels in the medial temporal lobe following BVD surgery
Figure 3.33: NR2A expression levels in the medial temporal lobe following BVD surgery
Figure 3.34: NR2B expression levels in the medial temporal lobe following BVD surgery
Figure 3.35: Scatterplot matrix of the neurochemical variables
Figure 3.36: Dendrogram of the 8 LDA BVD neurochemical variables
Figure 3.37: Dendrogram of the 8 LDA control neurochemical variables
Figure 4.1: The hippocampal formation and connections to the frontal cortex with the 8 LDA variables

Tables

Table 2.1: Details of the primary and secondary antibodies used for Western blotting
Table 3.1: The standardised canonical discriminant function coefficients for the 62 linear discriminant functions
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACh</td>
<td>acetylcholine</td>
</tr>
<tr>
<td>AMPA</td>
<td>α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>AP5</td>
<td>amino-5-phosphonovaleric acid</td>
</tr>
<tr>
<td>APV</td>
<td>aminophosphonovaleric acid</td>
</tr>
<tr>
<td>CA1</td>
<td>cornu ammonis area 1</td>
</tr>
<tr>
<td>CA2/3</td>
<td>cornu ammonis area 2 and 1</td>
</tr>
<tr>
<td>CaMKII</td>
<td>calcium/calmodulin-dependent kinase II</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>BVD</td>
<td>bilateral vestibular deafferentation</td>
</tr>
<tr>
<td>BVL</td>
<td>bilateral vestibular loss</td>
</tr>
<tr>
<td>DPMv</td>
<td>dorsal premotor cortex</td>
</tr>
<tr>
<td>EC</td>
<td>entorhinal cortex</td>
</tr>
<tr>
<td>EEG</td>
<td>electroencephalography</td>
</tr>
<tr>
<td>fEPSP</td>
<td>field excitatory postsynaptic potential</td>
</tr>
<tr>
<td>FC</td>
<td>frontal cortex</td>
</tr>
<tr>
<td>LDA</td>
<td>linear discriminant analysis</td>
</tr>
<tr>
<td>LTD</td>
<td>long term potentiation</td>
</tr>
<tr>
<td>LTP</td>
<td>long term depression</td>
</tr>
<tr>
<td>MK-801</td>
<td>(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine maleate</td>
</tr>
<tr>
<td>mPFC</td>
<td>medial prefrontal cortex</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>MVN</td>
<td>medial vestibular nucleus</td>
</tr>
<tr>
<td>NF-L</td>
<td>neurofilament-L</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-D-aspartate</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>NOS</td>
<td>nitric oxide synthase</td>
</tr>
<tr>
<td>PC</td>
<td>perirhinal cortex</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PET</td>
<td>positron emission tomography</td>
</tr>
<tr>
<td>PKA</td>
<td>adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase</td>
</tr>
<tr>
<td>PKC</td>
<td>protein kinase C</td>
</tr>
<tr>
<td>PKMζ</td>
<td>protein kinase M ζ</td>
</tr>
<tr>
<td>PSD</td>
<td>post-synaptic domain</td>
</tr>
<tr>
<td>tPA</td>
<td>tissue-type plasminogen activator</td>
</tr>
<tr>
<td>TEM</td>
<td>transmission electron microscopy</td>
</tr>
<tr>
<td>UVD</td>
<td>unilateral vestibular deafferentation</td>
</tr>
<tr>
<td>UVL</td>
<td>unilateral vestibular lesions</td>
</tr>
<tr>
<td>VMWT</td>
<td>virtual Morris water maze</td>
</tr>
<tr>
<td>VNC</td>
<td>vestibular nucleus complex</td>
</tr>
<tr>
<td>VOR</td>
<td>vestibulo-ocular reflex</td>
</tr>
<tr>
<td>VSR</td>
<td>vestibulo-spinal reflex</td>
</tr>
</tbody>
</table>

x
Chapter one

Introduction
1.1 The vestibular system

The vestibular system is a part of the labyrinth that lies in the otic capsule in the petrous portion of the temporal bone. It is a structure that detects gravity and self-motion, and uses this information to maintain balance and postural orientation. The sensory organ comprises five distinct end organs: the horizontal, anterior and posterior semicircular canals which are sensitive to angular acceleration, and the otolith organs, the utricle and saccule, which are sensitive to linear acceleration. The utricle is orientated horizontally, whereas the saccule is orientated primarily vertically (Glover 2004).

The semicircular canals are three ring-like structures, approximately perpendicular to each other, that detect angular acceleration. At the base of each semicircular canal is a swelling called the ampulla where the mechanoreceptors or hair cells are located. The canals are filled with endolymphatic fluid which bathes the hair cells. If a movement produces angular acceleration, inertia causes the endolymphatic fluid to lag behind in the canal which deflects the hair cells. The hair cells are orientated in one direction within each semi-circular canal, so that they are only deflected in the plane of that canal (Glover 2004).

The vestibular sensory-motor pathways comprise the sensory organs, sensory afferents and the vestibular nuclei in the brainstem, which project to interneurons and motor neurons in the spinal cord and brainstem. The hair cells are innervated by the eighth cranial nerve or vestibulocochlear nerve, which transmits vestibular information from the labyrinths to the vestibular nucleus complex (VNC) in the brainstem and the cerebellum (Carleton and Carpenter 1984). The VNC is made up of the lateral, medial, superior and inferior vestibular nuclei. The neurons in these sub-nuclei receive input from different regions of the labyrinth, with multiple inputs sometimes converging on the same neurons (Smith 1997). Vestibular information from the contralateral VNC is integrated with information from the ipsilateral VNC, in addition to visual and proprioceptive sensory input.

Vestibular information is vital for a number of reasons, including the generation of reflexive eye movements, controlled by the vestibulo-ocular reflexes (VORs) (Aw et al. 1996), and the vestibulo-spinal reflexes (VSRs) which are required for the correction of posture. The VORs and VSRs use short-latency, reflex arcs to rapidly correct for head movement (Goldberg 2000). The vestibular receptor cells in the vestibular organs detect acceleration and this signal
is converted so that it is in phase with head velocity (Shinoda and Yoshida 1974). The signal is then transmitted to specific subregions of the VNC by the vestibular nerve, where it is integrated into position signals. The motor neurons that innervate the eye muscles use the signal to generate VOR eye movements that are “equal and opposite to head movements” (Goldberg 2000, Smith 1997). The generation of this VOR takes approximately 7-10 ms (Aw et al. 1996). The medial and lateral vestibular nuclei also project to the spinal motor neurons at the cervical and thoracic levels which helps to generate the VSRs (Xerri et al. 1988).

Figure 1.1: A simplified diagram of the vestibular system. (A) The semicircular canals, otolith organs and the associated vestibular and cochlear ganglia and nerves. (B) Structure of the ampulla in the semicircular canal and a diagram of angular acceleration induced deflection of the cupula. Adapted from Glover JC. 2004. Encyclopedia of Neuroscience: 127-132, with permission from Elsevier.
1.2 Vestibular dysfunction

Damage to the vestibular inner ear can occur as a result of Meniere’s disease (Paparella and Mancini 1985), bacterial and viral infections such as vestibular neuritis and labyrinthitis (Davis 1993, Rasmussen et al. 1991), chemical toxicity resulting from aminoglycoside antibiotics (Brummett et al. 1972), tumours on the VIIIth nerve (Troost 1980), temporal bone trauma (Cannon and Jahrsdoerfer 1983) and a number of other causes. Vestibular dysfunction increases significantly with age, where the majority of individuals over 70 years of age report dizziness and postural imbalance (Agrawal et al. 2009). Patients with vestibular dysfunction who report dizziness have a much greater risk of falling, and balance-related falls account for more than one-half of accidental deaths in the elderly (Agrawal et al. 2009).

The loss of VORs and VSRs results in attention difficulties in humans (Yardley et al. 1998), decreased reaction time (Redfern et al. 2004), and symptoms such as oscillopsia (Shumway-Cook et al. 1997). Vestibular-lesioned patients have also been shown to perform worse on mental arithmetic tasks when compared to controls (Yardley et al. 2002). Patients with vestibular disorders present with severe spatial (Brandt et al. 2005, Hüfner et al. 2007, Schautzer et al. 2003) and non-spatial memory deficits (Grimm et al. 1989).

Mood disorders such as anxiety and depression (Godemann et al. 2004, Nagaratnam et al. 2004), agoraphobia (Jacob et al. 1996) and panic disorders (Godemann et al. 2006, Szirmai et al. 2005) have also frequently been associated with vestibular dysfunction in patients (Furman and Jacob 2001, Furman et al. 2006, Jacob and Furman 2001). However, this relationship is complex as patients with anxiety and depression have an increased rate of dizziness and vestibular disorders (Furman et al. 2006, Staab and Ruckenstein 2003). These mood disorders along with the behavioural symptoms explain why people with vestibular disorders often withdraw socially (Yardley et al. 1998, Zheng et al. 2008).

1.2.1 Vestibular damage and compensation

Unilateral and bilateral vestibular damage results in distinct behavioural syndromes. Some of these ocular and postural symptoms abate over time as a result of widespread compensation. However, not all symptoms undergo compensation and the patient or animal will continue to
suffer from deficits in their VORs and VSRs (Curthoys and Halmagyi 1995, Smith and Curthoys 1989).

1.2.1.1 Unilateral vestibular damage

Unilateral vestibular deafferentation (UVD) results in an imbalance in spontaneous resting activity between the contralateral and ipsilateral VNCs (Curthoys 2000). This imbalance results in the static symptoms of UVD, which are defined as symptoms that “are present without externally imposed vestibular stimulation” (Curthoys 2000). Static symptoms of UVD include spontaneous nystagmus defined as quick phase eye movements to the intact side, postural imbalances such as a marked head tilt towards the lesioned side, and ataxia or staggering gait (Curthoys and Halmagyi 1995, Dieringer 1995, Smith and Curthoys 1989). These static symptoms start to abate days or even hours following unilateral vestibular loss and this recovery is called vestibular compensation.

Dynamic vestibular responses are those that occur in response to passive vestibular stimuli (Smith and Curthoys 1989). The visual symptoms occur because dynamic responses such as the VOR and optokinetic reflexes are vital for stabilizing the visual gaze during head movements and require intact vestibular signals to function correctly (Aw et al. 1996). Such responses do not recover after deafferentation, resulting in abnormal sensory feedback (Curthoys and Halmagyi 1995, Dieringer 1995, Smith and Curthoys 1989).

The mechanisms behind vestibular compensation are poorly understood. While vestibular compensation is occurring, there is a corresponding return of resting activity to neurons in the VNC ipsilateral to the lesioned side (Ris and Godaux 1998, Ris et al. 1995). However, the electrical activity is below normal and there is no recovery in the ipsilateral vestibular nerve or vestibular receptor hair cells; therefore central nervous system (CNS) plasticity is responsible for this process (Curthoys and Halmagyi 1995).

1.2.1.2 Bilateral vestibular damage

Bilateral vestibular deafferentation (BVD) and UVD result in different behavioural symptoms. The UVD syndrome occurs as a result of an imbalance in vestibular output, which causes nystagmus, and a postural tilt towards the lesioned side. However, BVD results in a
greater loss of the vestibular reflexes, and there is no imbalance between the two vestibular nuclei in the brainstem (Smith and Curthoys 1989). BVD symptoms also undergo compensation, but to a lesser extent than UVD symptoms (Smith and Curthoys 1989).

The VORs and VSRs take longer to compensate following BVD and the symptom recovery varies (Deliagina et al. 1997), while some deficits never recover (Basile et al. 1999, Gilchrist et al. 1998). Loss of the VSRs results in symptoms such as gait ataxia and loss of the righting reflex, with compensation for these symptoms occurring gradually as vestibular nuclei resting activity recovers (Ris and Godaux 1998). There is no recovery in VOR function as the VNC neurons never recover their sensitivity to head movements. Compensation for deficits in these reflexes requires that the individual substitute alternative eye and postural movements, for instance saccadic or very rapid eye movements, which correct for the inappropriate axis of eye rotation (Halmagyi et al. 2003). Further compensation that stabilizes the gaze and head may take 6 months to a year to reduce symptoms like vertigo and oscillopsia, defined by Russell et al. (2003b) as the apparent movement of the visual world (Curthoys and Halmagyi 1995, Smith 1997, Smith and Curthoys 1989). However, symptoms such as hyperkinesis, defined as excessive locomotor activity (Goddard et al. 2008a), and horizontal head weaving (Basile et al. 1999), are permanent.

1.2.2 The vestibular system and spatial memory and navigation

In animal models and humans spatial navigation depends on the ability to learn and then remember how to get to a specific location. It is thought to be essential for higher cognitive processing (Zheng et al. 2006). Vestibular stimulation results in changes in spatial navigation (Matthews et al. 1989, Semenov and Bures 1989). Numerous papers highlight that peripheral vestibular lesions cause spatial memory deficits in both human patients and rats (Brandt et al. 2005, Cohen and Kimball 2002, Hufner et al. 2007, Matthews et al. 1989, Péruch et al. 1999, Redfern et al. 2004, Russell et al. 2003a, Schautzer et al. 2003, Stackman and Herbert 2002b). These studies lend support to the idea that the vestibular system has a vital role in the spatial representations that are formed in the higher cognitive centres of the brain (McNaughton et al. 1991, Smith 1997, Taube et al. 1996). Spatial memory deficits are thought to be related to the vestibular system’s failure to acquire information about self-movement (Zheng, et al., 2009).
Patients who had undergone bilateral neurectomy due to neurofibromatosis type 2 showed significant spatial learning and memory deficits when compared to healthy controls in the virtual Morris water task (VMWT) (Hamilton et al. 2002, Schautzer et al. 2003), a task that involves navigating to a hidden platform on a screen using visual cues. The task is used to measure hippocampal dependent learning and memory in humans. It is thought to require hippocampal circuitry without involving vestibular and proprioceptive signals (Hamilton et al. 2002).

Patients with bilateral vestibular loss (BVL) also showed significant spatial memory deficits in the VMWT when compared to healthy controls (Brandt et al. 2005). These BVL patients also showed an average atrophy of the hippocampus of 16.9% when compared to controls, as measured by magnetic resonance imaging (MRI) volumetry, which significantly correlated with the spatial memory loss of the BVL patients (Brandt et al. 2005). The patients were able to navigate to a cued location in the VMWT, which suggests that visual information is important for overcoming vestibular loss. This correlates with other studies demonstrating that people and animals with vestibular deficits perform better in spatial navigation tasks if there is a visible landmark present (Astur et al. 2002, Schautzer et al. 2003, Stackman and Herbert 2002b, Wallace et al. 2002).

In an animal model however, chemically-induced bilateral vestibular lesions resulted in impaired spatial learning and memory, but no impairment in non-spatial memory was observed in the object recognition task (Besnard et al. 2011, in press). However, BVD rats showed no hippocampal atrophy, in contrast to the human BVL patients (Balabhadrapatruni et al. 2011, unpublished data, Besnard et al. 2011, in press, Brandt et al. 2005). The deficits in spatial memory have been shown previously using rats that had undergone BVD (Russell et al. 2003a).

A potential confounding factor in behavioural studies testing spatial memory is that the deficits in the VOR and VSR following vestibular lesions are so severe that the animal cannot perform the tasks due to poor motor control and an inability to orient themselves. These symptoms are difficult to control for, particularly as all behavioural tasks involve some form of movement. The initial severe motion and postural deficits associated with the BVD syndrome could also potentially result in abnormal sensory feedback to the hippocampus. This is controlled for by assessing bilateral vestibular lesion induced deficits at longer time
points, as spatial memory impairments appear to be permanent (Baek et al. 2010, Brandt et al. 2005, Zheng et al. 2009) and some compensation for the lost vestibular reflexes has occurred (Curthoys 2000, Curthoys and Halmagyi 1995). BVD rats are also consistently shown to be hyperactive, exhibiting increased locomotor velocity, and distance travelled (Goddard et al. 2008a).

A study by Zheng et al. (2007) found that spatial memory deficits following bilateral vestibular lesions were likely to be permanent. BVD rats made significantly more errors than control rats in the spatial forced alternation T maze task at 3 weeks, 3 months and 5 months post-op. However, at 3 weeks post-surgery the BVD animal’s percentage of correct choices was significantly lower than their percentage of correct choices at 5 months. This implies that while the BVD rats’ hippocampal function and spatial memory is impaired over the long term, there is some improvement in performance as the animals adapt to deficits in their VORs and VSRs (Zheng et al. 2007).

Further evidence exists to support the hypothesis that spatial memory deficits associated with bilateral vestibular loss may be permanent. BVD and control rats performed the food foraging task 5 months post-surgery (Zheng et al. 2009). In light conditions the BVD animals exhibited significantly increased homing time, but used visual cues to find their way home. When the task was performed in darkness, the BVD rats exhibited significantly increased homing time, distance, errors and larger heading angles (Zheng et al. 2009). Similar results were observed in both light and dark conditions using rats with chemically-induced vestibular lesions (Wallace et al. 2002).

Dead reckoning is a type of spatial navigation that an animal uses to identify its current location and return to its starting position (McNaughton et al. 1991). Rats with bilateral vestibular loss were able to navigate home successfully in the light. However, in the absence of visual cues when dead reckoning is required, none of the rats were able to navigate home (Wallace et al. 2002, Zheng et al. 2009). The fact that two different methods were used and the same result was achieved confirms that it is the loss of vestibular function, and not the method used to produce the lesions, that resulted in deficits in the foraging task. When performing the food foraging task, the animal needs to continuously monitor and integrate self movement cues, in order to navigate an accurate path (Whishaw and Tomie 1997).
without an intact vestibular system were not able to do this, as the animals relied on visual cues to navigate successfully.

1.2.2.1 Differences between unilateral and bilateral vestibular damage

BVL patients show atrophy of the hippocampus described in the previous section 1.2.2, whereas volumetry of the hippocampus of human patients with unilateral vestibular lesions (UVL) showed no difference in hippocampal volume in left or right sided UVL patients when compared to controls (Hüfner et al. 2007). Furthermore, unlike the BVL patients, UVL patients showed no significant impairment in spatial memory or navigation in the VMWT, 5-13 years following surgery. This suggests that vestibular input provided by one labyrinth is sufficient for the production and maintenance of spatial memory, and prevents the changes in the gross volume of the hippocampus observed in humans following BVL (Hüfner et al. 2007).

Conversely, in unilateral vestibular neuritis patients there was significant atrophy of the right superior temporal gyrus and atrophy of the left posterior hippocampus (zu Eulenburg et al. 2010). The patients also had increased gray matter in the medial vestibular nucleus (MVN), the right gracile nucleus, and increased white matter signal intensity in the pontine commissural vestibular fibers. This was measured 2.5 years after vestibular neuritis onset as assessed by voxel-based morphometry, which measures changes in gray and white matter using MRI (zu Eulenburg et al. 2010).

The different causative pathologies seen in these studies could account for the different results. Vestibular neuritis is thought to have a viral origin (Baloh et al. 1996) and is associated with failure of the vestibular nerve resulting in impaired transmission between the peripheral vestibular organs and the VNC (Baloh 2003). By comparison, the patients in the Hufner et al. (2007) study had undergone complete UVD surgery because of acoustic neuroma. It is still uncertain what effect the loss of unilateral vestibular input has on the function of the hippocampus in humans and animal models.

Differences between UVD and BVD have also been observed in rat models. Zheng et al. (2006) used the food foraging task to investigate changes in spatial memory at 3 and 6 months and compare bilaterally and unilaterally-lesioned animals against controls. The UVD rats
showed increased homing time, homing distance, number of errors and heading angles at 3 months in the dark, when correct self-movement cues were required. This indicates that UVD animals suffer spatial memory deficits. However, the animals showed no impairment at 6 months (Zheng et al. 2006). The improvement observed between 3 and 6 months is interesting as temporal bone histology confirmed that the vestibular labyrinth had not recovered. As one labyrinth was still intact it is possible that the animal had compensated for the loss of the other labyrinth (Zheng et al. 2006). It is possible that the compensation may occur in the hippocampus, due to plasticity-induced changes in the way vestibular information is processed (Zheng et al. 2006).

When BVD animals were tested in the food foraging task at 14 months post-surgery, no improvement was observed in homing behaviour, and the animals performed worse as they showed impairment in the light, when visual cues were available (Baek et al. 2010). This corresponds with the Brandt et al. (2005) study, who found spatial memory deficits in BVD patients 8-10 years after surgery. Together these studies suggest that in bilaterally lesioned animals and humans, navigational and spatial memory impairments may be permanent.

1.3 Hippocampus and spatial memory

In order to better understand the relationship between spatial memory and learning in the hippocampus, several experiments have studied human subjects using functional imaging while they navigated virtual environments. Positron emission tomography (PET) scanning showed strong activation of the right hippocampus while subjects were processing established spatial layouts (Maguire et al. 1997). Increased activation of the hippocampus was observed in subjects navigating out of a virtual maze using MRI scanning (Grön et al. 2000); increased hippocampal activation was also seen in subjects navigating a novel path or ‘wayfinding’ (Hartley et al. 2003). A more recent study used functional MRI scanning to show that hippocampal activation is strongest in the initial stages of navigational learning (Wolbers and Büchel 2005).

Numerous papers have shown that hippocampal lesions result in spatial memory deficits (Astur et al. 2002, Kessels et al. 2001, Maguire et al. 1996). Human unilateral hippocampal resection patients required spatial cues in order to navigate to a hidden escape platform in the VMWT. The deficits in spatial navigation occurred regardless of which side of the
hippocampus was lesioned (Astur et al. 2002). Significant spatial memory deficits were also observed in animals following medial septal nucleus lesions, which disrupted hippocampal theta activity (Winson 1978). These results suggest that the hippocampus is vital for spatial memory and learning (Maguire et al. 2000, McNaughton et al. 1996, O'Keefe and Nadel 1978, Whishaw et al. 2001, Wiener 1996).

The hippocampus and parahippocampal regions are both involved in navigation. MRI activity was observed in the parahippocampal gyri and cortical areas known to project to the parahippocampus in subjects navigating a virtual maze (Aguirre et al. 1996). Furthermore, place cell recordings in the medial temporal and frontal lobes of humans navigating in a virtual environment showed that the majority of cells that responded to the sight of specific locations were found in the hippocampus, whereas the cells that responded to views of landmarks were located in the parahippocampal regions (Ekstrom et al. 2003). The hippocampus and parahippocampal regions combine to make up the hippocampal formation (Anderson et al. 1998). The hippocampal formation is heavily interconnected with itself and the frontal cortex (FC); a simplified schematic of these connections is described in fig. 1.2.

Any neurochemical or electrophysiological changes in one area will likely result in alterations in other areas.

The cellular changes behind the increased activation of the hippocampus following vestibular stimulation are unknown; however hippocampal neurogenesis may be responsible. Neuronal levels doubled in the rat dentate gyrus (DG) following training on an associative learning task (Gould et al. 1999). Adult neurogenesis may also be involved in the formation and consolidation of long-term hippocampal memories. Inhibition of neurogenesis in the rat hippocampus while the animals were training for a water maze task did not affect learning and performance of the task compared to controls at a 1 week time point, but at 2 and 4 weeks the rats’ performance was significantly impaired (Snyder et al. 2005).
Figure 1.2: The hippocampal formation and connections to the Frontal Cortex. Simplified schematic representation of the projections between the cornu ammonis area 1 (CA1), cornu ammonis area 3 (CA3), dentate gyrus (DG), Subiculum, entorhinal cortex (EC), perirhinal cortex (PC) and frontal cortex (FC). Includes synapses () and neural pathways (). Used to highlight the complicated interconnections between these various brain regions. (Andersen et al. 2007: 38, 71-72, 75-77, 92-93, 138).
1.3.1 Memory and glutamate in the hippocampus

1.3.1.1 NMDA receptors

NMDA (N-methyl-D-aspartate) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate) receptors are the major classes of ionotropic receptors in central glutamatergic synapses (Hollmann and Heinemann 1994, Ottersen and Landsend 1997). NMDA receptors (NMDARs) are heteromeric ligand-gated ion channels composed of the subunits NR1, NR2A-D, NR3A-B (Kutsuwada et al. 1992, Monyer et al. 1992). The NR1 subunit is necessary for NMDAR function, as NMDARs contain two obligatory NR1 subunits (Dingledine et al. 1999, Petralia et al. 1994). Furthermore, expression of a functional NMDAR is thought to require co-expression of at least one NR1 and NR2 subunit (Dingledine et al. 1999). The form the NR2 subunit (NR2A-D) takes in a receptor has a significant effect on the receptors properties, such as channel conductance, sensitivity to Mg$^{2+}$ and ligand affinity (Erreger et al. 2004, Ishii et al. 1993, Krupp et al. 1998, Kutsuwada et al. 1992, Monyer et al. 1994, Sucher et al. 1996, Williams et al. 1994).

In the adult rat brain, NR2A expression is widespread, while the majority of NR2B is in the forebrain (Ishii et al. 1993, Monyer et al. 1994). NR2A expression increases over time, whereas the majority of NR2B expression occurs during development. This causes a development-related shift in the functional properties of NMDARs (Hestrin 1992, Monyer et al. 1994, Sheng et al. 1994). NMDARs containing the subunits NR1/NR2B deactivate more slowly than receptors made up of NR1/NR2A (Vicini et al. 1998). Excitatory postsynaptic currents mediated by NMDARs containing NR1/NR2B also show slower decay times, than those containing NR1/NR2A (Flint et al. 1997).

1.3.1.2 AMPA receptors

AMPA receptors (AMPARs) mediate fast excitatory synaptic transmission in the CNS (Bliss and Collingridge 1993). AMPARs are heteromeric complexes made up of the four subunits GluR1-GluR4 (also referred to as GluRA1-GluRA4) (Hollmann and Heinemann 1994, Rosenmund et al. 1998). GluR1 and 2 are the most prominently expressed AMPAR subunits in the hippocampus, with lower levels of GluR3 and 4 (Craig et al. 1993, Geiger et al. 1995). In the hippocampus the receptor complexes are predominantly made up of GluR1/GluR2 or
GluR3/GluR2 (Wenthold et al. 1996). Different combinations of these AMPAR subunits change how the receptor responds to the agonists’ kainate, AMPA and quisqualate (Egebjerg et al. 1991). The current-voltage relationship of the receptors also changes depending on subunit composition, and can be either linear or inwardly rectifying (Boulter et al. 1990, Egebjerg et al. 1991).

The AMPAR subunit GluR1 plays a central role in synaptic plasticity (Meng et al. 2003, Zamanillo et al. 1999). It is also required for NMDAR-dependent synaptic delivery of AMPARs (Hayashi et al. 2000, Passafaro et al. 2001, Shi et al. 1999). The majority of AMPARs in the CNS are heterodimers containing GluR2 (Greger et al. 2002, Wenthold et al. 1996). GluR2 is vital for AMPAR trafficking (Greger et al. 2002, Liu and Cull-Candy 2000, Rothman 1994) and internalization (Chung et al. 2000), so it is unsurprising that the majority of AMPARs in the CNS contain GluR2. Channels containing GluR2 have a linear current-voltage relationship, relatively low single-channel conductance and low permeability (Boulter et al. 1990, Geiger et al. 1995, Isaac et al. 2007), whereas homomeric channels formed from GluR1, GluR3, or GluR4 are inwardly rectifying and calcium permeable (Geiger et al. 1995).

GluR2 and GluR3 are thought to be important for activity-independent AMPAR movement and therefore more important for basal synaptic function (Lewis et al. 1989, Passafaro et al. 2001, Shi et al. 1999). It has been hypothesized that the subunit combination GluR2/3 is responsible for stabilising the AMPARs at the synaptic surface (Lee et al. 2002b, Meng et al. 2003, Noel et al. 1999, Osten et al. 2000). GluR4 is mainly expressed during early development and is thought to be important for developmental synaptic plasticity (Zhu et al. 2000).

1.3.1.3 Glutamate receptors and LTP

Long term potentiation (LTP) is a sustained increase in neurotransmission and synaptic efficacy induced by high frequency electrical stimulation. It is the primary model for learning and memory (Bliss and Lømo 1973, Bliss and Collingridge 1993, Nicoll and Malenka 1995). LTP is divided into two phases: the initiation or induction of synaptic potentiation and the maintenance of this potentiation over time. The induction phase of LTP is generally rapid and involves the release of glutamate and the activation of NMDARs, which are concentrated in
the cornu ammonis area 1 (CA1) and DG regions of the hippocampus (Collingridge et al. 1983). The longer lasting, maintenance phase of LTP is thought to involve changes in glutamate release and AMPAR expression and sensitivity (Collingridge et al. 1983).

NMDAR-dependent LTP was first observed in the hippocampus. Stimulation of NMDARs triggers postsynaptic membrane depolarization, resulting in the presynaptic release of glutamate. The voltage-dependent Mg\(^{2+}\) block of the NMDAR is released and Ca\(^{2+}\) enters postsynaptic dendritic spines. LTP is triggered by the increase in postsynaptic Ca\(^{2+}\) concentration, which activates intracellular signalling cascades of specific protein kinases, most importantly calcium/calmodulin-dependent protein kinase II (CaMKII). AMPAR trafficking is also altered, resulting in an increase in AMPARs at the postsynaptic membrane. This is the underlying mechanism behind the increase in synaptic strength during LTP (Nicoll and Malenka, 1999).

Following LTP, there are increased NMDAR and AMPAR subunit numbers in the hippocampus (Manahan-Vaughan et al. 2003, Williams et al. 2003). The addition of AMPARs results in increased synaptic transmission during LTP (Hayashi et al. 2000, Passafaro et al. 2001, Shi et al. 1999). A knockout mouse strain was developed with deletion of the NMDAR\(_1\) gene limited to the CA1 pyramidal cells of the hippocampus. The resulting adult mice did not produce LTP or NMDAR–mediated synaptic currents in the CA1 synapses (Tsien et al. 1996).

Long term depression (LTD) is generated by prolonged low frequency stimulation; it occurs when the processes responsible for LTP are reversed (Linden and Connor 1995). The \textit{de novo} induction of LTD requires activation of NMDARs containing NR2B, whereas LTP induction requires activation of NMDARs containing NR2A (Liu et al. 2004b, Massey et al. 2004). This result concurs with the finding that LTP is disrupted in mice lacking NR2A (Sakimura et al. 1995). However, this issue is complicated as it has also been found that mice over-expressing NR2B have enhanced LTP (Tang et al. 1999). Nevertheless, the NR2 composition of individual NMDARs clearly influences the induction of LTP and LTD.

Adult GluR1 knock-out mice could not generate LTP (Zamanillo et al. 1999). The AMPAR subunit GluR2 also has a role in the regulation of LTP. GluR2 knock-out mice showed enhanced LTP in the CA1 region of hippocampal slices but there were no changes in neuronal
excitability (Jia et al. 1996). This coincides with the fact that in regions of the brain where GluR2 is highly expressed, AMPARs show decreased Ca\(^{2+}\) permeability (Geiger et al. 1995), and regions with low or absent GluR2 expression exhibit high Ca\(^{2+}\) permeability (Koh et al. 1995).

NMDAR and AMPAR modulators affect various forms of memory in both animals and humans (Ingvar et al. 1997, Lynch et al. 1997, Puma et al. 1998, Pussinen and Sirviö 1999, Schwartz et al. 1996). The NMDAR agonist NMDA improved the consolidation of working memory in rats whereas the antagonist amino-5-phosphonovaleric acid (AP5) disrupted it (Puma et al. 1998). The NMDA antagonist aminophosphonovaleric acid (APV) also blocked the increase in GluR1 and GluR2 synaptic membrane expression in the hippocampus following LTP (Heynen et al. 2000). This is consistent with the finding that AMPAR binding is increased in the hippocampus following the induction of LTP (Maren et al. 1993).

1.3.1.4 Glutamate receptors and spatial memory

The mechanisms that encode and maintain LTP are also thought to initiate and sustain spatial memory. The protein kinase M δ (PKMδ) is required for the maintenance of LTP (Serrano et al. 2005). When PKMδ was introduced into hippocampal slices, the AMPAR response was strongly potentiated (Ling et al. 2006). When the PKMδ inhibitor δ-pseudosubstrate inhibitory peptide was injected into the rat hippocampus, 1-day-old spatial memory was lost (Pastalkova et al. 2006).

Mice with deletion of the *NMDAR1* gene restricted to CA1 pyramidal cells of the hippocampus also showed spatial memory impairment in a water maze task (Tsien et al. 1996). This result suggests that NMDARs in CA1 synapses have an important role in the development of spatial memories. The mice did not present with any obvious behavioural abnormalities, as the mutation was targeted to the area of interest, unlike generic knockout mice where the mutation is global (Tsien et al. 1996).

Phosphorylation of GluR1 is also vital for LTD and LTP, and spatial memory retention. Knock-in mice with mutations in GluR1 phosphorylation sites showed deficits in LTP and LTD, and performed poorly in spatial learning tasks (Lee et al. 2003b). An animal model of GluR2 deficiency showed changes in the synaptic excitability of the hippocampus and
impairment in a spatial learning task (Shimshek et al. 2006). These findings suggest that NMDA and AMPAR subunit composition is as important for spatial memory and learning as it is for LTP.

The results of genetic studies are consistent with pharmacological ones. Delivery of the NMDAR antagonist APV to the rat hippocampus impaired spatial learning and this impairment correlated with LTP blockade (Davis et al. 1992). Rats’ spatial working memory in an eight arm radial maze was not significantly impaired by administration of the NMDA antagonist (–)-10,11-dihydro-dibeno [a, d] cycloheptene-5,10 imine (MK-801), except when tested in a novel environment (Caramanos and Shapiro 1994). This result suggests that NMDARs are important for spatial memory induction in a novel environment.

1.3.1.5 CaMKII and pCaMKII

Neuronal CaMKII is involved in gene expression, neurotransmitter synthesis, exocytosis, postsynaptic responses like LTP, and the control of cytoskeletal machinery (Schulman and Hanson 1993). CaMKII binds directly to the NMDAR subunits NR1 and NR2B (Leonard et al. 1999). NMDAR stimulation causes a large increase in intracellular calcium, which in turn increases the activation of CaMKII and leads to CaMKII autophosphorylation or pCaMKII (Giese et al. 1998). The AMPARs are then directly phosphorylated by CaMKII, which increases channel conductance (Barria et al. 1997a). The kinase also has a role in trafficking AMPARs to synapses, which results in enhanced synaptic transmission (Hayashi et al. 2000).

As CaMKII activity is so closely related to NMDAR and AMPAR activity, it is logical that CaMKII would have a role in LTP and many studies have confirmed this connection. LTP was disrupted in animals exposed to a selective CaMKII inhibitor, showing that CaMKII has a role in the induction of LTP (Malinow et al. 1989). In another study an increase in the postsynaptic expression of CaMKII in the CA1 region of the hippocampus was enough to enhance synaptic transmission and generate LTP (Pettit et al. 1994). One possible mechanism behind CaMKII-enhanced LTP is that CaMKII phosphorylates GluR1 at serine 831, and this has been shown to increase conductance through AMPARs and potentiate LTP (Barria et al. 1997a, Barria et al. 1997b, Derkach et al. 1999, Mammen et al. 1997, Roche et al. 1996).
There also appears to be a relationship between CaMKII activity and spatial memory and learning. Transgenic mice lacking CaMKII showed impaired spatial memory as the animals could not navigate to a specific location even though there were spatial cues available (Bach et al. 1995). However, another study using mice with mutated CaMKII found that the animals had significant spatial memory deficits, but could use cues to navigate (Silva et al. 1992). GluR1 is phosphorylated at serine 831 via CaMKII and serine 845 by adenosine 3’,5’-monophosphate (cAMP)-dependent protein kinase (PKA) (Barria et al. 1997b, Mammen et al. 1997, Roche et al. 1996). Spatial memory deficits were observed in knock-in mice with these serine residues mutated. The mutations meant that GluR1 could not be phosphorylated; however it is impossible to determine if this was due to loss of CaMKII or PKA activity or a combination of the two (Lee et al. 2003b). While the mechanisms are not clear it appears that CaMKII does have a role in spatial memory.

1.4 Vestibular-hippocampal connections

Current research suggests that there are four potential pathways connecting the vestibular system and hippocampus. Stimulation of the vestibular system produces a number of hippocampal responses. Hippocampal neuronal activity was altered in primates following vestibular stimulation (O'Mara et al. 1994). MRI imaging in human subjects showed that the hippocampus was activated following caloric stimulation, while eye movement was controlled for using a fixed visual target (Vitte et al. 1996). Most studies do not control for visual information when manipulating vestibular activity, nevertheless it is an important confounding factor. This is because the visual system is a major source of sensory information to the hippocampus (Tsanov and Manahan-Vaughan 2009) and it is disrupted by vestibular damage, due to symptoms such as oscillopsia (Chambers et al. 1985, Hamann et al. 2009).

Electrophysiological studies have also confirmed that the hippocampus has a role in processing vestibular information. Complex spiking cells or “place cells” (Vertes and Kocsis 1997) and non-complex spiking neurons or “theta cells” were recorded from in the CA1 region. Place cells and theta cells are both vital for accurate spatial navigation (Arleo and Gerstner 2000, Hasselmo et al. 2002). MVN stimulation increased the firing rates of complex spiking cells, while non-complex spiking cells showed a complex pattern of response, with some being activated, some inhibited and others not responding at all (Horii et al. 2004).
When areas adjacent to the MVN were stimulated there was no corresponding increase in firing of the CA1 neurons.

Unilateral stimulation of the vestibular system appears to result in a bilateral increase in hippocampal cell firing and evoked field potentials. This stimulation was low enough that VOR eye movements were not elicited (Cuthbert et al. 2000). Stimulation of one vestibular labyrinth also evoked theta activity in the hippocampus (Hicks et al. 2004). Interestingly all areas of the vestibular labyrinth were stimulated in these studies including the utricle and saccule and the semi-circular canals, suggesting that both angular and linear acceleration evoked vestibular signals are used by the hippocampus (Smith et al. 2005a). Furthermore, electrical stimulation of one vestibular nucleus has been shown to produce field potentials and evoke single unit activity in ipsilateral and contralateral CA1 neurons (Horii et al. 2004, Horii et al. 1994).

1.4.1 Potential pathways

There are several possible polysynaptic pathways connecting the brainstem vestibular nuclei and the hippocampus (Cuthbert et al. 2000, Horii et al. 2004, Smith 1997); these putative pathways are shown in fig 1.3. In the ‘thalamo-cortical pathway’, information from the VNC travels through the thalamus, parietal cortex, and then passes through the entorhinal and perirhinal cortices (EC and PC respectively) on the way to the hippocampus (McNaughton et al. 1994). The thalamus is also an important relay site for ascending vestibular projections (see Smith 1997 for review). Supporting this theory, a number of neurochemical changes were shown in the EC and PC following unilateral vestibular damage (Liu et al. 2004a).

In the ‘head-direction pathway’ vestibular information is transmitted to the prepositus hypoglossi via the MVN, which projects to the lateral mammillary nucleus via the dorsal tegmental nucleus (Liu et al. 1984). The lateral mammillary nucleus connects to the anterior dorsal region of the anterior thalamic nuclei, which projects to the hippocampus via the postsubiculum and EC, (reviewed by Taube et al. 1996). The name of the pathway originates from head direction cells in the lateral mammillary nuclei (Leonhard et al. 1996) and head direction cells in the anterodorsal thalamic nucleus, which were disrupted after bilateral inactivation of the peripheral vestibular system (Stackman and Taube 1997).
In the ‘theta generating pathway’ vestibular input from the VNC projects to the pedunculopontine tegmental nucleus, which in turn projects to the hippocampus via the supramammillary nucleus and the medial septum (Vertes and Kocsis 1997). There was an increase in the release of histamine from the medial septum when the round window of animals was electrically stimulated (Horii et al. 1994). Structures that generate theta rhythm are located in the pathway to the medial septum (Hayakawa et al. 1993, Kirk and McNaughton 1991, Semba et al. 1988, Vertes and Kocsis 1997) and theta activity is disrupted following BVD surgery (Russell et al. 2006).

Finally, there is a fourth possible pathway that has been put forward relatively recently; however there is less research available to substantiate this theory. In this pathway, known as the ‘vestibulo-cerebello-cortical pathway’, vestibular information is transmitted from the VNC to the cerebellar flocculus and paraflocculus, through to the posterior interpositus and dentate nucleus. These structures project to the thalamus via efferent fibres, then vestibular input is transmitted onto the temporal, parietal and frontal cortices which converge on the hippocampus (Fukushima 2003, Hüfner et al. 2007). It is important to note that whatever pathway vestibular information travels through, by the time it has left the VNC, it has been integrated with proprioceptive and subcortical visual information (Smith et al. 2009, Wilson and Jones 1979).
Figure 1.3: Putative vestibulo-hippocampal pathways. Four putative pathways connecting the vestibular nucleus complex and the hippocampus, the possible vestibulo-hippocampal pathways include the Thalamo-Cortical, the Head-Direction, the Theta-Generating and the Vestibulo-Cerebello-Cortical pathways. The diagram is separated into the regions of the rat brain and only ascending pathways were depicted. Adapted slightly with permission from Hufner et al. (2007).
1.4.2 The hippocampus, vestibular system and spatial navigation

The “path integration hypothesis” states that the hippocampus and other areas of the brain such as the neocortex use angular and linear velocity information from vestibular inputs to navigate through the spatial environment (Etienne and Jeffery 2004, McNaughton et al. 1991, McNaughton et al. 1996, Mittelstaedt and Mittelstaedt 1980, Taube et al. 1996). Spatial orientation and navigation are thought to require externally and internally generated cues (Berthoz et al. 1995). Internal or egocentric cues include information about self-movement, for instance vestibular, proprioceptive and motor efference signals (Horii et al. 2004), which are then integrated with visual information (McNaughton et al. 2006, McNaughton et al. 1996, Smith 1997, Taube et al. 1996). External or allothetic cues, require visual, auditory and olfactory sensory information (Wallace et al. 2002).

When an animal is navigating in the dark, in the absence of visual cues, self-motion cues are more important for the formation of intact place fields (Gothard et al. 2001). Vestibularly lesioned animals cannot navigate in the absence of visual cues (Russell et al. 2003b, Stackman and Herbert 2002b, Zheng et al. 2006), suggesting that vestibular self motion information is vital for the maintenance of hippocampal spatial firing activity (Russell et al. 2003b).

Self-movement information must be integrated with motor and sensory inputs in many cortical areas in order to correctly synchronize cognition and movement (Smith et al. 2009). This is indicated by the numerous areas of the brain receiving vestibular afferent input, including many parts of the limbic system and neocortex (Bottini et al. 1994, Dieterich et al. 2005, Eickhoff et al. 2006, Guldin et al. 1993), the FC (Bense et al. 2001, Dieterich et al. 2007), as well as areas in the temporal, occipital and insular lobes (Kahane et al. 2003). Vestibular lesion-induced changes in hippocampal function and anatomy are likely to be only a part of a complex cascade of neural changes throughout the brain (Karnath and Dieterich 2006, Smith et al. 2009).

1.5 Effects of vestibular damage on the hippocampus

While the effects of vestibular damage on learning and memory and emotional state have been well documented, the mechanisms behind these functional changes are poorly
understood. It is important to understand the connections between the vestibular system and the hippocampus, including the neurochemical and electrophysiological mechanisms behind these connections. Knowledge of these mechanisms will help us to understand how the hippocampus uses vestibular information, and what changes may occur in hippocampal function following vestibular damage.

1.5.1 Unilateral vestibular deafferentation

1.5.1.1 Neurochemical

Various neurochemical changes have been found in different sub-regions of the guinea pig hippocampus 10 hours post UVD. Glutamine levels were reduced in the DG of UVD animals when compared to sham animals, and taurine levels were significantly higher in the ipsilateral cornu ammonis area 2 and 3 (CA2/3) region of lesioned animals (Zheng et al. 1999b). UVD animals showed a significant increase in noradrenaline levels in the contralateral CA2/3 following UVD, compared to controls. The imbalance in ascending vestibular information following UVD may result in changes in the metabolism, release and synthesis of these neurochemicals (Zheng et al. 1999a).

In the rat hippocampus ten hours post-UVD there was a bilateral increase in nitric oxide synthase (Caramanos and Shapiro 1994) activity in the CA1 region. There was also a decrease in nitrite formation in the CA1 bilaterally and an increase in nitrite formation in the ipsilateral DG, the bilateral CA1 and ipsilateral DG (Zheng et al. 2000). Nitric oxide (NO) is synthesized by NOS (Caramanos and Shapiro 1994) from L-arginine (Vincent 1994). Therefore, this suggests that NO activity in the hippocampus is important in the initial stages of unilateral vestibular damage. This result is of significance because NO is thought to be important to the development of short-term memories in the hippocampus (Schuman and Madison, 1991). It also has a significant role in neuronal plasticity (Holscher 1997) and spatial memory (Böhme et al. 1993, Chapman et al. 1992, Liu et al. 2003a).

These earlier studies looked at neurochemical changes in the hippocampus while vestibular compensation was still occurring (Smith and Curthoys 1989). Any changes at the 10 hour time point are difficult to distinguish from the initial vestibular syndrome as the animals still suffer from the severe vestibular symptoms that follow lesion induction; however, by 2 weeks
the static vestibular symptoms of UVD have undergone partial compensation (King et al. 2002, Kitahara et al. 1995, Zheng et al. 2001a). Neurochemical changes after this point are most likely due to vestibular compensation induced plasticity in the hippocampus and/or are due to the chronic loss of vestibular information (Liu et al. 2003b).

The first study into neurochemical changes in the hippocampus after vestibular compensation had occurred showed a decrease in the expression of neuronal NOS (nNOS) in the ipsilateral DG 2 weeks after UVD surgery using Western blotting (Zheng et al. 2001a). However, some believe that NO is not necessary for the formation of LTP (Murphy and Bliss, 1999), therefore changes observed in NO production may have occurred as a result of changes in the normal synaptic transmission of the hippocampus (Zheng et al. 2001a). NO production is also linked to glutamatergic transmission as NMDAR activation causes increased intracellular Ca\(^{2+}\) levels, resulting in activation of nNOS and NO synthesis (Bredt and Snyder 1989, Zhang and Snyder 1995). This suggests there may be changes in glutamatergic transmission as well as NO activity following UVD.

NMDAR subunits NR1 and NR2A and the AMPA receptor subunit GluR2 were measured in sub-regions of the rat hippocampus post-UVD (Liu et al. 2003b). NR1 and NR2A were significantly decreased in the ipsilateral CA2/3 region 2 weeks after surgery; NR2A was also reduced in the contralateral CA2/3 region at 2 weeks when compared to shams, but to a lesser extent. There was also an increase in the NR2A subunit in the ipsilateral CA1 at 10 hours following UVD (Liu et al. 2003b).

Neurochemical changes have also been detected in brain areas that may be part of the connection between the VNC and hippocampus (Liu et al. 2004a). At 2 weeks post-UVD, nNOS expression in both the EC and PC was decreased on the contralateral side, while endothelial NOS (eNOS) expression was increased contralaterally in both. Furthermore, nNOS, eNOS, arginase I and arginase II expression were increased on the ipsilateral side in the EC. Arginase II increased bilaterally in the PC and arginase I increased on the contralateral and ipsilateral sides (respectively) in the PC. The protein levels were also measured at 10 and 50 hours, but no changes were found (Liu et al. 2004a). The two week post-UVD results support the ‘head-direction pathway’ as a possible connection between the VNC and hippocampus.
A confounding factor that could account for the neurochemical changes observed following UVD is stress. However, there were no changes in glucocorticoid receptor expression in the CA1, CA2/3 and DG regions of the rat hippocampus at 10 or 58 hours or 2 weeks post-UVD, except for a significant decrease in the ipsilateral CA1 2 weeks post-op. There were also no significant differences in serum corticosterone levels between UVD and sham animals at any of the time points (Lindsay et al. 2005). This result was complicated by the finding that salivary cortisol levels were significantly increased in guinea pigs following UVD surgery (Gliddon et al. 2003a). However, as blood cortisol can be inactivated during stress by binding to plasma proteins, salivary cortisol is considered a more accurate indicator of stress (Aardal and Holm 1995, Gliddon et al. 2003b). This result suggests that the neurochemical changes seen following UVD are unlikely to be due to increased stress in the animals that had undergone unilateral vestibular lesions.

1.5.1.2 Electrophysiological

Considering the neurochemical changes discussed above it was not surprising that there are corresponding alterations in hippocampal electrophysiology. Zheng et al. (2003) were the first to show that peripheral vestibular damage can produce long-term changes in hippocampal electrophysiological activity in vitro. In this study, the Schaffer collateral commissural pathway was electrically stimulated in hippocampal slices taken from UVD rats 5-6 months post-surgery and the field response was measured from the CA1. There was a reduction in population spike amplitude and field excitatory post synaptic potential (fEPSP) slope, and there was an increase in paired-pulse inhibition. Furthermore, the bilateral decrease in electrical excitability in the CA1 neurons was significantly larger at 5-6 months than at 4-6 weeks (Zheng et al. 2003). The changes in NMDAR subunit levels observed in the hippocampus previously (Liu et al. 2003b), indicate that changes in glutamatergic transmission may be responsible for this loss of neuronal electrical excitability. However, this was a much earlier time point and as no one has studied the changes in \(\gamma \)-aminobutyric acid (GABA) pathways following UVD, therefore it is impossible to know what plasticity underlies this loss in excitation.
1.5.2 Bilateral vestibular deafferentation

Bilateral vestibular lesions disrupt the resting discharge of the central vestibular system. This resting activity is regenerated in both vestibular nuclei, approximately a week after the lesion (Ris and Godaux 1998). However, there is still a permanent loss of vestibular information, which means these neurons never respond normally to head movements (Ris and Godaux 1998, Ris et al. 1997). This loss of vestibular information results in a number of anatomical, neurochemical and electrophysiological changes in the hippocampus.

1.5.2.1 Neurochemical

The decrease in hippocampal volume following bilateral vestibular damage (Brandt et al. 2005), and the behavioural changes shown in the human and animal studies mentioned previously, suggests that the hippocampus is undergoing neurochemical changes either as a result of the damage, or in order to compensate for the lesion.

Adaptations in neuronal plasticity and synaptic transmission could explain the anatomical changes observed in the hippocampus. The relative amounts of four proteins important for synaptic plasticity were measured in the hippocampus of BVD and sham rats using Western blotting. Synaptophysin is involved in neurotransmitter vesicle release (Fuentes-Santamaría et al. 2007) and SNAP-25 has a role in vesicle exocytosis (Delgado-Martinez et al. 2007). The synaptic protein drebrin is important for axonal and dendritic plasticity (Kobayashi et al. 2007) and neurofilament-L (NF-L) is a marker for cell death and axonal loss (Barry et al. 2007, Petzold et al. 2007). At 6 months post-surgery there was a significant increase in SNAP-25 in the DG compared to sham controls. Drebrin A was reduced in the EC and FC at the same time-point and drebrin E was significantly decreased in the EC. The protein NF-L was reduced in the FC of BVD rats when compared to shams. There were no changes in any of these proteins in the CA1 or CA2/3 regions at 6 months (Goddard et al. 2008c). The increased SNAP-25 in the DG is particularly interesting as it suggests a change in synaptic vesicle docking and fusion following neurotransmitter secretion in the hippocampus post-BVD (Goddard et al. 2008c). Furthermore, plasticity in the EC and FC and cell death and axonal loss in the FC may be reduced in BVD animals.
As discussed earlier, human patients with peripheral vestibular damage have a high incidence of anxiety disorders and depression (Furman and Jacob 2001, Godemann et al. 2004, Jacob and Furman 2001, Nagaratnam et al. 2004, Yardley et al. 1998). Depression is associated with changes in biogenic amine levels, such as serotonin, noradrenaline and dopamine, although this link is controversial (Castrén 2005, Maas 1975, Schildkraut and Kety 1967). Nevertheless, pharmacological interventions for patients suffering from these mood disorders, often alter the neurotransmitters noradrenaline, serotonin, and dopamine in the brain (Staab et al. 2002).

In BVD animals 6 months following surgery, tyrosine hydroxylase, the enzyme that metabolises noradrenaline, was significantly decreased in the FC compared to sham controls, and the protein that removes serotonin from the synaptic cleft, the serotonin transporter, was reduced in the FC and in the CA1 region. Tryptophan hydroxylase is the enzyme that metabolises serotonin; it was decreased in the EC and was significantly increased in the FC, CA2/3 and DG (Goddard et al. 2008b). Conversely, the decrease in the serotonin transporter and tryptophan hydroxylase would suggest an increase in serotonin in synaptic clefts. This result, along with the unchanged glucocorticoid levels observed in studies mentioned earlier, would suggest that the mood disorders and increased stress levels observed following vestibular damage are limited to humans.

Besnard et al. (2011, in press) induced bilateral vestibular lesions in rats using consecutive unilateral transtympanic injections of sodium arsanilate 3 weeks apart. This method is clinically relevant as Meniere’s disease patients sometimes have one labyrinth lesioned because their symptoms are worse on that side and then have the contralateral labyrinth lesioned at a later time when symptoms become unbearable again (Strupp and Brandt 2009). This is known as Bechterew’s phenomenon, which is the process of reversing post-unilateral labyrinthectomy spontaneous nystagmus by performing a labyrinthectomy on the contralateral side (Katsarkas and Galiana 1983). Autoradiography was used to measure changes in NMDARs 2 months after the initial injection, and showed an increase in hippocampal NMDAR density and a reduction in receptor affinity (Besnard et al. 2011, in press). It is possible that the receptors’ affinity decreased to compensate for the increase in receptor expression.
1.5.2.2 Electrophysiological

In contrast to the Zheng et al. (2003) study which found that UVD surgery resulted in a bilateral reduction in electrical excitability at 5-6 months in the CA1 region, BVD surgery did not produce any detectable changes in LTP or basal synaptic transmission at 43 days or 7 months post-surgery in the CA1 or DG regions in vivo (Zheng et al. 2010). BVD surgery had no significant effect on either the induction or maintenance of LTP or baseline field potentials when compared to shams. There may be subtle changes occurring in LTP following BVD that are not detectable by field potential analysis (Zheng et al. 2010). Furthermore, any electrophysiological changes may have occurred in other areas of the hippocampus. However, it was suggested by the authors that the deficits in spatial memory observed following BVD may not be because of changes in LTP, but may be because of alterations in the encoding and consolidation of spatial memory. This process occurs via interactions between the hippocampus and other areas such as the limbic system and neocortex (Zheng et al. 2010).

1.5.2.2.1 Place cells

An animal’s location in space is encoded by hippocampal place cells (O'Keefe and Dostrovsky 1971, O'Keefe and Nadel 1978). Each place cell fires when a subject is in a particular location in the environment or its “place field” (Muller et al. 1987). In order to navigate correctly, allothetic and egocentric cues are integrated so that place cells fire correctly and an accurate representation of space is formed (Etienne et al. 1996, McNaughton et al. 1996, Whishaw 1998). The vestibular system is a significant source of self-movement information and therefore is a vital egocentric cue (Berthoz et al. 1995, Matthews et al. 1989). This was confirmed by the finding that hippocampal place cells respond to vestibular information (Sharp et al. 1995).

Stackman et al. (2002a) showed that reversible inactivation of the vestibular system in rats disrupts location-specific firing of hippocampal place cells. Tetrodotoxin was injected bilaterally through the tympanic membrane of rats, creating a reversible vestibular lesion. The firing patterns of place cells in the CA1 region of the hippocampus were severely disrupted following injection and the hippocampal place fields also became unstable and their specificity was reduced. The place cells’ spatial firing recovered, as the tetrodotoxin wore off and vestibular function returned to normal. These data support the hypothesis that the
vestibular system supplies self-movement information to the hippocampus and has an important role in hippocampal spatial representations. It could also explain why humans with vestibular dysfunction suffer from navigational and spatial memory deficits (Stackman et al. 2002a).

Russell et al. (2003b) showed that permanent vestibular inactivation also causes a loss of location-specific firing in hippocampal place cells. The hippocampal CA1 neurons of rats that had undergone either BVD or sham surgery were recorded extracellularly for 60 days after surgery. Complex spiking cells were also recorded and the neurons’ place fields were examined. Location-specific firing was completely abolished in animals that had undergone bilateral labyrinthectomy, with the firing fields of the complex spiking neurons showing decreased spatial coherence. This study reinforces the finding that these lesions disrupt internal vestibular sensory inputs to the hippocampus, which interferes with the integration of self-movement signals with other egocentric cues in the formation of a coherent representation of space (Russell et al. 2003b).

1.5.2.2 Theta rhythm

During voluntary movement there is an electroencephalography (EEG) signal produced that oscillates at around 8 Hz. This signal is known as theta rhythm (Bland 1986, Bland and Colom 1993, Buzsáki 2002) and it is thought to have an important role in encoding spatial memory (Huxter et al. 2003, O’Keefe and Recce 1993). There is a correlation between theta frequency and movement velocity (Leung 1984), which suggests that theta rhythm has a role in the construction of correct representations of the spatial environment using egocentric and allocentric cues (McNaughton et al. 1996, Whishaw 1998).

Stimulation of the vestibular system has been shown to induce theta rhythm activity (Arnolds et al. 1984, Hicks et al. 2004) and increase the power of the theta frequency in the hippocampus in both light and dark conditions (Gavrilov et al. 1995). Correspondingly, theta rhythm in BVD animals has reduced power and frequency compared to sham animals (Russell et al. 2006). At least 60 days after surgery, hippocampal CA1 neurons of freely moving BVD animals fired with the same periodicity of around 8 Hz as sham animals, and the cell firing rate and movement velocity were positively correlated in both BVD and sham animals. Theta rhythm is known to be closely related to movement and the behavioural state of the animal.
(Bland 1986). Research has shown that theta power and frequency generally increases with increasing movement (Terrazas et al. 2005). BVD animals are hyperkinetic (Goddard et al. 2008a), which is a possible confounder in theta studies. Therefore, the changes observed in theta in BVD animals could be due to the animals’ hyperactive state. However, the lesioned animal’s theta readings were less rhythmic even after the animals’ velocity was controlled for by matching the lesioned animals to controls using speed of movement. These results indicate that while vestibular signals may have a role in theta rhythm, hippocampal neurons’ velocity-related firing does not require intact vestibular input (Russell et al. 2006).

Russell et al. (2006) theorised that the coordination of neuronal firing in the hippocampus was disrupted by the vestibular lesion, so that while the neurons’ intrinsic oscillations are maintained, synchronisation of the population of neurons is reduced, which affects EEG readings. This is interesting as there is a relationship between the pattern of place cell firing and theta frequency (O’Keefe and Recce 1993, Skaggs et al. 1996). This indicates that the vestibular lesion induced change in theta may be responsible for the loss of coherent place cell firing.

In contrast, Stackman et al. (2002a) reported no change in hippocampal theta after vestibular inactivation via transtympanic injections of the ototoxin sodium arsanilate. However, this method can produce an incomplete lesion due to poor penetration of the oval window (Jensen 1983), so that vestibular function is not completely eliminated (Saxon et al. 2001). By contrast, surgical lesions produce complete vestibular lesions (Campos-Torres et al. 2005). Stackman et al. (2002a) also used only one animal when assessing changes in hippocampal theta activity.

A recent study found that stimulation of the vestibular system during spatial navigation activated theta rhythm in the hippocampus. Rats were rotated around the vertical axis in light and dark conditions while EEG readings were taken from the CA1 region. Hippocampal theta rhythm was induced during rotation even though the rat was kept otherwise immobile. Passive rotation stimulates the vestibular system, and this has been shown to alter place fields thereby modifying the function of the hippocampus (Wiener et al. 1995). Rotation-induced theta rhythm was reduced in rats after bilateral chemical vestibular lesions (Tai et al. 2011, in press).
Medial septal cells act like ‘pacemaker’ cells for hippocampal theta rhythm (Petsche and Stumpf 1960, Petsche et al. 1962). Theta was attenuated in rats that had the cholinergic neurons in the medial septum lesioned and theta was also abolished by the muscarinic receptor antagonist atropine (Tai et al. 2011, in press). This result correlated with the finding that acetylcholine (ACh) is released from the hippocampus after electrical stimulation of the round window. This release of ACh was inhibited when the NMDAR antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) was injected into the ipsilateral vestibular nucleus, blocking second-order vestibular neurons (Horii et al. 1995). This result suggests that the cholinergic activity in the septohippocampal pathway may be important for vestibular induced changes in hippocampal spatial processing and that glutamate activity has a role in this process.

1.6 Conclusion

Vestibular damage-induced changes in hippocampal physiology may lead to long-term alterations in how the hippocampus processes information. Humans with vestibular inner ear damage experience cognitive problems that are thought to be related to a decrease in the size of the hippocampus, a part of the brain important for learning and memory. Despite the numerous changes observed in the rat hippocampus following BVD including alterations in electrical excitability (Zheng et al. 2003), theta rhythm (Russell et al. 2006) and place cell activity (Russell et al. 2003b, Stackman et al. 2002a), there are few neurochemical studies on the hippocampus in animal models that have undergone BVD surgery. The few studies that are available show subtle neurochemical changes across a number of brain regions (Goddard et al. 2008b, Goddard et al. 2008c).
1.7 Aims

The aim of this research project was to study the changes in glutamatergic receptors and signalling molecules involved in synaptic transmission in the hippocampus and other areas of the medial temporal lobe in an animal model after bilateral vestibular damage in order to help understand the subsequent alterations in hippocampal neurobiology and thus cognitive function.

The aim of this research is therefore to examine:

- Changes in NMDA and AMPA receptor subunits levels in the various subregions of the hippocampus, the entorhinal cortex, perirhinal cortex and frontal cortex, using western blotting, following bilateral vestibular lesions at various time points.
- Changes in CaMK-II and phosphorylated CaMKII protein levels in the various subregions of the hippocampus, using western blotting, following bilateral vestibular lesions at various time points.
Chapter two

Methods
2.2 Animals

Fifty six 9-12 week old male Wistar rats were randomly allocated to 24 hour (n=14), 72 hour (n=14), 1 week (n=14) or 1 month (n=14) time points. Subsequently the rats were randomly allocated to BVD (n = 7) or sham surgery (n = 7) conditions within each time point. Animals were maintained on a 12:12 h light:dark cycle at 22 °C and housed in individual cages.

2.3 Surgery

Bilateral vestibular deafferentiation surgery was performed on seven rats; the animals were anesthetized using 300 mg/kg fentanyl citrate (i.p.) and 300 mg/kg medetomidine hydrochloride (i.p.). The surgery was performed under microscopic control as detailed previously (Zheng et al. 2006). To summarise, a retro-auricular approach was used to expose the tympanic bulla and the tympanic membrane; once exposed the malleus and incus were removed. Next the stapedial artery was cauterized; and the horizontal and anterior semicircular canal ampullae were drilled open and their contents, including the saccule and utricle, were aspirated. Finally, the temporal bone was sealed using dental cement. After the surgical margins had been sutured, the postoperative analgesia carprofen (5 mg/kg, s.c.) was administered.

The remaining seven rats underwent sham surgery using the same anaesthesia. This involved exposing the temporal bone and removing the tympanic membrane without producing a vestibular lesion. Previous studies have confirmed, using temporal bone histology, that this BVD procedure produces a complete and permanent bilateral lesion of the vestibular labyrinth (Zheng et al. 2006).

It was felt that another control surgery using a sham group with no removal of the tympanic membrane was not needed, as a previous study has shown that damage to the auditory system does not alter cell function in the hippocampus (see Smith et al. 2005 for a discussion). Removal of the tympanic membrane produced partial deafness in the control group as well as in the BVD group, therefore the neurochemical effects of BVD in comparison to the sham group were thought to reflect vestibular and not auditory damage.
All procedures were carried out in accordance with the regulations of the University of Otago Committee on Ethics in the Care and Use of Laboratory Animals. Following surgery, the animals recovered for 24 hours, 72 hours, 1 week or 1 month. It has been shown that by 1 month the animals have recovered from the severe, acute symptoms of BVD and some compensation has occurred, although the VORs and VSRs never return to normal following BVD. In the earlier time points the animals would have been suffering from the initial effects of the surgery (see Smith and Curthoys, 1989 for a review). The surgery is known to result in a number of behaviours that are now considered idiosyncratic of BVD, including gait ataxia, marked hyperactivity, head-dorsiflexion, head-weaving, and circling (Russell et al. 2003a, Zheng et al. 2006).

2.4 Tissue preparation

At 24 hours, 72 hours, 1 week and 1 month post-op., the animals were decapitated without anesthesia, and the hippocampal subregions (CA1, CA2/3 and the dentate gyrus (DG)), entorhinal cortex (EC), perirhinal cortex (PRC), and frontal cortex (FC) were dissected out using the methods described previously (Liu et al. 2003b, Zheng et al. 1999b, 1999c, Zheng et al. 2000), and stored in a -80 °C freezer until use.

2.4.1 Standard tissue preparation of 24 hour, 72 hour and 1 week tissue

The 24 hour, 72 hour and 1 week tissue underwent the standard tissue preparation for western blotting. Tissue buffer (containing Complete Proteinase Inhibitor, 50-mM Tris–HCl pH 7.6) was added to the samples on ice, then the tissue was homogenised using ultrasonification (Sonifier cell disrupter B-30, Branson Sonic Power Co.) and centrifuged at 12,000 g for 10 min at 4 °C.

The protein concentration in the supernatant was measured using the Bradford method. The supernatant and a Bio-Rad protein assay dye reagent concentrate were combined in a 96-well plate and analyzed using a spectramax microplate reader (Zheng et al. 2001a).
The protein concentrations in the samples were equalized, then the tissue homogenates were mixed with gel loading buffer (50 mM Tris-HCl, 10% SDS, 10% glycerol, 10% 2-mercaptoethanol, 2 mg/ml bromophenol blue) in a ratio of 1:1 and then boiled for 5 min.

2.4.2 Membrane preparation of 1 month tissue

The membranes were prepared according to the method described by Williams et al. (2003). The 1 month BVD and sham tissue was homogenised in 1.5 mL of 0.32 M sucrose using 10 strokes of a 1 mL hand-held glass teflon homogeniser on ice. The resulting homogenate was centrifuged for 10 min at 1000 x g (2820 RPM; using a JA-18.1 rotor). The resulting supernatant was collected and centrifuged at 20,000 x g (12630 RPM) for 20 min at 4°C, and then the pellets were resuspended in ice-cold dH2O, and centrifuged again for 20 min at 8,000 x g (7990 RPM). The supernatant fraction and buffy coat were collected and centrifuged for 10 min at 48,000 x g (19920 RPM; changing to a JA-20 rotor) at 4°C; afterwards the pellets were resuspended in tris-HCl buffer (50 mM, pH 7.4), and centrifuged under the same conditions. The pellet was then frozen in dry ice for 2 minutes; this last step was repeated. Finally, the resulting membrane receptor preparations were stored at -80°C until the protein concentrations were estimated using a Bradford assay.

The protein concentrations in the samples were equalized to 2 or 1 mg/ml. Tissue homogenates were then mixed with gel loading buffer (50 mM Tris-HCl, 10% SDS, 10% glycerol, 10% 2-mercaptoethanol, 2 mg/ml bromophenol blue) in a ratio of 1:1 and then boiled for 5 min.

2.5 Western blotting

Ten μl of each sample was loaded in each well on a 7.5% SDS-polyacrylamide mini-gel and pre-stained protein markers (10–250 kDa; Bio-Rad, Precision Plus: Dual colour) were used as molecular weight markers on each gel. The samples were electrophoresed with a 90 V variable current (Bio-Rad, PowerPack 3000) until protein flattened at the stacking/resolving interface, and 180 V thereafter. The proteins were transferred to polyvinylidene-difluoride (PVDF) membranes using a transblotting apparatus (2.5 L; Bio-Rad). The transfer was performed overnight in transfer buffer (25% methanol, 1.5% glycine and 0.3% Tris-base) at 10 V variable current overnight (Bio-Rad PowerPack 3000).
Non-specific IgG binding was blocked by incubation with 5% dried milk protein (Pams) and 0.1% bovine serum albumin (BSA) (Sigma) for 6-7 h at 4°C. The membranes were then incubated with affinity-purified polyclonal goat antibodies raised against GluR1, GluR2, GluR3 and GluR 4, and affinity-purified polyclonal rabbit antibodies raised against NMDA ζ1 (NR1), NMDA ε1 (NR2A), and NMDA ε2 (NR2B) overnight at 4°C; antibody details are in table 2.1. The secondary antibodies were anti-goat IgG linked to horseradish peroxidase and anti-rabbit IgG linked to horseradish peroxidise; details in table 2.1. Antibody concentrations were selected based on previous laboratory work (Liu et al. 2003b, Liu et al. 2004b). Detection was performed using the enhanced chemiluminescence (ECL) system (Amersham Biosciences, NZ). Hyperfilms (Amersham Biosciences, NZ) were analyzed by densitometry to determine the quantity of protein expressed in each group using a calibrated imaging densitometer (Bio-Rad) and a PowerPC Mac running OS 9.2 and Quantity One software.

<table>
<thead>
<tr>
<th>Primary Antibody</th>
<th>Dilution</th>
<th>Secondary Antibody</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>GluR1 (N-19), sc-7608 Santa Cruz</td>
<td>1:1000</td>
<td>donkey-anti-goat IgG-HRP, sc-2020 Sigma</td>
<td>1:5000</td>
</tr>
<tr>
<td>GluR2 (N-19), sc-7611 Santa Cruz</td>
<td>1:1000</td>
<td>donkey-anti-goat IgG-HRP, sc-2020 Sigma</td>
<td>1:5000</td>
</tr>
<tr>
<td>GluR3 (N-19), sc-7613 Santa Cruz</td>
<td>1:1000</td>
<td>donkey-anti-goat IgG-HRP, sc-2020 Sigma</td>
<td>1:5000</td>
</tr>
<tr>
<td>GluR4 (H-20), sc-31394 Santa Cruz</td>
<td>1:1000</td>
<td>donkey-anti-goat IgG-HRP, sc-2020 Sigma</td>
<td>1:5000</td>
</tr>
<tr>
<td>NR1 (H-54), sc-9058 Santa Cruz</td>
<td>1:1000</td>
<td>goat-anti-rabbit IgG-HRP, sc-2004 Sigma</td>
<td>1:1000</td>
</tr>
<tr>
<td>NR2A (H-50), sc-9056 Santa Cruz</td>
<td>1:1000</td>
<td>goat-anti-rabbit IgG-HRP, sc-2004 Sigma</td>
<td>1:1000</td>
</tr>
<tr>
<td>NR2B (H-300), sc-9057 Santa Cruz</td>
<td>1:1000</td>
<td>goat-anti-rabbit IgG-HRP, sc-2004 Sigma</td>
<td>1:1000</td>
</tr>
<tr>
<td>CaMKII (H-300), sc-13082 Santa Cruz</td>
<td>1:1000</td>
<td>goat-anti-rabbit IgG-HRP, sc-2004 Sigma</td>
<td>1:1000</td>
</tr>
<tr>
<td>p-CaMKII (Thr 286), sc-32289 Santa Cruz</td>
<td>1:1000</td>
<td>goat-anti-rabbit IgG-HRP, sc-2004 Sigma</td>
<td>1:1000</td>
</tr>
<tr>
<td>β-actin (I-19), sc-1616 Santa Cruz</td>
<td>1:5000</td>
<td>donkey-anti-goat IgG-HRP, sc-2020 Sigma</td>
<td>1:5000</td>
</tr>
</tbody>
</table>

Table 2.1: Table containing the dilutions and companies of origin of the primary and secondary antibodies used for Western blotting.
Results were expressed as volume of the band, i.e., optical density × area of the band. An antibody against β-actin (details in table 2.1), was used as a loading control to ensure that the same amount of protein was loaded in each lane, and the density of each target band was then expressed as a percentage of its corresponding loading control. It is possible that β-actin itself might change as a result of BVD; however it was decided that a loading control was necessary. Exploratory regression analyses already performed by our lab suggested that any changes in β-actin expression were unlikely to account for changes in the target protein expression (R²=0.087) (Zheng et al. 2001b).

2.6 Statistics

The data were normalized to β-actin and then a 2-way analysis of variance (ANOVA), using surgery and time as factors, was used in Minitab 15 to analyze the data for each individual protein. In order to further investigate the data, and determine whether combinations of variables were changing rather than individual variables, we performed a series of multivariate statistical analyses. All of the data were standardised and expressed as z scores and then a stepwise linear discriminant analysis (LDA) was performed in SPSS 19, with Wilks’ λ as the test statistic. Cross validation of the linear discriminant function was also carried out (Manly 2005). Finally, cluster analyses, using Ward’s linkage and the correlation coefficient, were used to generate dendrograms so that relationships between the different variables could be inspected. The significance level was set at 0.005 for all comparisons.
Chapter three

Results
3.1 Protein and subunit expression in the hippocampus at 24 hours, 72 hours and 1 week post-BVD

Twenty four hours, seventy two hours and one week following surgery there was no significant difference in CaMKII, pCaMKII, GluR1, GluR2, GluR3, GluR4, NR1, NR2A or NR2B levels in the CA1, CA2/3 or DG sub-regions of the hippocampus of BVD rats compared to sham controls following a one-way ANOVA.

3.1.1 CaMKII expression levels in the hippocampus following BVD surgery

![Graph and Immunoblot](image)

Figure 3.1: A) Mean optical density for CaMKII expression at 24 hours normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of CaMKII expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 24 hours respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of CaMKII is on the left on the immunoblot.
Figure 3.2: A) Mean optical density for CaMKII expression at 72 hours normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of CaMKII expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 72 hours respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of CaMKII is on the left on the immunoblot.

Figure 3.3: A) Mean optical density for CaMKII expression at 1 week normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of CaMKII expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 1 week respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of CaMKII is on the left on the immunoblot.
3.1.2 pCaMKII expression levels in the hippocampus following BVD surgery

Figure 3.4: A) Mean optical density for pCaMKII expression at 24 hours normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of pCaMKII expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 24 hours respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of pCaMKII is on the left on the immunoblot.

Figure 3.5: A) Mean optical density for pCaMKII expression at 72 hours normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of pCaMKII expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 72 hours respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of pCaMKII is on the left on the immunoblot.
3.1.3 GluR1 expression levels in the hippocampus following BVD surgery

Figure 3.6: A) Mean optical density for pCaMKII expression at 1 week normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of pCaMKII expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 1 week respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of pCaMKII is on the left on the immunoblot.

Figure 3.7: A) Mean optical density for GluR1 expression at 24 hours normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of GluR1 expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 24 hours respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of GluR1 is on the left on the immunoblot.
Figure 3.8: A) Mean optical density for GluR1 expression at 72 hours normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of GluR1 expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 72 hours respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of GluR1 is on the left on the immunoblot.

Figure 3.9: A) Mean optical density for GluR1 expression at 1 week normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of GluR1 expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 1 week respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of GluR1 is on the left on the immunoblot.
3.1.4 GluR2 expression levels in the hippocampus following BVD surgery

Figure 3.10: A) Mean optical density for GluR2 expression at 24 hours normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of GluR2 expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 24 hours respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of GluR2 is on the left on the immunoblot.

Figure 3.11: A) Mean optical density for GluR2 expression at 72 hours normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of GluR2 expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 72 hours respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of GluR2 is on the left on the immunoblot.
3.1.5 GluR3 expression levels in the hippocampus following BVD surgery

Figure 3.13: A) Mean optical density for GluR3 expression at 24 hours normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of GluR3 expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 24 hours respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of GluR3 is on the left on the immunoblot.
Figure 3.14: A) Mean optical density for GluR3 expression at 72 hours normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of GluR3 expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 72 hours respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of GluR3 is on the left on the immunoblot.

Figure 3.15: A) Mean optical density for GluR3 expression at 1 week normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of GluR3 expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 1 week respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of GluR3 is on the left on the immunoblot.
3.1.6 GluR4 expression levels in the hippocampus following BVD surgery

Figure 3.16: A) Mean optical density for GluR4 expression at 24 hours normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of GluR4 expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 24 hours respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of GluR4 is on the left on the immunoblot.

Figure 3.17: A) Mean optical density for GluR4 expression at 72 hours normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of GluR4 expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 72 hours respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of GluR4 is on the left on the immunoblot.
3.1.7 NR1 expression levels in the hippocampus following BVD surgery

Figure 3.18: A) Mean optical density for GluR4 expression at 1 week normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of GluR4 expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 1 week respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of GluR4 is on the left on the immunoblot.

Figure 3.19: A) Mean optical density for NR1 expression at 24 hours normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of NR1 expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 24 hours respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of NR1 is on the left on the immunoblot.
Figure 3.20: A) Mean optical density for NR1 expression at 72 hours normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of NR1 expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 72 hours respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of NR1 is on the left on the immunoblot.

Figure 3.21: A) Mean optical density for NR1 expression at 1 week normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of NR1 expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 1 week respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of NR1 is on the left on the immunoblot.
3.1.8 NR2A expression levels in the hippocampus following BVD surgery

Figure 3.22: A) Mean optical density for NR2A expression at 24 hours normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of NR2A expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 24 hours respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of NR2A is on the left on the immunoblot.

Figure 3.23: A) Mean optical density for NR2A expression at 72 hours normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of NR2A expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 72 hours respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of NR2A is on the left on the immunoblot.
3.1.9 NR2B expression levels in the hippocampus following BVD surgery

Figure 3.24: A) Mean optical density for NR2A expression at 1 week normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of NR2A expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 1 week respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of NR2A is on the left on the immunoblot.

Figure 3.25: A) Mean optical density for NR2B expression at 24 hours normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of NR2B expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 24 hours respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of NR2B is on the left on the immunoblot.
Figure 3.26: A) Mean optical density for NR2B expression at 72 hours normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of NR2B expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 72 hours respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of NR2B is on the left on the immunoblot.

Figure 3.27: A) Mean optical density for NR2B expression at 1 week normalized to β-actin in the CA1, CA2/3 and DG of the hippocampus post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of NR2B expression in the CA1 (top), CA2/3 (middle) and DG (bottom) of the hippocampus at 1 week respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of NR2B is on the left on the immunoblot.
3.2 Protein and subunit expression in the medial temporal lobe at 1 month post-BVD

One month following surgery there was no significant difference in GluR1, GluR2, GluR3, GluR4, NR1, NR2A or NR2B levels in the CA1, CA2/3 or DG, or the FC, EC or PC of BVD rats compared to sham controls following one-way ANOVA.

3.2.1 GluR1 expression levels in the medial temporal lobe following BVD surgery

![Graph showing GluR1 expression levels in the medial temporal lobe post-BVD surgery](image)

Figure 3.28: A) Mean optical density for GluR1 expression at 1 month normalized to β-actin in the CA1, CA2/3, DG, FC, EC and PC post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of GluR1 expression in the CA1 (top left), CA2/3 (middle left), DG (bottom left), FC (top right), EC (middle right) and PC (bottom right) of the hippocampus at 1 week respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of GluR1 is on the left on the immunoblot.
3.2.2 GluR2 expression levels in the medial temporal lobe following BVD surgery

Figure 3.29: A) Mean optical density for GluR2 expression at 1 month normalized to β-actin in the CA1, CA2/3, DG, FC, EC and PC post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of GluR2 expression in the CA1 (top left), CA2/3 (middle left), DG (bottom left), FC (top right), EC (middle right) and PC (bottom right) of the hippocampus at 1 week respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of GluR1 is on the left on the immunoblot.
3.2.3 GluR3 expression levels in the medial temporal lobe following BVD surgery

Figure 3.30: A) Mean optical density for GluR3 expression at 1 month normalized to β-actin in the CA1, CA2/3, DG, FC, EC and PC post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of GluR3 expression in the CA1 (top left), CA2/3 (middle left), DG (bottom left), FC (top right), EC (middle right) and PC (bottom right) of the hippocampus at 1 week respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of GluR3 is on the left on the immunoblot.
3.2.4 GluR4 expression levels in the medial temporal lobe following BVD surgery

Figure 3.31: A) Mean optical density for GluR4 expression at 1 month normalized to β-actin in the CA1, CA2/3, DG, FC, EC and PC post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of GluR4 expression in the CA1 (top left), CA2/3 (middle left), DG (bottom left), FC (top right), EC (middle right) and PC (bottom right) of the hippocampus at 1 week respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of GluR4 is on the left on the immunoblot.
3.2.5 NR1 expression levels in the medial temporal lobe following BVD surgery

Figure 3.32: A) Mean optical density for NR1 expression at 1 month normalized to β-actin in the CA1, CA2/3, DG, FC, EC and PC post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of NR1 expression in the CA1 (top left), CA2/3 (middle left), DG (bottom left), FC (top right), EC (middle right) and PC (bottom right) of the hippocampus at 1 week respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of NR1 is on the left on the immunoblot.
3.2.6 NR2A expression levels in the medial temporal lobe following BVD surgery

Figure 3.33: A) Mean optical density for NR2A expression at 1 month normalized to β-actin in the CA1, CA2/3, DG, FC, EC and PC post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of NR2A expression in the CA1 (top left), CA2/3 (middle left), DG (bottom left), FC (top right), EC (middle right) and PC (bottom right) of the hippocampus at 1 week respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of NR2A is on the left on the immunoblot.
3.2.7 NR2B expression levels in the medial temporal lobe following BVD surgery

Figure 3.34: A) Mean optical density for NR2B expression at 1 month normalized to β-actin in the CA1, CA2/3, DG, FC, EC and PC post-bilateral vestibular deafferentation (BVD) compared with sham surgery controls. Filled columns represent BVD animals, unfilled represents sham animals. Columns represent means, bars 1 S.E.M of the mean. B) Immunoblot of NR2B expression in the CA1 (top left), CA2/3 (middle left), DG (bottom left), FC (top right), EC (middle right) and PC (bottom right) of the hippocampus at 1 week respectively. B represents a BVD animal S represents a sham animal. The molecular weight in KDa of NR2B is on the left on the immunoblot.
3.3 Linear Discriminant Analysis

In order to undertake multivariate analyses, to determine whether the relationship between different variables changed as a result of the BVD, the data were first converted to z scores by subtracting each optical density value in each group that had been normalised to β-actin, from its mean and dividing by the standard deviation of the group.

Figure 3.35: This scatterplot matrix is showing the correlation of the mean normalized densities of the neurochemical variables at 24 hours, 72 hours, 1 week and 1 month in the medial temporal lobe.
A stepwise LDA was performed to determine whether BVD animals could be separated from sham animals using a linear discriminant function using a subset of the variables. An LDA was identified that used only 8 variables: CaMKII at 24 hours in the DG, GluR2 at 1 week in the CA1, GluR4 at 1 month in the EC, NR1 at 1 week in the CA1, NR1 at 1 week in the DG, NR1 at 1 month in the DG, NR1 at 1 month in the FC and NR2B at 1 month in the FC. Table 1 shows the standardised canonical discriminant function coefficients for this LDA. The LDA was significant ($P = 0.000$), according to Wilks’ λ. The cross-validation, in which SPSS19 used the linear discriminant function to classify the animals blind to their surgical treatment group, indicated that the LDA discriminated between the BVD and sham control animals with 100% accuracy.

<table>
<thead>
<tr>
<th>Standardized Canonical Discriminant Function Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function 1</td>
</tr>
<tr>
<td>Zscore (CaMKII 24 hours DG)</td>
</tr>
<tr>
<td>Zscore (GluR2 1 week CA1)</td>
</tr>
<tr>
<td>Zscore (GluR4 1 month EC)</td>
</tr>
<tr>
<td>Zscore (NR1 1 week CA1)</td>
</tr>
<tr>
<td>Zscore (NR1 1 week DG)</td>
</tr>
<tr>
<td>Zscore (NR1 1 month DG)</td>
</tr>
<tr>
<td>Zscore (NR1 1 month FC)</td>
</tr>
<tr>
<td>Zscore (NR2B 1 month FC)</td>
</tr>
</tbody>
</table>

Table 3.1: The standardised canonical discriminant function coefficients for the linear discriminant functions for the Western blotting data.
3.4 Cluster Analysis

Since the LDA indicated that 8 variables could significantly discriminate between the BVD and sham animals with 100% accuracy, a Ward linkage cluster analysis was carried out on these variables for the BVD and sham groups. The results were consistent with the LDA in that the 8 variables clustered quite differently for the BVD and the sham animals. Cluster analysis of the BVD animals’ data suggested that GluR2 at 1 week in the CA1 and NR1 at 1 month in the FC tended to vary together, whereas CaMKII at 24 hours in the DG, GluR4 at 1 month in the EC, NR1 at 1 month in the DG, NR1 at 1 week in the CA1, NR2B at 1 month in the FC and NR1 at 1 week in the DG tended to co-vary (fig. 3.36). The smallest cluster consisted of: CaMKII at 24 hours in the DG and GluR4 at 1 month in the EC; NR2B at 1 month in the FC and NR1 at 1 week in the DG; and GluR2 at 1 week in the CA1 and NR1 at 1 month in the FC (fig. 3.36).

![Dendrogram](image)

Figure 3.36: Dendrogram showing the expression of the 8 stepwise linear discriminate analysis (LDA) neurochemical variables in the BVD rats.
Cluster analysis of the sham animals’ data suggested that CaMKII at 24 hours in the DG, NR2B at 1 month in the FC, GluR2 at 1 week in the CA1 and NR1 at 1 month in the DG tended to vary together, whereas GluR4 at 1 month in the EC, NR1 at 1 month in the FC, NR1 at 1 week in the DG and NR1 at 1 week in the CA1 tended to co-vary (fig. 3.36). The smallest cluster consisted of: CaMKII at 24 hours in the DG and NR2B at 1 month in the FC; GluR2 at 1 week in the CA1 and NR1 at 1 month in the DG; and NR1 at 1 month in the FC and NR1 at 1 week in the DG (fig. 3.36).

![Dendrogram](image)

Figure 3.37: Dendrogram showing the expression of the 8 stepwise linear discriminate analysis (LDA) neurochemical variables in the sham control animals.
Chapter four

Discussion
The aim of this study was to determine if there were changes in NMDARs, AMPARs, CaMKII or phosphorylated CaMKII in various regions of the rat medial temporal lobe at 24 hours, 72 hours, 1 week and 4 weeks following BVD using western blotting. ANOVAs directly compared the individual subunit levels at different time points and in different brain regions following BVD and sham surgeries. When the expression of the individual variables was compared between treatment groups, there were no significant differences in the glutamate receptor subunits, CaMKII or activated CaMKII in any of the brain regions at any time point. However, LDA found eight variables from the data that could distinguish between BVD and sham rats with 100% accuracy.

4.1 Interpretation of results

There were no significant differences when individual subunit levels were compared between BVD and sham animals. However, the LDA and cluster analysis showed there was a change in the relationship between the subunits and proteins when comparing treatment groups. While overall NMDAR and AMPAR subunit levels were not significantly different, subunit composition of individual receptors may have altered following BVD surgery. Differences in NMDAR and AMPAR subunit composition in the hippocampus would confer distinct pharmacological and gating properties (Monyer et al. 1994) and could alter the intracellular signalling molecules coupled to AMPARs and NMDARs. This could have a number of anatomical and electrophysiological consequences. For example, during LTP induction there is an increase in GluR1 AMPAR homomers but in the maintenance phase these are replaced with AMPARs containing GluR2 (Plant et al. 2006). Therefore, overall AMPAR and NMDAR levels may not change in the hippocampus following BVD, but receptor composition may undergo subtle alterations resulting in deficits in spatial navigation and/or place cell activation.

It is possible that there were changes in the affinity and efficacy of the receptors, as opposed to overt changes in synaptic numbers. This could occur by altering glutamate receptor phosphorylation, associations with cytoskeletal proteins, enzymes and neuromodulators. Glutamate receptors are tightly controlled by phosphokinases (Roche et al. 1994, Soderling et al. 1994). Measuring the activity of phosphokinases such as PKA, and conventional/novel isoforms of PKCs (Sanes and Lichtman 1999) could provide information about changes in NMDAR and AMPAR affinity and efficacy. Mice lacking the regulatory phosphorylation
sites Ser 831 and Ser 845 from GluR1, show deficits in LTP, LTD and spatial learning tasks (Lee et al. 2003b). These sites are targeted by CaMKII and PKA. PKA, like CaMKII, alters AMPAR activity and (Greengard et al. 1991) modulates the generation of LTP (Blitzer et al. 1995). Subtle changes in mechanisms such as these could alter AMPAR function and therefore the receptor’s role in synaptic transmission generally, and spatial memory specifically (Lisman et al. 2002, Malinow and Malenka 2002, Soderling and Derkach 2000).

AMPAR phosphorylation and dephosphorylation are vital for receptor trafficking and synaptic changes and therefore synaptic plasticity (Daw et al. 2000, Keller et al. 1992, Mammen et al. 1997, Matsuda et al. 1999, Xia et al. 2000). It has been hypothesised that AMPARs are trafficked to extrasynaptic sites through cyclic AMP signalling alone (Oh et al. 2006); this trafficking correlates with the phosphorylation of the Ser 845 site on GluR1 by PKA (Esteban et al. 2003). Mice lacking Ser845 and Ser831 show deficits in LTP and spatial memory (Lee et al. 2003b). This indicates that the activity-dependent trafficking of AMPARs via Ser845 phosphorylation may facilitate LTP and spatial memory. Subtle changes in AMPAR and NMDAR trafficking could account for the deficits in spatial memory and hippocampal atrophy post-BVD.

The identity of the NR2 subunit affects receptor trafficking and synaptic targeting (Cull-Candy and Leszkiewicz 2004), whereas the NR1 subunit is vital for NMDAR release from the endoplasmic reticulum (Fukaya et al. 2003). Kinases such as tyrosine kinase bind to scaffolding proteins like the membrane-associated guanylate kinase PSD-95. PSD-95 contains PDZ domains which bind to the NR2 subunits in NMDARs and stabilize the receptors in the plasma membrane (Sheng and Sala 2001, Wenthold et al. 2003). Changes in NR2 subunit location and function could also be caused by changes in the subunits C-termini’s affinity for PSD-95 (Kornau et al. 1995, Niethammer et al. 1996).

Changes in receptor targeting and sensitivity may have occurred following BVD surgery. For example, Stocca and Vicini (1998) found that NMDAR-EPSCs in the visual cortex had lost sensitivity to NR2B-selective antagonists, however blockage of extra-synaptic receptors still occurred. This indicated that NR1/NR2B receptors were still present, but were no longer targeted to the synapses (Stocca and Vicini 1998). A similar change could have occurred following vestibular lesions resulting in electrophysiological adaptations but unchanged receptor numbers.

67
AMPARs are recycled between synapses and the cytosol, as a result receptors are either degraded in the cytosol or reinserted into synapses (Ehlers 2000, Passafaro et al. 2001). Following LTP induction AMPAR exocytosis is enhanced as the receptors are recycled through an endosomal pathway (Park et al. 2004). During synaptic potentiation AMPARs are stabilized on the membrane surface because the receptors are anchored to PSD proteins (Derkach et al. 2007). AMPAR internalization is mediated via PKC phosphorylation of GluR2 (Chung et al. 2003, Chung et al. 2000). Activity of these molecules can also alter the synthesis of AMPARs, and receptor abundance at synapses (Ju et al. 2004). Clearly AMPAR trafficking and localization has a large effect on synaptic activity. Following BVD changes in receptor composition and movement may occur without altering subunit levels.

4.1.1 Interpretation of Linear Discriminant Analysis data

There was a very strong correlation between eight variables: CaMKII at 24 hours in the DG, GluR2 at 1 week in the CA1, GluR4 at 1 month in the EC, NR1 at 1 week in the CA1, NR1 at 1 week in the DG, NR1 at 1 month in the DG, NR1 at 1 month in the FC and NR2B at 1 month in the FC. This combination of variables could predict whether the rat had undergone BVD or sham surgery with 100% certainty. The result indicates there is a change in the relationship between the subunits and CaMKII in BVD animals when compared to controls, as opposed to differences in the levels of individual subunits. This is logical as the different subunits make up whole receptor complexes and CaMKII and pCaMKII are part of the downstream signalling mechanisms of these receptors. CaMKII is also involved in glutamate receptor activity and trafficking (Hayashi et al. 2000, Lisman et al. 2002). Slight changes in the distribution of one subunit could have a significant effect on the function, affinity and/or efficacy of that receptor. For instance, the NR2A subunit has a role in the efficacy of calcium channels associated with NMDARs, which affects synaptic excitability (Dingledine et al. 1999).

Four of the eight variables that distinguish BVD animals from sham include NR1 at 1 week or 1 month in the CA1, DG and FC. NR1 is the only NMDAR subunit required for the formation of a functional receptor (Cull-Candy et al. 2001). NR1-knockout mice do not survive past a day because NMDARs in the midbrain have a vital role in breathing (Forrest et al. 1994). CA1-region-specific NR1 knock-out mice develop normally but show significant spatial
learning deficits in the MWT (Tsien et al. 1996). This may be because the coordination of cell firing and place fields was reduced in the CA1 pyramidal cells of CA1-NR1-knock-out mice, indicating that the spatial representations in the mice were less coherent (McHugh et al. 1996). Therefore, changes in NR1 could have a role in the altered place cell activity observed in BVD animals (Russell et al. 2003b, Stackman et al. 2002a).

Two of the eight correlating LDA variables included NR1 in the DG. Mice with NR1 selectively knocked out of granule cells of the DG showed impairment in a spatial working memory task and severely impaired LTP in the medial and lateral perforant path inputs (Niewoehner et al. 2007). This subunit in this sub-region of the hippocampus may have a role in the spatial memory deficits observed in BVD patients and animals (Brandt et al. 2005, Russell et al. 2003a, Zheng et al. 2006). The significance of NR1 in differentiating between BVD and sham animals may be that there are changes in the ligands and modulators that control NR1 efficacy and affinity. For example, serine protease tissue-type plasminogen activator (tPA) increases NMDAR-mediated Ca\(^{2+}\) influx, by cleaving NR1 within its N-terminal domain (Fernández-Monreal et al. 2004). Preventing the interaction between NR1 and tPA has already been shown to disrupt the encoding of new spatial memories (Benchenane et al. 2007). This may be a mechanism behind altered NMDAR activity post-BVD surgery.

Two variables in the model of BVD included the NMDAR subunits NR1 and NR2B in the FC at 1 month. Lesions of the prefrontal cortex resulted in deficits in spatial working memory (Granon et al. 1994). Additionally, there are electrophysiological studies showing that the prefrontal cortex is stimulated during working memory tasks (Funahashi et al. 1997, Miller et al. 1996) and lesions of the prefrontal cortex resulted in deficits in spatial working memory (Granon et al. 1994). NMDARs have a role in spatial working memory in the FC, but the neurochemical mechanisms are complicated. The NMDR antagonist MK-801 reduced working memory performance because dopamine D\(_1\) receptor activation was attenuated in the medial prefrontal cortex (mPFC) during the working memory task (Rios Valentim et al. 2009). Furthermore, CaMKII phosphorylation of NR1 was induced when a D\(_1\) receptor agonist was infused into the mPFC (Mouri et al. 2007), so clearly there is a link between dopamine receptors and NMDARs in the FC. This is a potential target for future studies.
The dorsal hippocampus and the mPFC are thought to process short-term spatial memory in parallel, acting as a compensatory mechanism for each other (Lee and Kesner 2003a). This correlates with the finding that the frontal lobes were activated when the vestibular nerve was electrically stimulated (De Waele et al. 2001) and when the vestibular system was activated using galvanic (Bense et al. 2001) and caloric stimulation (Suzuki et al. 2001). The regions of the FC that respond to vestibular stimulation and/or receive projections from the vestibular nuclei (Akbarian et al. 1993, Guldin et al. 1993) are collectively named the dorsal premotor cortex (DPMv) (Akbarian et al. 1993, Fukushima et al. 2005). Correspondingly, the majority of neurons in the DPMv respond to head movement (Fukushima et al. 2005). The DPMv also contains the smooth pursuit region of the frontal eye fields which is thought to have a role in encoding gaze (Fukushima et al. 2004, Shinder and Taube 2010). Therefore, these regions may use vestibular sensory input to improve visual target pursuit during head movements (Fukushima et al. 2006) and to update self-motion feedback enabling the accurate coordination of motor responses (Roy and Cullen 2004, Shinder and Taube 2010, Sugiuchi et al. 2005). Bilateral loss of vestibular sensory information would disrupt the neural pathways in this region and that there would be corresponding neurochemical changes as a result of this loss.

One of the predictive variables included GluR4 in the EC at 1 month. The correlation of the eight variables shows that there are strong connections between the hippocampus, EC and FC and that these links are being affected following BVD. The lateral part of the EC projects to the dorsal hippocampus and the neurons in the medial parts of the EC connect to the ventral hippocampus (Witter et al. 2000). The EC provides important input to the CA1 region and entorhinal neurons may have a role in the encoding of novel information in the CA1 region (Brun et al. 2002, McNaughton et al. 1989, Nakazawa et al. 2004). The prefrontal cortex projects to the EC via a number of pathways (Van Hoesen et al. 1975). Fig. 4.1 highlights the complex connections between the hippocampal formation and the FC. Bilateral vestibular lesion-induced changes in hippocampal function and anatomy are likely to be part of a complex cascade of neural changes occurring throughout the brain, particularly in other regions of the medial temporal lobe and the frontal cortex (Karnath and Dieterich 2006, Smith et al. 2009).

One of the variables from the LDA model included GluR2 in the CA1 region. This is unsurprising as the majority of AMPARs in the CNS are heterodimers containing GluR2
(Greger et al. 2002, Wenthold et al. 1996) and GluR2 is vital for AMPAR trafficking (Greger et al. 2002, and Cull-Candy 2000, Rothman 1994) and internalization (Chung et al. 2000). GluR2 knock-out mice show significantly altered LTP in the CA1 region (Jia et al. 1996). GluR2 mutant mice show significantly less precise and more unstable place fields, and deficits in a spatial learning task (Yan et al. 2002).

NMDAR and AMPAR expression, distribution and function are controlled by alterations in the assembly of different subunits into various receptor complexes via post-translational modifications such as phosphorylation. This was investigated in this study by measuring both CaMKII and its active form, phosphorylated CaMKII, which has an important role in modulating NMDAR and AMPAR activity (Hayashi et al. 2000, Shen and Meyer 1999). One of the variables from the LDA model included CaMKII in the DG. AMPAR activity is potentiated by CaMKII (Tan et al. 1994), and consequently changes in CaMKII activity may have altered GluR4 and GluR2 activity in BVD animals.

The majority of the variables from the eight variables in the LDA were at either 1 week or 1 month. This indicates that the change in the relationship between the variables did not occur because of the initial BVD-induced damage. It also suggests that the subtle changes in NMDAR and AMPAR caused by BVD in the hippocampus, EC and FC were not due to vestibular compensation.

4.1.2 Interpretation of cluster analysis

The NR1 subunits tended to cluster together in both the BVD and sham animals. As NR1 expression is required for the formation of functional NMDARs (Dingledine et al. 1999, Petralia et al. 1994), this result suggests that the formation of functional NMDARs was tightly regulated in both groups. NR1 and GluR2 also co-varied in both BVD and sham groups. The majority of AMPAR heterodimers in the CNS contain GluR2 (Greger et al. 2002, Wenthold et al. 1996) and its presence in a receptor changes channel activity, for example, lowering channel conductance and Ca\(^{2+}\) permeability (Boulter et al. 1990, Geiger et al. 1995, Isaac et al. 2007). Therefore, the activity of AMPARs appears to be coordinated with the formation of NMDARs in both BVD and shams. However, GluR2 at 1 week in the CA1 clustered with NR1 at 1 month in the FC in BVD animals, and clustered with NR1 at 1 month in the DG in sham animals. Perhaps the hippocampal connections to the frontal cortex result in a number of
changes to both regions following BVD. It is unclear whether this is due to the bilateral loss of vestibular input affecting both regions, or the changes to one brain region producing secondary consequences in the other.

The clustering of the remaining variables varied between the BVD and sham rats. CaMKII at 24 hours in the DG co-varied with GluR4 at 1 month in the EC in BVD animals, but clustered with NR2B at 1 month in the FC in sham animals. This result indicates that the phosphorylation of glutamate receptors is different in BVD animals, with an emphasis on AMPAR phosphorylation. The EC connects to the DG as shown in fig. 4.1, via the perforant pathway. The perforant pathway is a vital projection from the EC which connects with the hippocampal formation (Anderson et al. 1998). Therefore, any alterations in AMPAR and CaMKII expression in one of these regions would likely affect neurochemical activity in connecting regions of the cortex.

NR1 at 1 week in the DG clustered with NR2B at 1 month in the FC in BVD rats. The majority of NR2B is expressed in the forebrain (Ishii et al. 1993, Monyer et al. 1994). This result suggests that NMDAR expression in the FC is linked to NMDAR expression in the DG and therefore, in the hippocampus. The presence of NR2B in an NMDAR changes the properties of the receptor, as these receptors deactivated more slowly (Vicini et al. 1998) and show slower EPSC decay times (Flint et al. 1997). This connection is potentially important for the electrophysiological changes observed following BVD (Stackman et al. 2002a, Russell et al. 2003b, Russell et al. 2006).
Figure 4.1: The hippocampal formation and connections to the Frontal Cortex to LDA data. Simplified schematic representation of the projections between the CA1, CA3, DG, Subiculum, EC, PC and FC. Includes synapses ()and neural pathways (). Used to highlight the complicated interconnections between these various brain regions. (Andersen et al. 2007: 38, 71-72, 75-77, 92-93, 138). The eight variables from the stepwise linear discriminate analysis added to the figure. Colour coded based on time point: red is 24 hours; green is 1 week; and purple is 1 month.
4.2 Comparison to previous literature

To the authors' knowledge, there are no previous studies investigating NMDAR, AMPAR, and CaMKII levels in the hippocampus following BVD surgery. The most relevant studies are those that investigate NMDAR and AMPAR subunits in the rat hippocampus following UVD surgery, and NMDAR levels following the induction of chemically induced consecutive unilateral vestibular lesions.

4.2.1 Other vestibular lesion studies

As referred to in the Introduction, NMDAR and AMPAR subunit changes were found in the hippocampus of rats post-UVD (Liu et al. 2003b). UVD results in loss of one vestibular labyrinth and therefore results in an imbalance in spontaneous firing of the bilateral VNCs (Smith and Curthoys 1989). However, following BVD, the input to both labyrinths is lost and the initial spontaneous firing of both VNCs is disrupted (Curthoys 2000). There is no imbalance in the sensory information that is transmitted to the hippocampus and other cortical regions, therefore these surgeries result in different behavioural paradigms. The animals perform differently on behavioural tasks (Baek et al. 2010, Zheng et al. 2006) because of the differences in input to the hippocampus. Unilateral vestibular loss also results in different electrophysiological (Zheng et al. 2003, Zheng et al. 2010) and anatomical (Brandt et al. 2005, Hüfner et al. 2007) changes in the human and rat brain, when compared to bilateral vestibular loss.

There was a significant increase in the distribution and decrease in the affinity of NMDARs in the hippocampus following sequential bilateral vestibular damage (Besnard et al. 2011, in press). The method used in this study involved inducing a unilateral lesion, which creates an imbalance in vestibular sensory input. Then the animals were left for 3 weeks while they underwent compensation. Some spontaneous firing of the VNC on the lesioned side was restored following compensation. Subsequently the other labyrinth was lesioned, inducing an imbalance in the spontaneous firing activity of the ipsilateral and contralateral VNCs for a second time. The loss of vestibular function is confounded by the continuing compensation of the side that was lesioned first. The effect of inducing a unilateral vestibular lesion and then inducing a second one after the first has undergone compensation is known as ‘Bechterew’s phenomenon’ (Katsarkas and Galiana 1983).
Besnard et al. (2011, in press) found no significant changes in behaviour when these animals performed the object recognition task, whereas BVD animals showed decreased exploration of a novel object at 3 and 6 months (Zheng et al. 2004). However, Besnard et al. (2011, in press), like Zheng et al. (2009) and Baek et al. (2010), found that animals with bilateral vestibular loss had severe spatial memory deficits. During BVD both labyrinths are lesioned in the same procedure so that initially there is no spontaneous firing of either VNC, and consequently no imbalance in firing (Curthoys 2000). The initial symptoms of UVD caused by an imbalance in firing of the VNCs, for example vertigo, nystagmus and postural asymmetries such as roll head tilt and yaw head tilt (Curthoys and Halmagyi 1995), are thought to be more severe clinically than BVD symptoms. Therefore, while this procedure and BVD both induce bilateral vestibular lesions, the symptoms and behaviours induced are different. Consequently any neurochemical and/or electrophysiological changes that occur as a result of these procedures could be different.

Besnard et al. (2011, in press) used intratympanic injections of the chemical sodium arsanilate to induce vestibular lesions. This method is often used to induce vestibular lesions in animal models as it is less complicated than UVD or BVD surgery (Stackman et al. 2002a, Wallace et al. 2002). Histological study of the temporal bone is often used in studies that involve damaging the vestibular labyrinth, to ensure that a complete lesion of the vestibular labyrinth has occurred (Zheng et al. 2006). Chemicals injected through the tympanic membrane often produce an incomplete lesion due to poor penetration of the round window and inconsistent circulation through the vestibular and auditory labyrinth (Jensen 1983), as a result vestibular function is not completely eliminated (Saxon et al. 2001). A complete lesion is always induced following BVD surgery and consequently the procedure produces a consistent behavioural syndrome. When chemical ablation is used vestibular function cannot be quantified using behavioural tests alone. The only way to guarantee that each animal has completely lost vestibular function is to use scleral search coils to record eye movements while applying high acceleration, unpredictable head movements to test the VOR (Aw et al. 1996, Gilchrist et al. 1998). For a number of reasons, including expense and equipment availability, this technique is rarely used.

Permanent and complete destruction of the vestibular labyrinths results in degeneration of the vestibular nerve fibres in the vestibular nuclei (Smith and Curthoys 1989) and distinct
neurochemical changes in the VNC (Campos-Torres et al. 2005). This damage is likely to have effects in other areas of the CNS, for example glial cell induced changes or compensatory processes with downstream effects. These changes may not occur in animals who have received incomplete and/or transient lesions (Russell et al. 2003b). If any vestibular labyrinth function is intact following chemical ablation, disrupted sensory information could be relayed to the cortex. This could also alter the compensatory processes of these animals and the corresponding behavioural alterations and the neurochemical and electrophysiological changes occurring in the brain. For example, the circling behaviour characteristic of BVD animals does not occur following this procedure (Hunt et al. 1987). Therefore, any cortical alterations following chemically induced vestibular lesions are unlikely to be comparable to those produced by BVD.

4.2.2 Long term potentiation following bilateral vestibular deafferentation

The disruption of spatial memory is severe and consistent for both humans and animals with vestibular loss (Astur et al. 2002, Russell et al. 2003a). LTP is considered to be the synaptic mechanism behind spatial memory (Pastalkova et al. 2006). Loss of NMDAR function in the hippocampus results in deficits in LTP and spatial memory (Davis et al. 1992, Sakimura et al. 1995, Tsien et al. 1996). However, there were no significant electrophysiological changes in BVD rats (Zheng et al. 2010). BVD animals perform poorly in tasks that require spatial navigation, particularly if the task does not have learned visual cues (Stackman and Herbert 2002b). It is possible that the maintenance of spatial memory is intact even though the encoding of novel spatial memories is disrupted. Future research could measure LTP when BVD rats are introduced into a new environment or while BVD rats are performing a task that required spatial navigation. BVD animals have shown severe deficits in the food foraging task in the absence of visual cues, as accurate performance requires vestibular input (Etienne et al. 1996, Stackman and Herbert 2002b, Zheng et al. 2009b). Therefore, electrophysiological recordings could be taken from the lesioned animals while they perform this task in the dark.

Electrophysiological recordings were taken in the DG and CA1 regions of BVD animals (Zheng et al. 2010). LTP may have been affected in other regions of the hippocampus such as the CA3 region. The CA3 sub-region has a role in the formation of spatial memories, the association of a stimulus with a spatial location and the retrieval of spatial memories (Gilbert and Brushfield 2009). A mouse strain with the NR1 gene knocked out of the CA3 region
showed deficits in the acquisition of novel spatial information (Nakazawa et al. 2003). NMDAR function may be more important for the acquisition of spatial memory in the CA3 region, than the CA1 or DG. The NMDAR antagonist AP5 was injected bilaterally into either the CA1, DG or CA3 region of the hippocampus in rats that had been trained in the radial eight-arm maze. The animals that received the drug in the CA3 region were significantly impaired when performing the task in a new environment when compared to animals with lesions of the CA1 or DG sub-regions (Lee and Kesner 2002a). Potentially, the animals could not use known spatial cues to navigate and did not possess functioning spatial learning so could not acquire the task. LTP and the processes behind spatial memory may be impaired in the CA3 region of BVD rats.

4.3 Critical evaluation of my research

4.3.1 Bilateral vestibular damage in human patients compared to the animal model

Neurochemical changes in BVD animals may not be comparable to neurochemical changes that occur in humans following bilateral vestibular loss. The atrophy of the hippocampus in BVL humans was observed at 5-10 years post-lesion (Brandt et al. 2005). However, the recent measurement of neuronal numbers in the whole hippocampus and within the sub-regions of the hippocampus of BVD rats 17 months post-surgery showed that there was no significant difference between BVD rats and shams (Balabhadrapatruni et al. 2011, unpublished data). Besnard et al. (2011, in press) also reported no change in hippocampal volume following bilateral vestibular loss in rats.

These results suggest that the hippocampal atrophy that occurs following BVL in humans does not occur in BVD rats. Anxiety disorders are common in human patients with vestibular loss (Yardley et al. 1998, Zheng et al. 2008), but BVD rats do not appear to be anxious (Zheng et al. 2008). Complete BVD is also rare in human patients (Zheng et al. 2008), however researchers are still attempting to quantify and understand the changes that occur following vestibular loss in humans. So while BVD is not the best model of human disease it is an effective technique for measuring what complete loss of the vestibular sensory system does to the CNS.
4.3.2 Sham control rats

The sham rats were anaesthetized and their tympanic membrane was removed as a necessary control. Following temporal bone surgery NOS levels were significantly lower in the ipsilateral guinea pig hippocampus of UVD and sham animals when compared to controls that had only been anaesthetised (Zheng et al. 1999c). This study confirmed that the act of opening the temporal bone without damaging the vestibular labyrinth results in neurochemical changes in the hippocampus. Therefore, sham animals that have undergone surgery are vital in BVD studies as anaesthetic controls are not sufficient.

4.3.3 Tissue preparation

The standard western blotting tissue preparation technique was used on the tissue from the BVD and sham animals that had been sacrificed 24 hours, 72 hours and 1 week after surgery. The membrane preparation technique was used on the 1 month tissue thereby, isolating crude synaptic membranes (Broutman and Baudry 2001). Interestingly, there were no obvious differences between the blots following analysis and the density readings were at similar levels. CaMKII and pCaMKII levels were not measured at the 1 month time point because the membrane preparation technique was used and CaMKII is not membrane bound as it is an intracellular signalling protein (Miller and Kennedy 1986).

The theory behind using the membrane preparation is that the functional AMPARs and NMDARs are largely located in the membrane (Craig et al. 1993, Monyer et al. 1994). NMDARs are believed to be tightly associated with the synaptic cytostructure and firmly bound to the postsynaptic complex (Allison et al. 1998). However, while almost all NR2B subunits appear to be expressed in the plasma membrane, conversely less than half of the total NR1 subunits are found in the membrane. This suggests that there is a large intracellular pool of NR1 subunits (Hall and Soderling 1997). In addition, Shi et al. (1999) found that non-synaptic AMPARs greatly outnumber synaptic AMPARs (Shi et al. 1999). Therefore, there may not be an overt change in receptor activity, but there may be changes in the available pool of receptors. A more specific research technique such as transmission electron microscopy (TEM) would show the cellular localization of receptors (Williams and Carter 2009).
The tissue preparation was performed on the left cortex of the BVD and control animals. It is possible that greater or more complex changes would have been seen in the sub-regions of the right hippocampus. There were no significant deficits observed in UVD patients with left vestibular failure when their spatial memory was assessed using the VMWT. Conversely, there was a slight decrease in the performance of UVD patients with right vestibular loss (Hüfner et al. 2007). This is probably because the right hippocampus is primarily involved in spatial memory and navigation in humans (Grön et al. 2000, Hartley et al. 2003). For example, the right hippocampus of human subjects was activated more strongly than the left during navigation (Ghaem et al. 1997, Maguire et al. 1997). However, it seems unlikely that the use of the right or left brain is a significant issue when studying BVD, as past neurochemical and electrophysiological studies have shown no laterality following bilateral vestibular lesions (Goddard et al. 2008c, Russell et al. 2003b, Zheng et al. 2010). This issue could be clarified in future immunohistochemical studies which could measure neurochemical changes in glutamatergic receptors in the right hippocampus.

Whole sub-regions of the hippocampus were used in this study. However, the ventral and rostral hippocampus may show different alterations following BVD. Genetic markers showed distinct spatial expression domains between the dorsal and ventral hippocampus, confirming that there is a functional separation in the hippocampus at a molecular level (Dong et al. 2009). Lesions to the dorsal/posterior hippocampus resulted in impaired spatial memory in a MWT and the level of impairment correlated with the size of the lesion. Conversely, when the ventral/anterior hippocampus was lesioned there was no impairment in spatial learning (Moser et al. 1993). Pothuizen et al. (2004) found the same result using a radial arm maze task where lesions of the dorsal hippocampus disrupted working and reference spatial memory, whereas animals with ventral lesions and control animals were not significantly different (Pothuizen et al. 2004).

While animals with lesions of the ventral hippocampus do not exhibit spatial memory deficits (Moser et al. 1993, Pothuizen et al. 2004), they do present with changes in the regulation of motor output and anxiety, as the animals showed increased movement and the lesion appeared to have an anxiolytic effect (Bannerman et al. 2002, Bannerman et al. 2003, Trivedi and Coover 2004). This coincides with the finding that BVD rats are hyperactive (Goddard et al. 2008a) and that they spent more time in the open arms of the elevated plus maze when compared to shams, which suggests BVD has an anxiolytic effect (Zheng et al. 2008).
Alterations in physiology in the ventral and rostral hippocampus may be responsible for different symptoms following BVD.

The results from these studies are consistent with the knowledge that the dorsal hippocampus receives the majority of the visuo-spatial information from sensory modalities (Moser and Moser 1998); whereas the ventral hippocampus projects to the prefrontal cortex (Goldman-Rakic et al. 1984) and is closely connected to the hypothalamus and amygdala (Jacobson and Sapolsky 1991, Petrovich et al. 2001, Pitkänen et al. 2000, Swanson and Cowan 1977). Perhaps the differences in anxiety between humans with vestibular deficits and BVD rats are caused by different anatomical connections between the hippocampus and other brain regions in animals and humans. Another possibility is that the behavioural deficits induced by vestibular damage in humans, result in additional stress, anxiety and depression due to societal pressures that rats do not experience (Yardley 1994, Zheng et al. 2008). The additional pressures caused by being unable to live a normal life may overcome any anxiolytic effects from the ventral hippocampus.

4.3.4 Western Blotting

The power of the study was estimated to be 0.9 based on previous studies using an n of 7 per treatment group and therefore the result was unlikely to be insignificant because of insufficient sample size. It is also possible that changes in NMDAR and AMPAR subunit levels were below the resolution of Western blotting. Unfortunately there is no literature available that quantifies the resolution of western blotting when compared to other detection methods.

Western blotting cannot differentiate between protein expression in neurons and/or glial cells. AMPARs are highly expressed on glial cells (Seifert and Steinhäuser 2001) and in microglia (Noda et al. 2000). Astroglia expressing AMPARs have been found in almost all brain regions including the hippocampus (Gallo and Ghiani 2000, Matthias et al. 2003, Seifert and Steinhäuser 2001). NMDARs have also been detected in several types of cortical astrocytes (Conti et al. 1999, Lalo et al. 2006). It is possible that the loss of vestibular input induced by BVD could result in changes in glial cell expression in the hippocampus, particularly in the earlier time points, potentially masking changes in neuronal expression.
The molecular weight of human NR2A is 170 kDa, whereas the molecular weight in rats is 165 kDa (Laurie et al. 1997). Mouse, rat and human NR2A subunits are highly homologous and contain the same number of amino acids (Bourdellès et al. 1994, Kutsuwada et al. 1992, Monyer et al. 1992). The differences in human and rat NR2A may be due to different protein processing. Following deglycosylation, the molecular weight of NR2A in both rats and humans decreases by 10 kDa (Laurie et al. 1997). The changes may be due to differences in phosphorylation at the PSD (Kornau et al. 1995). These alterations could result in variations in glutamate receptor function and location between species.

There was no internal control used in the individual membranes making comparisons between different Western blots difficult. This was overcome by normalizing the data to β-actin and then converting the data to z-scores, so that the optical densities in the different blots were normalised to their own means and standard deviations.

CaMKII and pCaMKII had non-specific binding patterns at the same molecular weights of around 25, 40 and 60 kDa. The specific and non-specific densities were much stronger in the pCaMKII blots, indicating there is more of the activated form of CaMKII in the hippocampus. However, the tissue preparation for the pCaMKII antibody may have not been optimal for gauging the activity of this antibody. In another study the brains were snap frozen in situ with liquid nitrogen so that the phosphorylation status of CaMKII was preserved (Atkins et al. 2006). Phosphatase inhibitors should also be used in tissue preparation when measuring the phosphorylated form of a protein (Atkins et al. 2006, Martínez-Turrillas et al. 2007).

Many of the studies that use Western blotting to measure AMPAR and NMDAR subunit levels crop their blots, or do not discuss non-specific antibody binding. This makes a literature review difficult. However, the same non-specific binding was found in another CaMKII and pCaMKII Western blot study (Pollak et al. 2005). The NMDAR subunits in particular consistently showed non-specific binding. Glycosylation of a protein can result in changes in molecular weight and therefore different bands of specific binding. For example, there are at least six possible N-linked glycosylation sites at the N-terminus of the NR2A and NR2B subunits (Wang et al. 1995). Antibody quality can also be extremely variable even between antibody batches from the same company (Wortley et al. 2009). This could be overcome by employing a technique that does not require antibodies so that antibody specificity is not an
issue, for example non-immunohistochemical techniques such as in situ hybridisation that measures mRNA.

4.3.5 Confounding factors of study

NMDAR and AMPAR levels were studied in the hippocampus of BVD rats at 24 and 72 hours and 1 week. In the initial 48-72 hours following vestibular damage, symptoms include severe postural instability and oscillopsia, due to the loss of VORs and VSRs (Smith and Curthoys 1989). The animals also suffer from abnormal visual and proprioceptive feedback (Curthoys and Halmagyi 1995). Permanent damage to the vestibular labyrinths causes the vestibular nerve fibres in the vestibular nuclei to degenerate (Smith and Curthoys 1989). This loss could also result in glial cell-induced changes in other areas of the CNS. Soon after the initial damage to the vestibular system, compensation for these deficits starts to occur (Curthoys 2000). The severe initial symptoms, abnormal sensory feedback, and vestibular compensation are all confounders when assessing the earlier time points of BVD. The hippocampus is also compensating for the loss of the vestibular system and abnormal sensory feedback. The hippocampus may adapt by altering the amount it uses other sensory inputs (McEwen 1999, Zamanillo et al. 1999).

Another potential confounding factor in this study was the loss of auditory input to the hippocampus. A retroauricular approach is used when performing surgical labyrinthectomy (Zheng et al. 1999b, Zheng et al. 1999c, Zheng et al. 2001b). This involves removing the malleus and incus, which transmits auditory information to the stapes. It is difficult if not impossible to damage the vestibular system in rats and guinea pigs without harming the cochlea and auditory middle ear. However, it has been observed that hippocampal place cells function normally in deaf rats (Hill and Best 1981) and it was shown that auditory cues alone are not sufficient information for spatial navigation (Rossier et al. 2000). The sham animals’ act as a partial control for loss of auditory information, as removal of the tympanic membrane disrupts sound to the malleus, incus and stapes. However, this only partially stops sound being transmitted to the cochlea. Nevertheless, these control animals consistently perform better in tasks than vestibular lesioned animals (Zheng et al. 2006, Zheng et al. 2007, Zheng et al. 2008).
The VOR is disrupted in BVD animals which disrupts the animals’ vision and results in symptoms such as oscillopsia (Curthoys 2000). The visual system is a major source of sensory information to the hippocampus (Tsanov and Manahan-Vaughan 2009). Hippocampal place cells were disrupted when the visual cortex was lesioned (Paz-Villagrán et al. 2002) and light deprivation results in altered LTP in the CA1 region (Talaei et al. 2010). The glial fibrillar acidic protein is an important astrocyte cytoskeleton protein that was reduced in the hippocampus following light deprivation and astrocyte shape was also altered (Corvetti et al. 2006). The vestibular induced changes in vision may result in abnormal visual sensory feedback to the hippocampus, thereby confounding the damage induced by BVD. However, oscillopsia undergoes compensation (Curthoys 2000) and blind and sighted rats can form and maintain place fields (Save et al. 1998).

It is impossible to isolate vestibular information being transmitted to the hippocampus from other inputs. Vestibular information is integrated with visual, proprioceptive and motor efference signals in the VNC (Horii et al. 2004), and projected to the limbic system and neocortex. Lesions of the vestibular system will change the way this information is integrated resulting in a corresponding change in the signal that is transmitted to the various regions of the brain (Smith 1997).

It is important to consider whether the changes in spatial firing and theta in BVD animals occur as a direct result of loss of vestibular input to the hippocampus, or due to vestibular-induced changes in another cortical area affecting the hippocampus. It is also possible that alterations occurred as a secondary consequence of other sensory systems becoming dysfunctional because of the vestibular lesion. For example, the visual field needs vestibular information to remain stable (Curthoys and Halmagyi 1995). Adaptations may be occurring in multiple regions of the CNS in order to compensate for this change in normal sensory function.

Movement has a large effect on the hippocampus (Neeper et al. 1996, Smith et al. 2009). The characteristic hyperactivity of BVD rats results in increased velocity (Goddard et al. 2008a). Rats are bipedal, allowing for greater postural stability, particularly when moving. Humans with vestibular deficits have shown greater stability while moving if their velocity is higher (Brandt et al. 1999). Humans with permanent vestibular loss often become agoraphobic (Jacob et al. 1996), and this may be due to the increased anxiety associated with vestibular
loss. Vestibular loss also results in staggering gait and postural instability. These symptoms can have social ramifications for humans, as patients are often accused of public drunkenness (Yardley 1994). As a result human patients frequently become less active.

Humans are generally older when vestibular loss occurs (Agrawal et al. 2009), whereas the rats were relatively young when the BVD surgeries were performed. Synaptic plasticity of the hippocampus alters with age (Detoledo-Morrell et al. 1988). Potentially, the rats were better able to adapt following the vestibular lesions and may have shown a greater degree of plasticity. To adjust for this the surgeries could be performed in older rats to improve the correlation between humans with bilateral vestibular disorders and BVD animals. The disadvantage of this approach is that the older animals may not cope as well with the surgery, which would probably result in a greater loss of animals, and very long time points could not be used.

Chronic stress is a confounding factor as in vestibular lesion studies as it could induce neurochemical changes in the hippocampus. Patients with neuro-otologic deficits have shown short term increases in cortisol that were significantly higher than patients without neuro-otologic disorders (Horii et al. 2007). However, animal studies have shown that the increased blood corticosterone levels (Lindsay et al. 2005, Russell et al. 2006), and salivary cortisol levels (Gliddon et al. 2003a) decrease quickly following surgery and are normal within 2 weeks. It is known that patients with Meniere’s disease suffer from long term increases in salivary and serum cortisol (Van Cruijsen et al. 2005); however this disease is relapsing and remitting in nature (da Costa et al. 2002), unlike BVD, which is chronic. The increased stress observed in humans with vestibular loss does not appear to occur in BVD animals.

4.4 Further research

4.4.1 Time points

The latest time-point of this study was 1 month and the atrophy of the hippocampus in BVL humans was observed at 5-10 years post-lesion (Brandt et al. 2005). The molecular changes in the hippocampus that caused this atrophy to occur may not have happened by 1 month. Therefore, NMDAR and AMPAR levels following BVD should be measured at a later time
point. Potential time points could include 14 months, as severe spatial memory deficits were exhibited in rats at 14 months in the light and dark in the foraging task (Baek et al. 2010).

4.4.2 Western blotting protocol

There were no negative controls used, in the future a specific antibody blocking peptide could be included in the Western blotting protocol, this would confirm the specific band reactivity of the antibodies (Ong et al. 2002).

4.4.3 Brain regions

While western blotting was performed on the FC, EC and PC at the 1 month time point, due to time limitations, receptor subunit and CaMKII levels were not measured in the earlier time points. This research should be performed in future studies, particularly as subunits from the EC and FC at 1 month were 3 of the 8 variables that could successfully distinguish between BVD and sham animals and the FC obviously has an important role in plasticity following bilateral vestibular lesions (Goddard et al. 2008b, Goddard et al. 2008c). Without further research on the effects of BVD throughout the CNS, it is difficult to distinguish cause and effect.

As shown in figure 1.2, the subiculum is an important relay point in the hippocampal formation that has projections to the frontal cortex (Andersen et al. 2007). The subiculum is also a brain region in the head-direction pathway that connects the vestibular system to the hippocampus (Taube et al. 1996). Due to these connections the subiculum could undergo changes in NMDAR, AMPAR and CaMKII expression in following BVD and is therefore a potential region for assessing changes post-surgery.

4.4.4 Alternative techniques

Western blotting was a good starting point, but other techniques may provide more information about glutamatergic receptors. The alterations in NMDARs and AMPARs are clearly subtle and require more sensitive techniques to determine subunit levels and changes in the ratio, efficacy and affinity of these receptors. Immunohistochemistry is a high
resolution form of antigen staining that could distinguish on which neuronal cells and fibres the NMDARs and AMPARs are localized (Franklin and Martin 1981, Tsou et al. 1997). It is possible that behavioural and electrophysiological changes induced by BVD surgery were due to alterations in glutamate receptor affinity and efficacy as opposed to overt changes in subunit levels. Autoradiography measures changes in receptor affinity and it is therefore a more sensitive method of measuring neurochemical changes than Western blotting. There is also TEM which has very high spatial and analytical resolution and would show the number, localization and ratio of synaptic NMDARs and AMPARs (Williams and Carter 2009). Pharmacological studies using subunit-selective agonists and antagonists could be used to gauge changes in NMDAR and AMPAR function following BVD.

Genetic studies would also provide a lot of information about NMDARs, AMPARs and CaMKII following BVD. NMDAR subtypes can be targeted within a cell in a ‘synapse-selective manner’. When the NR2A subunit gene was selectively disrupted there was a reduction in NMDAR-EPSCs and LTP at apical dendrites in CA3 pyramidal neurons (Ito et al. 1997). Disruption of the NR2B subunit gene decreased NMDAR-EPSCs and LTP at the synapses of basal dendrites (Ito et al. 1997). Genetic targeting has a large effect on NMDAR-mediated LTP and synaptic plasticity. Polymerase chain reaction (PCR) is a fast and powerful technique that amplifies DNA (Mullis et al. 1992) and quantitative reverse transcriptase polymerase chain reaction measures mRNA (Freeman et al. 1999). GluR2 undergoes RNA editing where the glutamine codon for residue 607 is replaced with the arginine codon. This edited version of the subunit controls the AMPAR properties (Swanson et al. 1997). Techniques such as these could be used to compare the genetic alterations of BVD animals with sham animals.

One deficit in the available neurochemical, electrophysiological and behavioural literature is the lack of direct comparison between UVD and BVD animals, as there are marked differences in UVD and BVD postural and ocular motor symptoms (Curthoys 2000). There are also no studies using animals that have undergone chemical and surgical vestibular lesions which would enable comparison between the two. It would be interesting to compare the differences and similarities between these vestibular lesion techniques in the same studies.

A possible alternative to deafferentation surgery is to use aminoglycoside antibiotics to lesion the vestibular system. Aminoglycoside antibiotics have varying vestibulo- and cochleo-
toxicities (Kotecha and Richardson 1994). However, there is still some slight cochlea hair cell damage produced by aminoglycoside antibiotics like gentamicin that preferentially target the vestibular system (Forge and Schacht 2000) and rats are also far more susceptible to aminoglycoside-induced renal damage than humans. Alternately, guinea pigs could be used as an animal model of bilateral vestibular damage as their metabolism of aminoglycoside antibiotics is similar to humans (Brummett and Fox 1982). Delivery of the drug would be difficult due to the issues with intratympanic injection mentioned previously. Microstimulation of the vestibular labyrinth is a more reliable and specific method for inducing transient changes in vestibular input, where vestibular receptors are activated or inactivated using an anode and cathode (Cuthbert et al. 2000). Another advantage of this technique is that the auditory system is not affected (Smith et al. 2005b).

4.4.5 Other NMDA receptor subunits

Due to the time constraints of this project some NMDAR and AMPAR subunits were not quantified following BVD. It was important to measure potential changes in the expression of NR2A and NR2B subunits as they are abundant in the cortex and hippocampus. Alternately, NR2C is located primarily in the cerebellum and NR2D is located in sub-cortical areas, such as the midbrain and brainstem (Ishii et al. 1993). However, NR2C is important developmentally in both synaptic and extra-synaptic NMDARs (Akazawa et al. 1994). Although there is little evidence for the expression of NR1/NR2D-containing receptors at central synapses (Cull-Candy et al. 2001) and NR2D expression appears to be largely extra-synaptic (Momiyama et al. 1996), extra-synaptic NMDARs containing NR2D were recruited to synapses in the DG when NMDAR dependent-LTP was induced (Harney et al. 2008).

The NMDAR subunits NR3A and NR3B were also not researched in this study. Currently there is little pharmacological data on the NR3A receptor subunit, but it is thought to have high expression in astrocytes and oligodendrocytes (Paoletti and Neyton 2007). Nonetheless, incorporating an NR3 subunit into an NMDAR decreases Ca\(^{2+}\) permeability, Mg\(^{2+}\) block and single-channel conductance (Sasaki et al. 2002). NR3 may have a role in BVD-induced synaptic plasticity in the hippocampus, but it was outside the scope of this project.
4.5 Conclusion

The loss of vestibular input results in more subtle changes in the hippocampus, when compared to the imbalance created by UVD. However, the recovery of spatial memory impairments following UVD and the permanent spatial memory deficits observed following BVD would suggest that the compensation for this loss is less effective. Even though BVD results in a number of electrophysiological changes such as alterations in theta rhythm and place cell activity, the neurochemical changes appear to be subtle and spread across a number of brain regions. Further studies need to be performed to gauge changes in NMDAR and AMPAR affinity, efficacy and neuronal location in the hippocampus, entorhinal cortex, perirhinal cortex and frontal cortex of BVD animals.
Chapter five

References

enhancement of N-methyl-D-aspartate receptor signaling. Journal of Biological Chemistry 279: 50850-50856.

Ling D, Benardo L, Sacktor T. 2006. Protein kinase Mδ enhances excitatory synaptic transmission by increasing the number of active postsynaptic AMPA receptors. Hippocampus 16: 443-452.

