Extending Point-pattern analysis to polygons usingector representations
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1.0 INTRODUCTION

Point pattern analysis is a fundamental approacimany disciplines. The concept of clustering, riad¢ion
between elements in space such as repulsion aciin, and the overall structural description skaof spatial
objects often forms the basis for confirming hymsts related to patterns driven by an underlyiroggss.
Pattern descriptions are generally based on theedegf clustering or dispersion based on a compangth a
random (typically Poisson) process. Simple metliodanalysis include functions based on distasaeh as the
nearest neighbour distance and the empty spacédnncThe development of'%order methods (Lieshout and
Baddeley, 1996) for estimating these pattern tyze® led to Ripley’s K and associated transforrash{sas the
L function), which are now a common approach inl@gy and vegetation science.

Although point patterns have a wide range of apfiim, the approximation of an object as a point lead to a
number of errors regarding the observed pattetistita. In particular, a vector object represdrds a centroid
increases the distance between objects and magfahemask patterns of clustering that may exighéareal
data. In addition vector objects may overlap, haokes or complex shape, all of which are elimidaby a
reduction to a point representation.

The extension of point pattern analysis to a gadea approach using O-ring statistics was firsppsed by
Wiegand and Moloney (Wiegand and Moloney, 2004)] artended to handle"®order statistics (Wiegand,
Kissling et al., 2006). This approach used a categlbraster representation where the cell sizalé3cwas
selected based on the smallest object to be regesse An object was represented by a groupingdggcant
cells. This approach has been successfully usedriomber of ecological studies including habitets| and
fragmentation (Bruggeman, Wiegand and Fernandeil))2@orest stand structure (Barbeito, Pardos.e280D8)
and the influence of grazing on species interastiand stress (Graff and Aguiar, 2011). Althoutibwang
areal objects to be assessed in terms of RipleyasmdKother measures, the grid-based representagant that
objects could not overlap. In addition, the sirtiola models required for comparing the observedepas in
space to a random configuration were restrictetbtating each object by 0, 90, 180 or 270 degreesthen
randomly shifting the object within the grid.

This paper introduces a vector-based approacteatising distance-based and K-statistic measureshnddiows
overlapping objects and arbitrary rotation durimgudation. In addition, since the objects do navé to be
mapped to a raster representation, the scale addteis represented by the original detail useenathe data
was collected.

2.0 VECTOR-BASED PATTERN STATISTICS

The following pattern statistics for polygons angplemented in the open-source package R (R Deva&opm
Core Team ,2011), and use the “sp”, “spatstat” &geos” libraries for point and vector represertafi
geometric operations and display. Issues reganmdingomisation of patterns, edge correction andildefor
each algorithm will be given in the appropriatetiger For the purposes of comparison to a poisedaneasure



the operations will be compared to point pattemd emndom simple polygons generated with the paia
centroid.

2.1 Empty Space Distance

The empty space distance function represents theesiedistance to a polygon from an arbitrary ocatvithin

the border window of the dataset. This is caledafor a set of point locations as a grid withie thorder
window. Figure 1 shows a point-based empty spaoetibn as a map and a corresponding map for random
rectangles with the point as the centroid.
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Figure 1. Empty Space Distance function for ao$gtoints and random polygons with the same ceatroi

Although Figure 1 is useful for visualisation, ibek not assess the degree of clustering or dispevgth the
data. For this to occur we define an empty spancetion F which defines the cumulative distributfanction of
the empty space distance. See Baddeley (2008letails of this definition for point-based process®©ne issue
that arises with all functions estimated from a pi@nof points within a study region is the correntfor bias due
to edge effects. With point data this is often elvased on the empirical cumulative distributionction. For
polygons a similar approach is used, however agyaijpn that increases the size of a polygon beyioadtudy
window is clipped. The empty space function Fglinks the observed number of points found frorarditrary
point with increasing distance (r). A comparisontlif count versus a Poisson process is used tpaenthe
observed distribution to a random point patterrnlie same intensity. Hence if F(r) Kr) this indicates that
the points are regularly space, while F(r) sif) implies the point pattern is clustered. Fomp®this can be
formally defined, however with polygons a simulatis required that distributes the polygons rangowithin
the study region and calculates the F statisticefch randomisation. For both point and polygottepas a
confidence interval can be created that indicatsfgaificance level based on the number of simoeti A
significance level of 0.05 is obtained when the hanof simulations is 39 (Baddeley, 2008).

F(r) point data F(r) polygon data
o | e |
- Fnbs(r)
- Ftheu(r)
s Fulr) @
F\u(r)
w w
[=T [=3
= =
ng [y
< _| < _|
(=] (=]
o o
(=] (=]
o o
[=2 [=2
T T T T T T T T T T T T
000 002 004 006 008 010 000 002 004 006 008 010

r r

Figure 2. Empty space function F(r) for the pand polygon data



Fig. 2 shows the empty space function F(r) forgbent and polygon data with a 95% confidence irdaefor a
simulated poisson process. The main feature te isahat the polygon data shows regularity indisribution
of the polygons for smaller distance values (r)adidition there is a suggestion of random patterfon large r.
Hence the use of points to approximate the polydgia underestimates the amount of regularity irdtte, even
though the randomised polygons for each point aite gmall (see Fig. 1).

2.2 Ripley’s K Estimate

The K function was first introduced by Ripley (Rigl 1977) based on the distance between obseniets fiar
stationary patterns. Hence, given an intensitgaifitsA, Ripley defined\K(r) as the expected number of points
that would be found within a distance r of an advit observed point. A theoretical Poisson modal then be
compared against the observed K(r) to indicatetetingy or dispersion (regularity) within the patter
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Figure 3. Ripley’s K(r) estimate for point and pgbn data

Figure 3 shows the effect of polygon objects appnated with point centroids for Ripley’s K estimatEor the
point data the indication is that the points agpédised for distances up te=10.15, whereas the polygon data
suggests a random pattern once r > 0.8. Therésdéssmme suggestion that for the polygon data tiere
clustering at a distance scale of approximatel\3,0\Mhereas the point estimate for K(r) does notgssy
clustering at any scale. Clearly patterns may chaignificantly if objects are represented as poiather than
their correct areal representation. Figure 4 shemvexample using real polygon data.

2.3 Randomization of polygons within a window

The use of simulations for estimating the poissadeh for polygons has one significant differenaara point
pattern — polygons may overlap. If the originalygon dataset had overlaps (or the objects of éstecould
overlap) then randomisation of the polygons is #mpiowever, many polygon patterns are constraiogtt
overlap, and therefore the randomisation of thedggpns must also satisfy this property. Unfortehathe
random placement of polygons within a window withowverlap is a difficult problem to solve efficiént The
current approach is that if overlapping is notwafld a set number of trials are conducted for eatygpn,
placing it randomly within the window until no oV&p occurs. If the polygon cannot be placed igi®red and
the process continues until all polygons have liged. This may result in fewer polygons being ugadhe
Poisson estimate, however it avoids issues withlapping randomisation creating artefacts thatesecially
noticeable when= 0.
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Figure 4. Ripley’s K(r) and Distance maps for Irsargill Parks. The polygon Ripley’s K is in green

3.0 CONCLUSIONS

This paper has presented the extension of two atdngoint-based functions to estimate whether ggool

dataset exhibits random, clustered or disperseglil@e patterns in space. The reduction of pahgym points
is likely to bias the estimate of the distributiproperties of these data and therefore these tyfpgserations are
required if a true measure of the patterning incepia to be estimated. Other standard point-b&sactions

have also been extended to polygon representatiwhsvill be described in detail in later publicatso
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