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Abstract 

 

After more than 30 years of study, the dynamics of synaptic plasticity in neurons still 

remain somewhat a mystery. By conducting a series of simulations on a simulated 

version of the rat dentate gyrus granule cell using the Izhikevich spiking neuron 

model, we compare and contrast several potential synaptic plasticity rules' 

applicability to the same experiment. Based on a 2001 experiment (Abraham et al., 

2001), our simulations find that spike timing dependent plasticity (STDP), a more 

recent (Markram et al., 1997) theory of synaptic plasticity, is insufficient to replicate 

the heterosynaptic LTD shown in the experiment without including aspects of the 

significantly  older Bienenstock-Cooper-Munro (BCM) (Bienenstock et al., 1982) 

theory. A combination of the history-independent STDP model and the history-

dependent BCM model seems most likely to be an accurate candidate for reproducing 

the greatest variety of cell dynamics. We also find that in simpler nearest-neighbour 

STDP rules, the choice of pairing scheme is critical in achieving the greatest 

concordance with experiment. 
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1. Introduction 

 

In this thesis we conduct a series of simulations of synaptic plasticity in the 

mammalian dentate gyrus granule cell, which serve to examine the robustness and 

applicability of several different models of synaptic plasticity. This will be 

accomplished by qualitative comparison of simulation results and experimental 

results, along with exploration of parameter spaces. 

 

Compared with basic cell mechanics, synaptic plasticity is a poorly understood 

phenomenon in the field of neuroscience, with several competing theories aiming to 

provide a mathematical framework to describe when and how much by the connection 

strengths between cells vary. In this study, we will simulate the same experiment with 

several different methods and examine what theories or syntheses of theories are best 

for description of a cell undergoing normal LTP induction protocols. 

 

An understanding of synaptic plasticity is critical for our understanding of the 

brain as a whole - the brain has an amazing ability to dynamically change its 

connectivity, which has ramifications for the computational nature of any cell, or, 

indeed, the brain as a whole. Given how much biological inspiration for technology 

has occurred in the world of computer science, a proper understanding of synaptic 

plasticity could result in granting us the ability to build better artificial intelligences 

and learning machines, and perhaps implement more biologically realistic ways of 

training artificial neural networks. 

 

We examine five different models of synaptic plasticity by running a series of 

simulations based on the same experiment while using the same neuron model. If a 

model is a good description of synaptic plasticity in the granule cell, we expect the 

results to be qualitatively similar to those of the real experiment. In addition to 

examining these four models, for one of them, we will examine further details of 

synaptic plasticity, namely the effect of choice of pairing of spikes, and additionally 

we conduct a preliminary examination into the robustness of the Benuskova & 

Abraham plasticity model when generalised to a more biologically realistic cell with 

more than two inputs. 
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1.1. Goals 

 

In this project, we will start with an implementation of the Izhikevich neuron with 

the Benuskova & Abraham synaptic plasticity rule using the presynaptically centred 

pairing scheme. This will serve as a baseline for all following simulations. 

 

The first goal will be to expand the Benuskova & Abraham rule to cover other 

STDP pairing schemes - the symmetric, reduced symmetric and nearest spike pairing 

schemes are those to be considered. Once these are implemented and the parameter 

optimisation complete, we will compare and contrast the results from these 

implementations to each other and to the initial presynaptically centred pairing 

scheme, focussing on finding which candidate is the best fit for the data in Abraham 

et al., 2001.  

 

With this done, we will work on increasing the robustness of our Benuskova & 

Abraham simulation. Currently the simulation only has two inputs - increasing this to 

a larger number (20 to start, then investigating moving to a more biologically realistic 

number) would be a good avenue of investigation. Once this is done, we will 

investigate whether increasing the biological realism in this way improves or changes 

our simulation's results. 

 

The second goal will be to broaden our investigations beyond the Benuskova & 

Abraham rule, to other STDP rules. There are a wide variety of STDP rules to choose 

from, and not all are applicable for or feasible to implement for our simulation. 

Selection of a variety of rules to consider will come first, followed by implementation 

of a wide selection of rules. Ideally, we will cover enough of a range to be able to 

observe the strengths and weaknesses of different models in reproducing the same 

experiment that we examined with our original implementation. 

 

In these simulations we will conduct, our main hypotheses that we will test are 

that, first, the way in which spikes are paired in nearest-neighbour STDP has an effect 

on the outcome of plasticity, and second, in order to reproduce experimental data, 

some form of metaplasticity must be in the synaptic plasticity rule. 
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2. Background 

 

In this section we provide an overview of the biophysical and computational 

background that underlies the experiments conducted during this study. 

 

2.1 Biological Background 

 

2.1.1. The Neuron 

 

Neurons are the fundamental computational unit of the animal central nervous 

system, and differ very little in their function or mechanism across a great variety of 

species. Although there are several different types of neuron in the brain, differing in 

size, shape and connectivity, all of them share a fundamentally similar basic structure, 

having the same characteristic features. 

Fig.1: A neuron, showing main components. Source: Carlson, 1992 

 

As can be seen in Fig.1, the neuron has three principal regions of interest: The 

axon, the dendrites and the soma. The soma is the body of the neuron, and contains 

the cell nucleus as well as the bulk of the cell's mass. This is the computational centre 

of the cell, and is where summation of inputs is carried out. 

 

The dendrites are the cell's input region; these are where most of the connections 

from other cells are made. Dendrites are branched like a tree (indeed, the word 

"dendrite" comes from the Greek dendron meaning tree), and a typical neuron 
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contains thousands of connections to other cells, making synapses with smaller 

features on the surface of the dendrite called dendritic spines. (Synapses need not 

always connect to dendritic spines; they can also connect to the dendrite's main 

surface, the soma, or the axon).  

 

Likewise, the axon is the cell's output region. The axon carries action potentials 

away from the soma, to synapses with other cells at the end of the axon terminal. The 

axon is coated with a fatty sheath called myelin, which functions as an electrical 

insulator to counter any attenuation of the action potential. There are periodic breaks 

in the myelin sheath called nodes of Ranvier, which act as electrical repeaters, further 

boosting action potentials as they pass down the axon, acting as another counter to 

attenuation of the action potential. This is an important function - degradation of the 

myelin sheath causing attenuation of action potentials is the cause of the symptoms of 

multiple sclerosis. 

 

The presence of the fatty myelin is responsible for the distinction between the 

regions of the brain called grey matter and white matter, simply named for their 

physical appearance. Grey matter is brain tissue consisting of mostly neuronal somas 

and dendrites, whereas white matter is brain tissue dominated by axons and glial cells, 

white in colour because of the heavy presence of myelin. The bulk of the brain's 

energy consumption is spent in grey matter regions. Glial cells, such as astrocytes, are 

cells that support the nervous infrastructure, doing tasks such as maintaining 

myelination, supporting the physical arrangement of the neurons, and providing them 

nutrition.  

 

At the very end of the axon, the axon branches, forming synapses with many other 

cells. Each branch ends in a synapse, connecting this presynaptic cell and the 

postsynaptic cell on the other side of the synapse. 

 

The surface of any cell is a phospholipid bilayer called the cell membrane. This 

consists of two stacked layers of phospholipid molecules in a tight lattice that 

separates the extra-cellular fluid from the interior cytoplasm. Each phospholipid 

molecule consists of a polar head with two hydrocarbon tails. In the cell membrane, 
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the hydrocarbon tails of the two layers point inwards, leading to a surface on both 

sides that is a tightly packed array of the phospholipids' heads. 

 

Embedded within the cell membrane are various proteins. They can be periphery 

proteins, which are only embedded within one of the two phospholipid layers, surface 

proteins that lie on the surface of the bilayer, or transmembrane proteins that are 

completely embedded into the membrane, spanning both layers. A particular class of 

transmembrane proteins, the transport proteins, which allow ions to pass through the 

otherwise impermeable membrane, are of particular interest in neuroscience. 

 

Transport proteins that are of interest in neuroscience include gates, pumps and 

receptors. The sodium-potassium pumps are responsible for a large portion of the 

brain's total energy use, and serve to maintain a constant potential gap between the 

interior and exterior of the cell. This potential gap is in the region of -65 millivolts 

(Sterratt et al., 2011) and is created by the pumps selectively bringing K
+
 ions into the 

cell while pushing Na
+
 ions out of the cell. Although both ions are positive, the ions 

are pumped at differing rates - two K
+
 ions for every three Na

+
 ions (Bear et al., 2007, 

p.66) This difference is sufficient to maintain the resting potential. 

 

When the potential of the cell rises above a threshold level which varies between 

cells, an action potential is generated (it is worth noting that some uncommon 

examples of cells such as thalamo-cortical cells (Sterratt et al., 2011) also generate 

action potentials from highly negative potentials). This process is facilitated by 

voltage-gated ion channels, also on the surface of the cell. These channels are said to 

be gated because they will not allow any ions through when they are closed. Once the 

potential reaches threshold, these channels open, allowing Na
+
 ions from outside the 

cell to enter. This causes the potential of the cell to rise even further, increasing to 

peaks of up to +90mV (Sterratt et al., 2011).  Because of the presence of voltage-

gated ion channels on the cell membrane in the soma and axon (but not the dendrites - 

the soma and axon are termed actively conducting because of this, in contrast to the 

dendrites' passive conductance), the action potential will spread through the soma and 

down the axon. Once the potential is sufficiently high, the sodium channels will close 

and the potassium channels will open, causing the cell's potential to drop back to 

below the resting value, where it will remain for some time until resting potential is 
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achieved again. This is the refractory period - another action potential will not be able 

to be generated until the refractory period has passed. 

 

2.1.2. The Synapse 

 

Synapses are structures that permit neurons to communicate with each other, and 

almost always exist at axon terminals (rare exceptions do exist, as in the case of 

synapses between the dendrites of two cells (Morest, 1971)). Synapses can connect 

from the presynaptic cell to a cell's dendrites, soma or axon (axodendritic, axosomatic 

and axoaxonic synapses respectively), but are usually associated with the dendrites of 

the postsynaptic cell. When an action potential arrives at a synapse, it causes an 

electrical response on the other side - a postsynaptic potential.  

 

There are two categories of synapse: Chemical synapses and electrical synapses 

(otherwise known as gap junctions). In the mammalian nervous system, chemical 

synapses play a far greater role than their electrical counterparts. The two types of 

synapses have different roles in the nervous system owing to the advantages and 

disadvantages inherent in their structure. 

 

Electrical synapses occur where the membranes of the presynaptic and 

postsynaptic cell are directly in contact, and are essentially a place where charge is 

able to freely flow between the cells. Because of this, they are much faster than 

chemical synapses, and are commonly seen in organisms that need exceptionally fast 

reaction times, such as in the escape reflexes of simple invertebrates (Edwards et al., 

1999). 

 

However, chemical synapses are much more prevalent than their electrical 

counterparts for two simple reasons - firstly, postsynaptic potential of any given 

synapse is the same regardless of the intensity of the action potential that caused the 

synapse to activate - chemical synapses are all or nothing. This makes communication 

between neurons more akin to a digital signal than an analog one, with meaning 

encoded in the spike train. However, at this point, whether the timing or rate of the 

spike train determines the meaning of whatever information is being communicated 

between neurons is a relative unknown. 
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Secondly, chemical synapses are capable of plasticity - the strength of the 

postsynaptic response of a given synapse can vary over time. This gives them the 

ability to exhibit a much greater range and complexity of behaviours than their 

electrical cousins. As this study focuses on the phenomenon of synaptic plasticity, 

careful attention must thus be paid to the structure and function of the chemical 

synapse. 

 

Fig. 2: A chemical synapse. Source: http://commons.wikimedia.org/wiki/File:SynapseIllustration2.png 

 

As can be seen in Fig. 2, the chemical synapse is not actually a point of contact 

between the two cells, in contrast to the electrical synapse. The cells are separated by 

the synaptic cleft, a gap of around 20-40nm. Because of this, the presynaptic action 

potential cannot actually cross the synapse - this explains why the postsynaptic 

potential of the chemical synapse is independent of the action potential's magnitude.  

 

When an action potential arrives at the axon terminal, it causes synaptic vesicles in 

the terminal to fuse with the cell wall in the synaptic cleft, releasing the 

neurotransmitters they contain into the gap. What neurotransmitter is contained within 

the vesicles depends on the presynaptic neuron in question - each synapse contains 

only one type of neurotransmitter, allowing a synapse to exhibit, excitatory, 

inhibitory, modulatory, or a combination of excitation and modulation or inhibition 

and modulation (Bear et al., 2011). The neurotransmitters then cross the synaptic cleft 
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and interact with receptors on the postsynaptic cell membrane.  

 

Each neurotransmitter can interact with many types of receptor, usually 

accomplishing one of three effects - excitation, inhibition and modulation. Glutamate, 

gamma-aminobutyric acid (GABA) and 5-hydroxytryptamine (serotonin) are 

examples of these, respectively. The receptors are microscopic structures similar to 

the aforementioned ion channels, and accomplish a similar function. In a receptor-

gated ion channel, the neurotransmitter interacting with the receptor will cause an ion 

channel to open, allowing Na
+
 ions to enter, causing a small excitatory postsynaptic 

potential. The mechanism is similar for an inhibitory receptor. 

 

In a modulatory receptor, a variety of actions are possible. A prototypical 

modulatory receptor is a G-protein coupled receptor - interaction with a 

neurotransmitter will release a signalling chemical within the cell that can accomplish 

many effects, generally longer-term in nature than a short-term postsynaptic potential. 

This sort of receptor is important for changing neurotransmitter release rates in the 

postsynaptic cell, and on a whole brain level, they play in important part in an 

individual's psychological state. This is exemplified by successful treatment of mood 

disorders via artificially increasing serotonin levels in the brain. 

 

Although each receptor is named for the neurotransmitter that interacts with it, 

there is a level of classification below this - there is more than one type of receptor 

that specifically interacts with a given neurotransmitter. A good example of this is 

acetylcholine (ACh) receptors. Acetylcholine is the neurotransmitter that is 

responsible for muscle movements, and was indeed the first discovered 

neurotransmitter, by Otto Loewi in 1921, winning him the 1936 Nobel Prize in 

Physiology or Medicine. There are two types of acetylcholine receptor - the nicotinic 

and muscarinic receptors. The nicotinic ACh receptor is so named because it is 

activated by nicotine. In contrast, the muscarinic ACh receptor is named because it is 

activated by muscarine, a toxin that is found in the hallucinogenic mushroom Amanita 

muscaria.  
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Fig.3: Amanita muscaria, the fly agaric mushroom,  where muscarine was originally isolated. 

Source: Nicholas Hananeia 

 

These two receptor types are both excitatory, although accomplish excitation via 

different means. The nicotinic ACh receptor is a neurotransmitter-gated ion channel, 

whereas the muscarinic receptor is a G-protein coupled receptor that causes other ion 

channels to open via a mechanism known as a second messenger cascade - in this way 

the muscarinic ACh receptor is an intermediary to opening other channels. These 

receptors are also antagonised by separate toxins - atropine (the active toxin in deadly 

nightshade, Atropa belladonna) in the case of the muscarinic receptor and curare in 

the case of the nicotinic receptor (Bear et al., 2007, p. 139). The action of these toxins 

on these receptors is what causes their main toxic effects. In addition, there are 

multiple types of nicotinic and muscarinic ACh receptors, differing in their 

morphology. In this way, designations based on interactions with chemicals usually 

denote a specific subclass of receptor. 

 

After the neurotransmitter has interacted with the receptor and has been 

subsequently released, it will either diffuse away from the synaptic cleft due to 

random particle motions or be reuptaken by the presynaptic terminal, where it can be 

incorporated into a vesicle and used for another release. The rate of reuptake is an 

important mechanism by which the synapse's release rate can be adjusted. 

 

2.1.3. Synaptic Plasticity 

 

Chemical synapses are capable of synaptic plasticity, a function that is largely 

absent from electrical synapses. In short, synaptic plasticity is the ability of a synapse 

to change in efficacy - that is, a more efficient synapse will cause a larger 

postsynaptic potential. Because excitatory chemical synapses are the primary mode of 
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communication between brain cells, synaptic plasticity is an extremely powerful 

ability for the synapses to have, and, indeed, alteration of the efficacy of synapses is 

the brain's primary way of storing information. 

 

These changes need not be positive - synaptic plasticity works in both directions. 

When the changes of the efficacy (or weight) of the synapse are long-lasting, they are 

known as long-term potentiation or long-term depression (LTP or LTD). 

Understanding of the mechanisms underlying LTP and LTD has been a major focus 

area of neuroscience in the last few decades, with several rival theories still under 

consideration. 

 

Physically, synaptic plasticity is accomplished via a complicated sequence of 

chemical reactions inside the postsynaptic cell. Here we will focus on the mechanisms 

of synaptic plasticity in glutamate synapses, which are responsible for excitatory 

activity in the hippocampus (Benuskova & Kasabov, 2007). 

 

The two subclasses of glutamate receptor that are of interest for synaptic plasticity 

are the AMPA and NMDA receptors, simply named for the chemicals that selectively 

activate them. They are both transmitter-gated ion channels, both producing a positive 

postsynaptic potential when opened. However, their behaviour differs in a few crucial 

ways. 

 

When glutamate activates the AMPA receptor, it opens as normal, letting Na
+
 ions 

cross the membrane and trigger a small excitatory postsynaptic potential as a result. 

The NMDA receptor, in contrast, has a Mg
2+

 ion bound to the interior side of its 

channel, blocking any ions from passing through when it is activated by glutamate. 

Only when the Mg
2+ 

ion is removed from the channel by a sufficiently high 

membrane potential, a condition brought about by the action of the AMPA receptors, 

does the NMDA receptor open. This allows the NMDA receptor to function as a co-

incidence detector, opening only in the presence of both presynaptic and postsynaptic 

activity. 

 

In addition to allowing Na
+
 ions through the membrane, the NMDA receptor's ion 

channel also allows the passage of Ca
2+ 

ions. This means that the NMDA receptors 
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trigger a much larger postsynaptic potential than the AMPA receptors, one that lasts 

for significantly longer. This gives the glutamate synapse a two-staged response, 

increasing significantly after the NMDA receptors' activation threshold is passed. 

 

Once they cross the membrane through the channel gated by the NMDA receptor, 

the Ca
2+

 ions bind with a messenger protein, calmodulin, the presence of which 

triggers a cascade of chemical reactions. Firstly, the presence of the Ca
2+

/calmodulin 

complex activates Ca
2+

/calmodulin -dependent protein kinase (CaMKII), which in 

turn phosphorylates dormant AMPA receptors, activating them. The presence of many 

dormant AMPA receptors allows the strength of the synapse to be quickly adjusted by 

this method for low-magnitude, quick, easily reversible LTP. Ca
2+

/calmodulin can 

also trigger a release of a retrograde messenger to the presynaptic terminal, increasing 

the amount of neurotransmitter released. 

 

LTP that requires more than simply activating dormant receptors is also 

accomplished by the presence of  Ca
2+

/calmodulin. If a sufficient amount of this is 

present, caused by a sustained train of activation of the synapse, the Ca
2+

/calmodulin 

activates an adenylyl cyclase, causing a series of biochemical reactions in the cell 

nucleus leading to a gene expression. In response, the nucleus will manufacture and 

transport more AMPA and NMDA receptors to the synapse in question, thus 

increasing the available pool of usable receptors and a more permanent increase in the 

synapse's strength. The nucleus can also release chemicals that cause the construction 

of additional synapses if needed. 

 

These two phases of activation are called early and late phase LTP, and 

correspond to a more short-term mechanism and a longer one more suited for 

permanent storage of information. LTD is accomplished by a reversal of this process - 

dephosphorylation of AMPA receptors to render them dormant for early-phase LTD, 

or re-absorption and recycling by the nucleus of redundant receptors for late-phase 

LTD.  

 

A third class of glutamate receptor, the metabotropic receptor, serves to modulate 

the rate at which these processes happen, but the AMPA and NMDA receptors remain 

primarily responsible for synaptic plasticity in glutamate synapses. 
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2.1.4. The Hippocampus 

 

The hippocampus is a structure located deep within the brain, in the temporal lobe 

under the cortex. It is responsible for memory consolidation - that is, the conversion 

of short-term to long term memories, and, as such, is of significant clinical and 

theoretical interest. The hippocampus' distinctive shape led to its name - taken directly 

from the Greek word for "seahorse." It consists of two interlocking features - the 

dentate gyrus and the Ammon's horn (referred to as CA, for cornu ammonis, and its 

regions named CA1, CA2, CA3 and CA4.) 

 

Fig.4: Location of hippocampus in human brain. Source: Gray's Anatomy 

 

As long-term memories are stored distributed across the cortex, the hippocampus 

is very strongly connected with it. 

 

Hippocampal cells are also strongly connected to spatial memory, with the CA1 

pyramidal cell firing only sparsely and then only so when the organism is in a certain 

spatial orientation (Ahmed & Mehta, 2009) and, as such, CA1 pyramidal cells are 

often called place cells. Experiments in rats have shown that bilateral hippocampal 

destruction gives a complete inability for the animal to solve even basic spatial 

memory related tasks (Bear et al, 2007). 
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Fig.5 Diagram of hippocampus showing major anatomical sub-areas and pathways. 

 

2.1.5. The Dentate Granule Cell 

 

Fig.6: A dentate granule cell. T: terminal, A: axon, AH: axon hillock, S: soma, Dep: proximal 

dendrites, Dem: medial dendrites, Ded: distal dendrites.  

Source: http://neurolex.org/wiki/Category:Dentate_gyrus_granule_cell#tab=Advanced 

 

The cell on which this study will be taken is the dentate granule cell, a cell in the 

dentate gyrus which occupies the first input layer in the hippocampus (Förster et al., 

2006). This cell is called a granule cell because it is a small, circular cell (indeed, 

granule cells are amongst the smallest kinds of neuron). The cell has a large dendritic 

tree (relative to the size of the soma) and receives two main excitatory inputs in 

addition to recurrent inputs, inputs from other granule cells, and inhibitory cells 

(Ahmed & Mehta, 2009). The granule cells themselves sit side by side in a layer. 
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The two primary excitatory inputs are the medial and lateral perforant paths (MPP 

and LPP), which connect the granule cells to the entorhinal cortex, a structure located 

outside the hippocampus. The dentate granule cell's axons connect to the pyramidal 

cells in CA3. Each of these two perforant paths contains thousands of individual 

axons, each of which makes a connection with many of the dentate granule cells. 

 

The MPP and LPP synapse upon adjacent but separated regions of the granule 

cell's dendritic tree. The MPP synapses upon the medial region of the tree, with the 

LPP synapsing upon the distal regions. However, the small differences in 

transmission between the two are generally thought not to result from the differences 

in synapse site, but from the subtly different transmission properties of the paths 

(Abraham & McNaughton, 1984). 
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2.2. Physical Experiment 

 

In this report, we will conduct repeated simulations of the same experiment using 

different plasticity models. As such, a thorough understanding of what was involved 

in this experiment is necessary. The experiment (Abraham et al., 2001), was 

conducted on live rats to take measurements of the results of various LTP induction 

protocols. 

 

This paper detailed various experiments testing different protocols - we will be 

focusing on the basic one. For all experiments, rats had a measuring/stimulating 

electrode directly implanted into their brains, which is connected to an external device 

via a wire. After the rats recovered from the surgery, the experiments were performed, 

the rats being allowed to freely roam within the test area for the duration. 

 

 

Fig. 7: Position of the stimulating (far left, end of medial and lateral paths)  and recording (centre 

right)  electrodes in the rat hippocampus. Source: Bowden et al., 2012 

 

In the experiment, a brief series of pulses of high frequency stimulation (HFS) was 

applied directly to the medial perforant path (MPP) by the electrode. Following this, 

after a few hours, an identical stimulus was applied to the lateral perforant path (LPP). 

In this experiment, the HFS consisted of a series of ten groups of five 10-pulse trains 

at 400Hz, but other protocols have been used in other experiments (Bowden et al., 

2012).  

 

Fig. 8: Schematic of high-frequency stimulation used in Abraham et al., 2001. 
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The weights, and the changes to them, were inferred by a series of test pulses 

through the pathways with a frequency of one per minute. These pulses are of low 

enough intensity that their impact on the weights themselves would be minimal, but 

enough so that the resulting postsynaptic potential could be measured and used to 

infer any change in the weight. 

 

Fig. 9: Weight changes elicited by HFS in Abraham et al. 50 Med indicates 50 pulses of HFS 

applied to MPP; 50 Lat indicates 50 pulses of HFS applied to LPP. Source: Abraham et al., 2001 

 

The results, seen in Fig. 9, show several effects of note. Firstly, shortly after upon 

the application of the HFS to the MPP, the MPP's weight increased, the change 

persisting for hours - this is the intended result of the LTP induction protocol. 

However, at the same time, the LPP's weight decreased by a lesser but still significant 

amount, this change also persisting. Note that we cannot know the values of the 

weights during HFS - the test pulses are not applied during HFS and as such these 

periods are not shown in the graph. 

 

This effect is called heterosynaptic plasticity - heterosynaptic LTD in this case. 

Heterosynaptic plasticity occurs when a synapse adjacent to a stimulated synapse that 

is not itself being stimulated is also subject to LTP or LTD.  Heterosynaptic LTP can 

also occur too, however it happens under different circumstances (Wöhrl et al., 2007). 

 

The second round of HFS at 270 minutes partially reversed the changes, 

heterosynaptic LTD also happening here. 
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2.3. Neuron models 

 

In computational neuroscience, there is no one unified approach to simulating the 

behaviours of a biological neuron. Because the neuron is a complicated biochemical 

and biophysical system, there are of course compromises that need to be made for 

ease of computation - much in the same way as a physicist simplifies a complicated 

object to a point mass. Neuron models are roughly categorised into two groups - the 

biophysical models and the phenomenological models. Biophysical models seek to 

simulate the physical details of the cell - such as ion channels, action potentials and 

postsynaptic potential, whereas phenomenological models seek only to reproduce the 

cell's overall input-output characteristics via a simplification of the cell's internal 

workings. 

 

2.3.1. Hodgkin-Huxley 

 

The Hodgkin-Huxley model is one of the earliest and still one of the most used 

neuron models. This is a set of differential equations which simulate the ion channels 

and pumps of the neuronal membrane with a set of conductance variables. As such, it 

is considered a biophysical model. The original form (Hodgkin & Huxley, 1952) is: 
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where gK, gNa and gl are the potassium, sodium and leak conductances, C is the 

membrane capacitance, Vm is the membrane voltage, and VK, VNa and Vl are the 

potassium, sodium and leak voltages, n, m and h are the so-called gating variables, 

and the α and β rate variables. More recent implementations of this model have a 

different, more general formulation of the α and β variables (Nelson, 2005). With 

these values for the constants, the voltages are all in millivolts. 

 

This set of differential equations, although providing a rich picture of the 

biological neuron, has no analytical solution, and as such, is very computationally 

costly to implement, rising to extreme computation times for even moderately 

complicated simulations. 

 

This model was and is of such importance to neuroscience as a whole that 

Hodgkin and Huxley were jointly awarded the 1963 Nobel Prize in Physiology or 

Medicine with Sir John Eccles for their discoveries concerning the ionic mechanisms 

involved in excitation and inhibition in the peripheral and central portions of the nerve 

cell membrane. 

 

2.3.2. Compartmental models 

 

Although the Hodgkin-Huxley model well describes the behaviour of the cell's 

soma and axon, it is not a complete description for the dendrites. If we want to 

accurately model the complete behaviour of a cell with a large dendritic tree, a 

compartmental model can be used. These models split the cell up into 

"compartments" with a subtly different type of neuron model applicable in each 
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compartment. A typical compartmental model may use separate compartments for the 

soma, the distal dendrites, the medial dendrites, and the proximal dendrites.  

 

This is necessary because the conductance behaviour of the dendrites is different 

to that of the soma or axon - while the action potential is constantly reinforced by 

voltage gated ion channels in the "active" membrane of the soma and axon, no such 

channels exist in the dendrites. Instead the dendritic membrane has a "passive" 

behaviour where the action potential decays as it travels up the dendritic tree. To 

accomplish this, terms for passive conductance are added to the Hodgkin-Huxley 

model. 

 

2.3.3. Spiking neuron models 

 

Spiking neuron models are, in contrast to the deep biophysical richness of the 

Hodgkin-Huxley model or a compartmental model, very simple. These models are 

often described by a single differential equation, and, as such, are often described as 

integrate-and-fire models, but still see widespread use in computational neuroscience 

because of their simplicity and associated low computational complexity. A general 

integrate-and-fire model has the following form: 

extI
dt

dV
CtI +=)(      (11) 

Here, the neuron is treated simply as a capacitor, and will fire with a delta function 

spike whenever the voltage hits a certain threshold from below. While an extremely 

simple representation, this is sufficient for some uses. More complicated integrate-

and-fire models add extra terms such as leak currents, refractory periods, and 

exponential spike generation. 

 

2.3.4. Izhikevich model 

 

This model is a phenomenological model which attempts to achieve the same 

biological plausibility of the Hodgkin-Huxley model, while remaining 

computationally inexpensive (Izhikevich, 2003). This is necessary because as 

computational neuroscience simulations become more and more complicated, both in 

scale (large networks of neurons) and in complexity of experimental protocol, the 
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Hodgkin-Huxley model becomes less and less ideal due to the computational 

demands.  

 

The Izhikevich model aims to have a biophysically rich model while also being 

efficient enough to be used on a desktop computer. On an identical simulation, an 

Izhikevich implementation may complete hundreds of times faster than a Hodgkin-

Huxley implementation, making its applicability to large-scale or long-duration 

simulations obvious. 

 

The model is based on the full Hodgkin-Huxley model, and uses bifurcation 

methods (Izhikevich 2010) to reduce the complex system of differential equations 

down to a mere two-dimensional system, given by the equations: 

Iuvv
dt

dv
+−++= 140504.0 2      (12) 

)( ubva
dt

du
−=       (13) 

with the conditions 

If v ≥ 55mV then v ← c and u ← u + d            (14) 

Here, v is the membrane voltage and u is a membrane recovery variable, 

accounting for activation of K
+
 channels and inactivation of Na

+
 channels. Once the 

spike reaches peak, the membrane voltage and the recovery variable are reset to a pre-

spike state. 

 

The constants a, b, c, d are parameters that describe the nature of the cell. The 

parameter a is a rate constant that describes the recovery time of variable u. A high a 

will lead to a faster recovery. The parameter b describes the sensitivity of the recovery 

variable to fluctuations in potential that fail to trigger a spike. The parameter c is the 

potential at which the cell resets to after a spike, the parameter d  describes the after-

spike reset of the membrane recovery variable. 

 

Although the variables and parameters in the model are all dimensionless, time is 

given in milliseconds, and v and c are given in millivolts. This is because of the 

constants in equation 12. These were obtained by fitting the spike initiation dynamics 

of a cortical neuron such that v was in mV and t in ms. 
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Although the fit was for a cortical cell, Izhikevich notes (Izhikevich, 2003) that 

other choices would be feasible. Because of the large parameter space in a, b, c, and 

d, many types of cell dynamics can be accurately reproduced, in spite of the model's 

fit being for a specific type of cell. By adjusting these parameters, the type of cell that 

the model is reproducing can be altered. 

 

Fig. 10: Different cell behaviours yielded by alteration of a, b, c, d. Source: Izhikevich, 2003. 

 

As can be seen in Fig. 10, the Izhikevich model is capable of reproducing a wide 

variety of cell dynamics. The cells' behaviour is simply dependent on the 

configuration of a, b, c, and d, as shown in the two plots at the top-right of Fig. 10. 

The model can reproduce both excitatory and inhibitory cells' behaviour, and of note 

is the model's ability to simulate the thalamo-cortical cell, which spikes on both 

hyperpolarisation and depolarisation. The fact that these cells are able to be accurately 

simulated with the model is evidence that the model's initial fit being for a cortical 

cell (shown here as the prototypical cortical cell, a regularly spiking or RS cell) is 

irrelevant in its overall robustness. 

 

If, as claimed (Izhikevich, 2003), the model is indeed as biologically realistic as 

the Hodgkin-Huxley model, because its computational complexity is on par with a 
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simple integrate-and-fire model, it is by far an excellent choice for a great myriad of 

computational neuroscience projects. 

 

2.4. Synaptic plasticity models 

 

Although synaptic plasticity is an extremely important brain function, it is still 

quite  poorly understood, in spite of years of research and many different approaches 

in modelling (Mayr et al., 2010). There is currently no consensus on exactly how this 

phenomenon works, and there are multiple viable theories on the matter.   

 

2.4.1. Hebb rule 

 

One of the earliest and still most influential models of synaptic plasticity is the 

Hebb rule. Stated simply, "neurons that fire together wire together", or, when the a 

presynaptic cell fires and is (partially) responsible for a postsynaptic cell's firing, the 

synaptic weight increases. This is also called associative learning - a strong temporal 

association between the presynaptic and postsynaptic cell's firing causes the 

connection to become stronger (Hebb, 1949). This is described in a network of 

neurons by the simple equation  

ij

ij
x

dt

dw
=      (15) 

where wij is the weight from neuron i to neuron j, and xij is the input from neuron i to 

neuron j.  However, this theory has its limitations - there is no mechanism for weights 

to decrease in a Hebbian system, leading to problems in any implementation. 

Implementations of this rule normally use some form of decay term or re-

normalisation of weights to stop any weight from increasing to unreasonable levels. 

Also, many experimental results in biological neurons, such as the observance of 

depression of neuronal weights,  run against the Hebb postulate - this led to the 

Bienenstock - Cooper - Munro (BCM) theory. However, it retained its influence later, 

as many aspects of the more recent theory of spike timing dependent plasticity 

(STDP) are in fact Hebbian. 
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2.4.2. BCM model 

 

BCM, named after its theorists, Elie Bienenstock, Leon Cooper, and Paul Munro, 

is one of the earliest theories of synaptic plasticity (Bienenstock et al., 1982), and is 

still a commonly used framework in recent years (Cooper & Bear, 2012). BCM 

proposes a threshold level of postsynaptic activity, θM, below which LTD will occur, 

and above which LTP will occur. This modification threshold changes over time 

based on the overall activity of the neuron. This phenomenon can be referred to as 

metaplasticity (Abraham, 2008). 

 

Under BCM theory, if the cell has a high level of activity, the threshold will 

increase, making further LTP more and more difficult, and vice-versa for a low 

activity cell. This manifests as suppressing plasticity in times of high activity, and 

facilitating it in times of low activity.  

 

This effect can be seen in an experiment (Kirkwood, 1996), in which the visual 

cortices of kittens raised in a dark environment were compared to those of kittens 

raised in a normal environment. The dark-reared kittens showed more potential for 

plasticity in their visual cortex than those raised in a normal environment, providing 

credence to the BCM theory - under BCM, the visual cortex neurons of the dark-

reared kittens would have a significantly lower modification threshold. 

 

BCM theory can be expressed as the following equations, where y is the 

postsynaptic activity, wi is the weight of the ith synapse to the cell, xi is the 

presynaptic activity at the ith synapse, and θ0 is a scaling constant: 

∑=
i
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This results in an approximately parabolic curve that intersects with the x-axis at 

θM before ceasing resemblance to a parabola as x increases further past θM, where the 
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x-axis is the amount of postsynaptic activity and the y-axis is the weight change, as 

shown in Fig. 11: 

 

Fig. 11: BCM response curve, where y is postsynaptic activity, ϕ(y) the magnitude of weight change, 

and θM the BCM modification threshold, which shifts in the direction of either arrow in response to 

presynaptic activity. Source: http://www.scholarpedia.org/article/BCM/ 

 

Normally, in an implementation of BCM, provided appropriate choices of scaling 

constant θ0 and window length (the period over which the previous activity of the cell 

is set to influence the current modification threshold) are made, there is no need for 

any hard-coded limits on weights as may be necessary in other synaptic plasticity 

models. This is because the dynamically changing BCM threshold acts as a soft cap - 

as the weight increases, the resulting increased activity of the neuron would cause a 

corresponding increase in the threshold. With a higher threshold, any further increases 

to the weight would become more and more difficult.  

 

2.4.3. STDP model 

 

STDP, or spike timing dependent plasticity, is a much more recent model of 

synaptic plasticity (Markram et al., 1997) that proposes a completely different 

framework than that of BCM. However, the theoretical foundation of STDP is older, 

based on simple Hebbian associative learning, where the connection between two 

neurons that simultaneously fire is made stronger as a result (Taylor, 1973). Under 

STDP, it is not the overall rate of activity in the postsynaptic neuron that dictates 

whether the weight will change, but the relative timing of spikes in the presynaptic 

and postsynaptic cells.  If a presynaptic spike occurs before a postsynaptic spike, LTP 

of the synapse will occur, and LTD if the postsynaptic spike occurs before the 
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presynaptic spike. If two spikes are simultaneous, the effect is ignored since this is 

equivalent to a 50% chance of LTP or LTD, which is what we would expect in a 

biological cell if the underlying theory holds true. This is expressed with the 

equations: 

+
−

++ =∆ τ
t

eAW  if t > 0     (19) 

−

−− =∆ τ
t

eAW  if t < 0     (20) 

 

where A+ and A- are constants (A- negative) depending on the nature of the neuron, 

and τ+ and τ− are decay constants, and t is the time between the presynaptic and 

postsynaptic spikes. When plotted as a piecewise function, shows a pair of 

exponential curves centred on the origin - the positive one for LTP and the negative 

one for LTD. 

 

Fig. 12: STDP timing curves for A+ = 0.02, A- = -0.01, τ+ = 20ms,  τ- = 100ms 

 

2.4.4. Pairing schemes in STDP 

 

While STDP is a powerful framework for describing synaptic plasticity, the theory 

is formulated in terms of relative spike timings. Since a postsynaptic cell may receive 
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many input spikes and spike itself many times, the method of pairing two or more 

spikes together is unknown. There are many ways that this can be done, and whether 

any one method is better than another is still unknown. 

 

The naive way to accomplish STDP would be the all-to-all scheme, wherein every 

presynaptic spike is paired with every postsynaptic spike, and the contributions to the 

weights of every single pairing summed. Although this would result in every possible 

contribution being counted, it has obvious drawbacks that limit its usefulness. In 

quickly-firing cells with large amounts of inputs, the computational load of having to 

sum every contribution from the entire history of the simulation would generate an 

enormous computational load. 

 

Secondly, and perhaps more importantly, considering every possible contribution 

like this simply isn't biologically realistic. Although long-term synaptic modification 

effects do exist, STDP is strictly a short-duration effect. As the magnitudes of the 

modification curves of STDP quickly approach zero as the duration between spikes 

increases, all-to-all necessitates considering spikes with negligible impact, even if we 

do institute a cut off time after which spikes are no longer counted.  

 

At the other extreme, we can consider the nearest spike scheme, where only the 

nearest spike to the currently considered spike is considered when finding the STDP 

contribution. Although simple, it is possible that this may be sufficient to account for 

the changes caused by STDP in some cases. 

 

Three alternative schemes (Morrison et al., 2008) are proposed, which may 

provide a less computationally intensive and more biologically realistic pairing 

scheme. These are the symmetric, presynaptic centred, and the reduced symmetric 

pairing schemes (see Fig. 13).  

 

The symmetric scheme pairs each postsynaptic spike with the immediately 

preceding presynaptic spike, regardless of how long ago it occurred, and similarly 

each presynaptic spike is paired with the most recent postsynaptic spike. This is the 

only scheme mentioned here which guarantees that every spike will contribute to 
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weight change.  

 

The reduced symmetric scheme is identical, except it only pairs immediately 

neighbouring spikes - if there is an additional postsynaptic spike between a given 

postsynaptic spike and its potential presynaptic partner, this pairing will not contribute 

to any weight change. This guarantees that each spike contributes to only to one 

pairing. 

 

The presynaptic centred scheme simply pairs each presynaptic spike with both the 

preceding and the succeeding postsynaptic spikes. 

 

Fig. 13: Illustration of different nearest neighbour spike interactions: (a): Symmetric scheme; (b): 

Presynaptic centred scheme; (c): Reduced symmetric scheme. Adapted from Morrison et al. (2008). 

 

2.4.5. Benuskova & Abraham rule 

 

The Benuskova & Abraham implementation of STDP relies on earlier work 

(Izhikevich & Desai, 2003) in which for nearest-neighbour pairing schemes, a form of 

BCM can be shown to follow from STDP, given some assumptions. Under this rule, a 

time average of previous activity of the cell modifies the amplitudes of the STDP 

timing curves, combining the short term plasticity of STDP with the long term 

plasticity of BCM.  
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Upon first glance, BCM and STDP seem to be completely unrelated and 

unrelatable - STDP is a Hebbian rule based entirely on the relative timing of spikes, 

whereas BCM is a rate-based plasticity rule where the average firing rate of the cell 

over time dictates synaptic modification. The study in Izhikevich & Desai, 2003 was 

motivated by the fact that in isolation, STDP can be demonstrated with clear pairs of 

postsynaptic and presynaptic spikes, in a natural cell with a natural spike train, where 

many possible pairings can be considered, and BCM effects become more and more 

prevalent. Since evidence for both BCM and STDP has been obtained from the same 

cells in the same regions of the brain, it can be presumed that both theories are 

describing different aspects of the same biophysical phenomenon. In this case, a 

unifying theory would be desirable. 

 

To examine this, several different implementations of STDP were compared to 

simple BCM in a biologically realistic system - that is one with weakly correlated 

presynaptic and postsynaptic neurons, firing according to a randomly generated 

presynaptic input with a Poisson distribution. 

 

After considering eight different models of synaptic plasticity (additive and 

multiplicative forms of classical STDP, several forms of nearest-neighbour STDP, 

and STDP with suppression (§2.4.6)), one was found to be the most suitable for 

making STDP and BCM compatible - that is a nearest-neighbour implementation, 

where only presynaptic and postsynaptic spikes which are immediately temporally 

adjacent are considered when calculating contributions to STDP.  This is biologically 

realistic, since effects caused by the most recent spike may almost completely 

override any lingering effects from previous ones, due to back-propagation of the 

postsynaptic spike up the dendritic tree. This occurs because the dendrites conduct in 

all directions, with each cell spike sending an action potential up the dendrites as well 

as down the axon. Although this is not constantly reinforced as the action potential 

travels up the dendrites since dendrites lack voltage gated ion channels, it is sufficient 

to reach the synapses in question and "reset" any residual effects from previous spikes 

by overwhelming them. 
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Given that we assume only nearest neighbour interactions apply, along with a 

Poisson spike train input with average firing rate x, the average synaptic modification 

per presynaptic spike can be written, with the first integral representing average 

potentiation, and the second representing average depression, as: 
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When formulated this way, as an average modification per spike, STDP appears 

much more BCM-like, with a high activity resulting in potentiation, and a low activity 

resulting in depression. Finding the root of C(x) allows us to find the LTP/LTD 

threshold, which is: 
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This demonstrates a link between STDP and BCM, and allows us to devise models 

of timing-dependent plasticity that include rate-based effects, using this modification 

threshold as a starting point, so long as we restrict ourselves to nearest-neighbour 

pairings. This relationship will also hold for semi-nearest neighbour parings, where 

we consider up to two spikes in the past (Izhikevich & Desai, 2003). This allows us to 

also consider triplet models. 

 

It was later proposed (Benuskova & Abraham, 2007) that this synthesis of BCM 

and STDP could be implemented by dynamically changing the amplitudes A+ and A- 

of the STDP timing curves: 
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Here, <c> is an average of postsynaptic activity in the recent past, and scales the 

initial amplitudes A+(0) and A-(0). The length of time that is considered for this 

average is called the sliding window, and thus, a form of BCM-like plasticity is 

achieved - more activity leads to a smaller amplitude and thus less potential for LTP 

and more for LTD. This average is calculated as follows: 
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with scaling constants c0 and τM and c a postsynaptic spike count . This system of 

modifying the amplitudes of the STDP curves is then combined with normal STDP, 

and in the original implementation used a presynaptically centred pairing scheme with 

the weights updating as per this equation: 

  )1()( −+ ∆−∆+= wwwtw     (26) 

with Δw+ and Δw- taken from equations (19) and (20). As the Benuskova & Abraham 

rule uses an implementation of BCM, no weight limits or re-normalisation are 

necessary. 

2.4.6. Froemke rule 

 

Froemke et al. (2005) proposed a "suppression model" for STDP that implements a 

sort of metaplasticity. In this paper, they compared the basic "history-independent" 

STDP model (i.e. one without any form of metaplasticity) to their suppression model. 

The suppression model is implemented as a dynamic scaling factor to the original 

STDP rule, which Froemke calls F(Δt). The weights are changed as follows: 
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where τs is  a decay constant for the suppression effect, and ε
pre

 and ε
post

 are the values 

of ε
k
 (which is a placeholder for the contents of equation (29)) for the presynaptic and 

postsynaptic spikes that are being paired at each step. As can be seen, the scaling 

factors for the presynaptic and postsynaptic neurons are calculated separately based 

on when the neurons spiked, and then multiplied with the basic STDP weight change. 

The more spikes there are in a given period, the smaller the suppression factors will 

get, and the smaller the weight changes become. The duration of this effect is adjusted 

with τs. 
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Although this effect is metaplastic in nature (that is, it adjusts the rate at which the 

plasticity itself occurs), it is by no means BCM-like. No hard-coded limits on weight 

are necessary here, since the suppression effect limits weight increases. 

 

2.4.7. Pfister rule 

 

This rule considers not pairs of spikes, but triplets, and, as such, is completely 

different in form to the aforementioned ones. The Pfister & Gerstner (2006) rule 

proposes that in addition to the pairs of spikes that have been considered in the 

previous rules, there is also a lesser effect on the overall weight change coming from a 

potential third spike in this association. 

 

This rule updates the weights according to the equations: 

)]()[()()1( 2321 ε−+−=+ −−
trAAtotwtw  if  t = tpre  (30) 

)]()[()()1( 2321 ε−++=+ ++
toAAtrtwtw  if  t = tpost  (31) 

As can be seen, in addition to the amplitudes A2 and A3, inside these two weight 

change equations are embedded four functions which are described by the four 

differential equations: 
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All four of these variables behave similarly, and each decays exponentially 

according to its own decay constant. tpre is any time when a presynaptic spike occurs, 

likewise tpost is any time when a postsynaptic spike occurs. Thus, these variables track 

the behaviour with the cell, with the value of the relevant variables being incremented 

by 1 whenever a presynaptic or postsynaptic spike occurs. This serves to facilitate the 

triplet interactions. The Pfister rule does not use any form of weight limit. 
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2.4.8. Clopath rule 

 

The Clopath rule (Clopath et al., 2010) is unlike the other models mentioned, in 

that it does not consider neuronal spikes as discrete events -  instead it makes changes 

to the weights based on the cell's membrane voltage at each time step. 

 

Here, LTP and LTD are described by separate equations: 
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In these equations are contained more equations. u is the membrane voltage taken 

directly from the current value in the simulation (and is for each plasticity application 

treat as a constant at that instant), θ- and θ+ are adjustable parameters, A+ and A- are 

the LTP and LTD amplitudes, and X(t) is a variable which is set to 1 when there is a 

presynaptic spike and 0 when there is not one. The rest of the variables are described 

by the equations: 
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Here, τ- and τx are decay constants, A-(0) is the base LTD amplitude, and <u>
 
is a 

moving average of the membrane voltage u, with a set reference value as a simulation 

parameter. 

 

It is worth noting in this model that metaplasticity for LTP and LTD are handled 

differently. As seen in equation (40), metaplasticity for LTD is BCM-like, whereas 

metaplasticity for LTP is handled in equations (37) and (39), and is very similar to the 

suppression effect in the Froemke rule.  

 

Consisting of four coupled differential equations, this STDP rule is by no means 

simple, but according to the authors cannot be simplified any further (Clopath 2010). 
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In contrast to the other rules discussed here, the Clopath rule does insist on upper and 

lower bounds for the weights. Without these, it is possible for a weight to become 

negative and give absurd results. 
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3. The Model 

 

3.1. Basic Design 

 

For all simulations discussed in this work, we use the same basic model, with 

modifications for exploring the effects of different methods.  At the core, we use an 

implementation of the Izhikevich spiking neuron model in the C programming 

language, for a dentate granule cell with two inputs, corresponding to the MPP and 

LPP. 

 

As it stands, two inputs is a gross oversimplification of the complexity of the 

biological system in question. In addition to both the MPP and the LPP consisting of 

thousands of axons making thousands of synapses on each of the granule cells, we 

also ignore input from inhibitory cells as well as recurrent connections from the 

granule cell and its neighbours. However, previous work on this system has shown 

that a simplified treatment may well be sufficient (Benuskova & Abraham, 2007).  

 

In this simplified approach, instead of simulating each of the thousands of axons in 

each of the MPP and LPP, each with their own weight, we will treat the MPP and the 

LPP each as a single synapse with a single weight. To counter for the expected low 

level of activity this would yield, each input to the cell will be multiplied by a scaling 

factor which will be a crude approximation to there being many fibres in the 

pathways. As a default, we set this scaling factor to 250 "fibres" per pathway. 

 

The simulations are conducted with a time resolution of 1ms, and, since there is no 

easy way of gaining analytical solutions for the differential equations involved here, 

at each time step, the variables are updated by solving their equations using the 

forward Euler method, which is as follows: 
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As all of the differential equations we will use are in the form  
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with a step size Δt of 1ms, which is equal to the simulation's time resolution, 

implementation of the Euler rule is trivial - we must only choose a starting value for 

each variable and add f(t, y) at each time step. 

It is a worthwhile possible criticism to state that the Euler method is a primitive 

and inaccurate method for solving differential equations, and in general this criticism 

is valid. However, this will be sufficient for this simulation for a few reasons. Firstly, 

the length of the simulation is significantly greater than our chosen time step - with a 

time step of 1ms and a simulation time of several hours, any accumulated errors may 

cancel each other out. Secondly, given there is a repeat discontinuity in the voltage for 

every spike on account of the Izhikevich neuron's spike reset, higher order methods 

would be difficult to implement, whereas the first-order Euler method is able to work 

on the same time step as the simulation. 

 

3.2. Input Modes 

 

A cell in a live brain does not exist in isolation - and since the experiment we are 

modelling was indeed carried out in vivo, we will need to account for this natural 

activity. In a real granule cell, the MPP and LPP carry inputs from the entorhinal 

cortex, whose theta rhythm of 6 - 10 Hz is the most prominent oscillatory activity 

(Deshmukh et al, 2010). This however is an average rate - as the brain is 

communicating meaningful information, this is not a constantly periodic input. 

 

For simulating this input activity, we have three options ranging from the simple to 

the most biologically realistic. At the simplest, we could have a perfectly periodic 

spike train with a frequency of 8Hz - this would be the simplest to implement, 

requiring no additional coding work. However, an earlier preliminary investigation 

into this (Hananeia, 2012) found that the cell did not behave as expected in this mode. 

 

A more realistic option would be to use a Poisson spike train with an average 

frequency of 8Hz. This is very simple to implement, as we need only sample from the 

Poisson distribution: 
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where P is the probability that there are k events happening in a given time, and λ is 

the mean number of times said event will occur in the given time. In our case, the λ 

used is the mean amount of spikes that will occur in 1 millisecond, and for a 

frequency of 8Hz, that is 0.008. Implementing this was simple – at this point, all that 

was needed to be done was to draw a uniformly distributed random number between 

0<n<1 using native C libraries and then check to see if this random number was less 

than 0.008. If it was, a spike was sent (Hananeia, 2012). Although random, the 

spontaneous activity occurs across both pathways simultaneously. 

 

The most biologically realistic input method would be to simulate a quasi-periodic 

spike train - that is a spike train with a frequency of 8Hz, plus or minus some random 

"dither" with each spike. This however brings about its own problems in that 

difficulty of implementation would be high for a result that would, given the tendency 

of the Poisson distribution to approximate a periodic spike train over long intervals, 

likely very closely resemble the input we already have.  

 

In addition to the natural random input from the entorhinal cortex, we also must 

simulate the artificial sources of input that were present in the experiment. There are 

two sources of this - the HFS used for LTP induction, as well as the test input. 

 

The test input, although insignificant compared to the random input and the HFS 

by virtue of its low frequency relative to the random input (once per 10 seconds 

versus 8 Hz), must still be implemented for the sake of completeness. Although in 

experiment it is supposed that the test input is low enough in intensity to not cause 

any LTP or LTD, it is still worth implementing so that any effect it may have is still 

reproduced. This is done with a single spike to both the MPP and LPP every 10 

seconds, with an intensity lower than any other spike. This is accomplished by it only 

engaging 150 of the 250 "virtual fibres". 

 

The HFS is somewhat more complicated. In the experiment, the HFS consisted of 

10 bursts of stimulation, each consisting of 5 trains of spikes. Each of these spike 

trains consisted of 25 spikes at 400Hz. Implementing this exactly is however 
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impossible given our simulation resolution of 1ms. This is because the period of a 

400Hz spike train is 2.5ms. Since this is not an integer multiple of the simulation 

resolution and this cannot be simulated properly, we must either set the resolution to 

0.5ms or use an approximation. 

 

Adjusting the simulation resolution to 0.5ms would have been difficult given how 

many functions in our implementation work on the assumption of a 1ms time step, so 

the approximation was chosen for the sake of ease of implementation. We generated 

the trains using a Poisson random process to give 25 spikes with an average frequency 

of 400Hz, using an identical process to that which was used for our random input. 

This may seem excessively unrealistic, but it is worth considering that the stimulating 

electrode used in the experiment is a mechanical device with its own innate 

imperfections, and is very unlikely to deliver a consistent output of exactly 400Hz. 

Combined with the aforementioned cancellation of accumulated errors over the 

duration of the simulation, this should make the approximation here adequate. 

 

During the HFS, the correlated spontaneous activity is de-correlated, that is it 

occurs with the mean frequency of 8Hz at both MPP and LPP but is generated 

independently according to the Poisson distribution. As has been seen in earlier work 

(Benuskova & Abraham, 2007), any heterosynaptic plasticity will not occur unless 

spontaneous activity is maintained on the adjacent pathway during LTP induction. 

 

3.3. Cell Parameters 

 

In the Izhikevich model (eqs. 12, 13, 14), there are four parameters a, b, c, and d 

which give the model much of its wide spectrum of applicability. The choice of these 

four parameters will determine which kind of cell the model is simulating - and so, 

getting these correct is of great importance before any kind of experiment is 

undertaken.  

 

To ensure that our implementation of the Izhikevich model is working correctly, 

we conducted several preliminary tests on a variety of parameter sets for different cell 

types in response to both constant and random inputs to the cell (Hananeia, 2012). In 
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this investigation we were able to obtain reasonable reproductions of some of 

Izhikevich's results: 

 

 

 

Fig. 14: 

 (top) : Membrane voltage of regularly spiking cell ([a, b, c, d] = [0.02, 0.2, -65, 8]) in 

response to random input;  

 (middle): Membrane voltage of chattering cell ([a, b, c, d] = [0.02, 0.2, -50, 2]) in response to 

random input;  

 (bottom): Membrane voltage of low-threshold spiking cell([a, b, c, d] = [0.02, 0.25, -65, 2]) in 

response to random input. 

 

As can be seen in Fig. 14, we were able to obtain reasonable reproductions of a 

few of the cell types with our Poisson-type random input using the parameters given 

in Fig. 10 (Izhikevich, 2003). In addition to this, we also simulated the same cell types 

with a constant input, which gave us results more in line with Izhikevich's, in 

particular for the chattering cell, as shown in Fig. 15: 
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Fig. 15: 

 (top): Membrane voltage of regularly spiking cell ([a, b, c, d] = [0.02, 0.2, -65, 8]) in 

response to constant input;  

 (middle): Membrane voltage of chattering cell ([a, b, c, d] = [0.02, 0.2, -50, 2]) in response to 

constant input;  

 (bottom): Membrane voltage of low-threshold spiking cell([a, b, c, d] = [0.02, 0.25, -65, 2]) in 

response to constant input. 

 

As the dentate granule cell is a regularly spiking cell (Rose et al., 1983), for the 

rest of our simulations here, we use the parameters for such a cell: [0.02, 0.2, -69, 2], 

with a slightly lower c value, which corresponds to the cell's resting potential. 

 

3.4. STDP parameters 

 

Each of the STDP rules discussed has its own set of parameters, describing various 

aspects such as the shape of the STDP curves, or decay constants for other associated 

functions, with some of the models having as many as six independent parameters. 

These models are crafted for different cells in different areas of the brain, and each of 

the parameters in these corresponds to some unknown physical quantity. However, 

the actual values of the parameters cannot be directly measured, and they do not 
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remain the same between different cells, and in fact, differ for the same cell for even 

as trivial a change as spike pairing scheme. 

Because of these inherent unknowns, every time we implement a new model, we 

have no immediately accurate way of knowing what parameters to choose. A good 

analogy for this are the constants in physical laws, such as for Newton's theory of 

universal gravitation: 

2

21

r

mm
GF =       (44) 

Although Newton was able to theorise gravity was an inverse-square relationship, 

this was not enough - he had to find a value for G which made the theory come into 

line with physical observation. Any value of G except the valid one would not 

produce reliable results. 

 

Much the same happens here - if incorrect parameters are chosen, the model will 

not produce accurate simulations, the results of simulations with bad parameters 

verging on nonsensical - for example, the weights increasing without bound to 

enormous values, or all cell activity stopping. In this study, we have opted to slowly 

explore the parameter space manually, changing the various parameter values until an 

end result that resembles the experiment is achieved. Since we are only doing a 

qualitative rather than a quantitative investigation, mere resemblance to the 

experimental result is sufficient. 

 

Unfortunately, automating this task of finding the correct parameters is very 

difficult in this case. While time-consuming, refining the parameters "by hand" relies 

on educated guesses and visual recognition of whether or not a final graph is closer to 

a "good" result than a previous attempt. Given the enormous space that must be 

explored (for six independent parameters, this would entail finding a small region in 

6-dimensional space), any automated optimisation method would take a long time to 

implement and a similarly unacceptably long time to run, although such methods, 

such as evolutionary or genetic algorithms and Monte Carlo sampling do exist and 

could potentially be used. In the case of a genetic algorithm, for example, finding a 

suitable fitness function would be very difficult, and would require a thorough study 

of what leads to stability or instability in the simulations. Finding the correct 
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parameters is thus the most time-consuming part of each experiment, but manual trial 

and error is still by far the fastest method to find optimal parameter values. 
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4. Results 

 

For all of our simulations in this study, the same sequence of stimuli is used. The 

simulation will last 420 simulated minutes (the actual execution of a run taking 

between 10 seconds and a few minutes), with the first 60 minutes being treated as 

"negative time" - that is, time in which the simulation is run with only spontaneous 

input so that the system can stabilise. These 60 minutes will not be displayed on any 

of the results, the system being treated as if it runs from 0 to 360 minutes. At 0 

minutes, the test input is applied for the remainder of the simulation, except for the 10 

minutes following HFS onset, and then at 30 minutes, a single round of HFS is 

applied to the MPP. We will neglect the second round of LPP HFS that is shown in 

the physical experiment.  

 

Testing of this basic protocol with the Benuskova & Abraham rule (Benuskova & 

Abraham, 2007)(§2.4.5) was done in earlier work (Hananeia, 2012), laying the 

groundwork for the experiments we conduct here. 

 

Because there is no reliable way of tuning the cell's firing rate in our 

implementation of the Pfister, Clopath or Froemke rules, we will only put focus on the 

short-term effects of the HFS for the various implementations of the Benuskova & 

Abraham rule. In these other rules, the cell often exhibited firing rates in excess of 

8Hz, rendering our examination of the effectiveness of these rules qualitative at best. 

Attempts we have made to change the firing rate of the cell by altering other 

parameters generally resulted in instability or a complete failure of the cell to fire at 

all, meaning that likely a completely different parameter set would be needed for 

stability under a different cell firing rate. Certainly, this is an avenue for further 

investigation. 

 

4.1. Benuskova & Abraham rule 

 

As the Benuskova & Abraham rule was the one used for the entirety of earlier 

development of this simulation, we pay special attention to it, conducting deeper 

experiments to test its overall robustness under different pairing schemes. Here, we 
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test four pairing schemes - Presynaptic centred, symmetric, reduced symmetric and 

nearest spike (see Fig. 13 for illustration). 

 

4.1.1. Presynaptic centred scheme 

 

The original implementation of this simulation was built using the presynaptic 

centred scheme (Benuskova & Abraham, 2007) so the results here should be treated 

more as a baseline than a test per se.  The particulars of this pairing scheme are 

illustrated in Fig. 13b. The STDP parameters used for our results in Fig. 16 are: A+ = 

0.02, A- = 0.01 τ+ = 20ms, τ- = 100ms, c0 = 2000. 

 

 

 

Fig. 16: Characteristics of the presynaptic centred pairing scheme with the Benuskova & Abraham 

rule.  Top: Evolution of MPP(red) and LPP(green) weights over time; left: 30 run average with 

standard deviations, right: single run. Middle: Average cell activity over time; left: 30 run average 

with standard deviations,  right: single run. Bottom: Membrane potential of cell around HFS onset. 

 

Here, we see a very stable weight evolution, and a very clear homosynaptic LTP 

(i.e. LTP on the stimulated synapse, here the MPP) and heterosynaptic LTD (LTD on 
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a synapse adjacent to one stimulated, but not directly stimulated itself, in this case the 

LPP) after HFS onset. During HFS, we can see the average activity of the cell 

decreasing sharply, before returning to pre-HFS levels afterwards. If we examine the 

membrane potential of the cell as shown in Fig. 16, we can see the associated 

reduction in cell activity. 

 

As soon as the HFS induction period starts, we can see the base level of 

spontaneous activity (shown by the smaller spikes) halve - this is because we only 

apply spontaneous activity to the unstimulated pathway during HFS. The HFS's first, 

most immediate effect is a temporary silencing of the cell - for a period extending 

beyond 10 seconds after HFS start, the cell is only spiking in response to the HFS - 

we can see four of the five HFS pulses in the first train represented by a postsynaptic 

spike each. The missing HFS pulse is a random result of the nondeterministic nature 

of the simulation. 

 

Occasionally, we see a case where the LTP induction protocol causes 

heterosynaptic LTP and homosynaptic LTD - exactly the opposite of what we would 

expect. The characteristics of these "inverted" runs are shown in Fig. 17: 

 

 

Fig. 17: Characteristics of an anomalous "inverted" run. Top left: Evolution of MPP(red) and 

LPP(green) weights over time. Top right: Average cell activity over time. Bottom: Membrane potential 

of cell around time of HFS onset. 
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This behaviour occurs very rarely - in over 1000 simulations, only 31 of them 

showed this pattern, 969 of them correctly reproducing the direction of the LTP. Of 

note is the MPP and LPP weights stabilising to different values before HFS start, and 

the lack of complete silencing of the cell after HFS, as seen in Fig. 16. However, as 

we can see in Fig. 17(b), there is still an immediate reduction in average cell activity 

during HFS. 

 

 Because of its extremely consistent behaviour (aside from the inverted runs of 

which there is a very low incidence, indeed the lowest of any of our pairing schemes), 

the presynaptic-centred scheme is well in agreement with experimental data. 
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4.1.2. Symmetric scheme 

 

This pairing scheme is illustrated in Fig. 13a. To obtain the results in Fig. 18, we 

used the parameters: A+ = 0.002, A- = 0.001 τ+ = 70, τ- = 150, c0 = 2500. 

 

 

 

Fig. 18: Characteristics of the symmetric pairing scheme with the Benuskova & Abraham rule.  

Top: Evolution of MPP(red) and LPP(green) weights over time; left: 30 run average with standard 

deviations, right: single run. Middle: Average cell activity over time; left: 30 run average with 

standard deviations,  right: single run. Bottom: Membrane potential of cell around HFS onset. 

 

As can be seen in Fig. 18, the LTP of the MPP synapse and the LTD of the LPP 

synapse are no longer clear as they were under the presynaptic centred scheme. In 

fact, this is due to a much greater incidence of the "reversed" behaviour noted in 

§4.1.1; over 1000 simulations, the MPP weight was potentiated 403 times and the 

LPP weight was potentiated 597 times.  

 

In addition, the behaviour of the cell during HFS is extremely strange - the cell acts 

as if there is no refractory period, spiking extremely quickly during the HFS. The 
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"silencing" of the cell seems to come well after HFS, as we can see a reduction in 

<c> after the HFS in Fig.18. 

 

Thus, since the "wrong" weight is potentiated more often, and in addiction the cell 

shows strange spiking behaviour during HFS, the symmetric scheme is not in 

agreement with experimental data. 

 

4.1.3. Reduced symmetric scheme 

 

This scheme is illustrated in Fig. 13c. To obtain these results, shown in Fig. 19, we 

use the parameters A+ = 0.002, A- = 0.001 τ+ = 70, τ- = 150, c0 = 2500, identical to 

those used for the symmetric scheme. 

 

 

 

Fig. 19: Characteristics of the reduced symmetric pairing scheme with the Benuskova & Abraham 

rule.  Top: Evolution of MPP(red) and LPP(green) weights over time; left: 30 run average with 

standard deviations, right: single run. Middle: Average cell activity over time; left: 30 run average 

with standard deviations,  right: single run. Bottom: Membrane potential of cell around HFS onset. 
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As would be expected from a scheme that uses a subset of the pairings used in the 

symmetric scheme, this implementation produces very similar results.  Similar to the 

symmetric scheme, heterosynaptic LTP/homosynaptic LTD is significantly more 

common than with the presynaptic centred scheme, this time the "reversed" behaviour 

happening nearly equally as often as the expected behaviour when tested over 1000 

runs - 430 MPP potentiations and 570 LPP potentiations. This is not in agreement 

with experiment. 

 

If we examine the average activity of the cell, we however find much more stable 

behaviour than in the symmetric scheme. There is an immediate silencing of the cell 

which is clearly seen in the voltage trace. This is however followed by a massive 

increase in cell activity, but this is however not immediate as it was in the symmetric 

scheme. 

 

It is worth noting that despite lengthy parameter optimisation, both the symmetric 

and reduced symmetric models occasionally displayed the absurd behaviour 

mentioned in §3.4 - for approximately 1 in 20 runs, the weights would increase 

without bound. In all cases, stability of the simulation is achieved only thanks to the 

stabilising action of the dynamic adjustments of potentiation and depression 

amplitudes - we do not use any form of hard caps on weights in the Benuskova & 

Abraham model. 
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4.1.4. Nearest spike scheme 

 

This scheme can be visualised as a modification of the scheme in Fig. 13b where 

only the very closest interactions are considered. To obtain these results, shown in 

Fig. 20, we used the parameters: A+ = 0.01, A- = 0.01 τ+ = 20, τ- = 40, c0 = 3500. 

 

 

 

Fig. 20: Characteristics of the nearest spike pairing scheme with the Benuskova & Abraham rule.  

Top: Evolution of MPP(red) and LPP(green) weights over time; left: 30 run average with standard 

deviations, right: single run. Middle: Average cell activity over time; left: 30 run average with 

standard deviations,  right: single run. Bottom: Membrane potential of cell around HFS onset. 

 

As with the presynaptic centred scheme, the symmetric scheme also reproduces the 

general form of the experimental results. However, it is worth noting that the 

magnitude of the changes elicited by the HFS here is less than those with the 

presynaptic centred pairing, even when the smaller size of the A+ parameter is 

considered. Also the changes are nowhere near as predictable - the standard 

deviations on the weights after HFS are much wider than they were under the 

presynaptically centred scheme.  
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Similarly to the other schemes, this scheme will also produce the "reversed" result 

occasionally. Here, for 1000 runs, the MPP was potentiated 782 times and the LPP 

218 times. Although still in concordance with experiment when these "inverted" runs 

do not happen, the nearest spike scheme is less consistent than the presynaptic centred 

one. 

 

4.2. Conventional STDP 

 

Here we attempted to use naïve STDP without any modifications. Without a 

“decay” term of the following sort: 

 wt+1 = wt – λwt     (34) 

both weights would slowly increase linearly without bound. This simple decay term 

countered this linear increase allowing us to see the underlying behaviour. It is not 

unimaginable that such a decay may have a biological analogue in the nature of short-

term synaptic plasticity (Benuskova & Kasabov, 2007). In this simulation we retain 

the presynaptic centred pairing scheme. 

 

To obtain the results shown in Fig. 21, we used the parameters A+ = 0.02, A- = 0.01 

τ+ = 20ms, τ- = 70ms, λ = 0.00001. 



51 

 

 

 

 

Fig. 21: Characteristics of the conventional STDP rule.  Top: Evolution of MPP(red) and 

LPP(green) weights over time; left: 30 run average with standard deviations, right: single run. Middle: 

Average cell activity over time; left: 30 run average with standard deviations,  right: single run. 

Bottom: Membrane potential of cell around HFS onset. 

 

As can be seen, this does not reproduce the experimental results, the MPP 

increasing and the LPP decreasing after simulation start, with a reset to zero and 

reversal of directions upon HFS induction, stopping after they reach a “stable” value. 

Although HFS has an obvious effect, it does not trigger stable LTP induction, and 

thus is in no way concordant with experiment. 
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4.3. Froemke rule 

 

Without modification, the Froemke rule had a similar fault to that of conventional 

STDP – slow linear increase of both weights. To counteract this, a similar decay term 

was introduced. Also, the simulation here is based on a presynaptic centred pairing, 

but non nearest-neighbour effects are introduced by the suppression model. 

 

To obtain the results shown in Fig. 22, we used the parameters A+ = 0.02, A- = 0.01 

τ+ = 20ms, τ- = 70ms, τs
pre

 = 35ms, τs
post

 = 78ms, λ = 0.0000085: 

 

 

 

 

Fig. 22: Characteristics of the Froemke  rule.  Top: Evolution of MPP(red) and LPP(green) 

weights over time; left: 30 run average with standard deviations, right: single run. Middle: Average 

cell activity over time; left: 30 run average with standard deviations,  right: single run. Bottom: 

Membrane potential of cell around HFS onset. 

 

Here, after increasing to a stable value before HFS, the HFS causes both pathways 

to experience LTP, however the MPP more greatly so. This is in partial concordance 
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with the experiment – we are not seeing any heterosynaptic LTD, however LTP 

induction is still happening, significantly so on the predicted pathway. 

 

However, the average activity of the cell greatly increases during the HFS period, 

well above the already extremely high baseline. As mentioned earlier, we have no 

easy way to control the cell's firing rate with this model, so we cannot make any 

judgement about how the cell's voltage immediately reacts to the HFS induction - any 

change is masked by the violent spiking rate. Attempts to lower the cell's firing rate 

by adjusting the input levels to the cell by means of reducing the amount of "virtual 

fibres" only led to the cell failing to fire at all, or the firing rate not changing - we 

were unable to find any middle values in which the rate could be tuned. 

 

 It is also of note that this rule takes significantly longer for the weights to stabilise, 

not occurring until well after the 60 minute stabilisation period that was sufficient for 

all other rules. To be sure that the cell in fact stabilised, we tested the cell's behaviour 

over time without any HFS: 

 

Fig. 23: Evolution of MPP(red) and LPP(green) weights over time for the Froemke rule without 

any HFS applied. 

 

As we can see in Fig. 23, the cell is reasonably stable after this initial period of 

increase. While not totally flat as we would expect, the random undulations and 

remnants of the slow increase mentioned earlier are not of concern. 
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4.4. Pfister rule 

 

With the Pfister model, we retained the majority of the simulation’s framework 

used earlier in the presynaptic centred “baseline” model, making amendments to 

facilitate updating of the model’s dynamic variables, which are what is responsible for 

the model's consideration of triplets of spikes. 

 

To obtain the results in Fig. 24, we used the parameters A2
+
 = 0.02, A2

-
 = 0.008, 

A3
+
 = 0.0000006, A3

-
 = 0.0000003,  τ+ = 30, τ- = 100, τx  = 50, τy = 120. 

 

 

 

 

Fig. 24: Characteristics of the Pfister  rule.  Top: Evolution of MPP(red) and LPP(green) weights 

over time; left: 10 run average with standard deviations, right: single run. Middle: Average cell 

activity over time; left: 10 run average with standard deviations,  right: single run. Bottom: Membrane 

potential of cell around HFS onset. 

 

For the Pfister rule, we were unable to obtain any concordance with the 

experimental results; shown is a result for the parameters we will use in §4.4.1. With 
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this rule, the HFS has either no or a negligible effect, and the weights seem to 

approach stable values. Testing this rule over a very long amount of simulation time 

also consistently showed that the weights remain at these “stable” values indefinitely. 

 

4.4.1. Modified Pfister rule with BCM-like metaplasticity 

 

After the Pfister rule failed to reproduce the experiment, we attempt a modification 

of Pfister’s rule with the BCM-like metaplasticity found in the Benuskova & 

Abraham rule. The same mechanism is used – dynamic adjustment of the LTP and 

LTD amplitudes based on a sliding window average of postsynaptic activity. 

 

To obtain the results in Fig. 25, we used the parameters A2
+
 = 0.02, A2

-
 = 0.008, 

A3
+
 = 0.0000006, A3

-
 = 0.0000003,  τ+ = 30, τ- = 100, τx  = 50, τy = 120, c0 = 500. 

 

 

Fig. 25: Characteristics of the Pfister rule with added metaplasticity.  Top: Evolution of MPP(red) 

and LPP(green) weights over time; left: 30 run average with standard deviations, right: single run. 

Middle: Average cell activity over time; left: 30 run average with standard deviations,  right: single 

run. Bottom: Membrane potential of cell around HFS onset. 
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With this modification, the Pfister rule achieves partial concordance with 

experiment. Although the weights stabilise at different values before HFS, after HFS, 

the MPP is potentiated and the LPP depressed by equal amounts. This is not in 

concordance with experiment, however the characteristic behaviours exhibited in the 

experiment are somewhat maintained. 

 

Although the cell has a relatively high spike rate in the region of 4 Hz, we still see 

a characteristic drop in cell activity immediately during the HFS, with the high 

spiking rate resuming shortly after the HFS train has finished. Unlike all of the 

alternative models we tried, this immediate response is in concordance with 

experiment. 

 

We attempted to lower the spike rate of the cell to the expected 0.8 Hz by adjusting 

the c0 parameter, however we were unable to achieve this while maintaining stability 

of the simulation. Similar efforts to lower the cell's firing rate by decreasing the 

number of "virtual" fibres and thus the overall input to the cell had an "all or nothing" 

effect - below a certain amount of fibres, the cell never fired at all, above that, it 

immediately rose to 4 Hz with no room to tune the firing rate. Similar consequences 

were seen in using these methods to counteract high fire rates in the Clopath model as 

well. 
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4.5. Clopath rule 

 

To obtain the results shown in Fig. 26, we used the parameters A+ = 0.00038 , A- = 

0.00003, τ+ = 8ms, τ- = 18ms, τx = 16ms, θ+ = -38, θ- = -41, λ = 0.000000005: 

 

 

 

 

Fig. 26: Characteristics of the Clopath rule. Top: Evolution of MPP(red) and LPP(green) weights 

over time; left: 10 run average with standard deviations, right: single run. Middle: Average cell 

activity over time; left: 10 run average with standard deviations,  right: single run. Bottom: Membrane 

potential of cell around HFS onset. 

 

 

To achieve stability with this rule, we had to use a decay term to counter a steady 

increase in all weight values, much as we had to for conventional STDP and the 

Froemke rule. Also, we were only able to obtain 10-run averages without unstable 

behaviour - the chance of a failure as mentioned in §4.1.3 is much higher here for the 

most stable parameters we could find than in the other rules.  
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As can be clearly seen, in Fig. 26, the Clopath rule has excellent concordance with 

the experimental results as far as weight changes are concerned, reproducing both a 

strong homosynaptic LTP and heterosynaptic LTD reliably without any "inverted" 

results ever being observed.  

 

However, this comes at a price - in order to achieve this result, we had to use a 

BCM sliding window of only 1 second, compared to the 60 seconds used in all other 

experiments. Increasing the duration of the window even modestly above this level 

results in the concordance with experiment rapidly decreasing - a longer window first 

removes the heterosynaptic LTD, and with an even longer window, stability of the 

weights after HFS is lost. 

 

Also, the activity of the cell noticeably increases above the already very high level 

during HFS, much as we observed for the symmetric rules. This is not in concordance 

with experiment, but since we have little direct way to control the cell's firing rate 

here without introducing further instability that would then need to be corrected for, 

the high firing rate could be masking something deeper. We attempted the same 

methods for controlling the firing rate that we tried for the modified Pfister rule 

(§4.4.1), with identical results. 
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5. Discussion 

 

In exploring the potential of the Izhikevich neuron model for other rules beyond 

the Benuskova & Abraham rule,  we had a mix of successes and failures. Most 

surprisingly, we notice a particular significance to metaplasticity as defined by 

Abraham (2008), i.e., a degree of plastic change in the rate or direction of synaptic 

plasticity over time, in reproducing all of the behaviours we saw in experiment. 

 

In many of the models and pairing schemes, we notice an immediate rise in cell 

activity following the HFS, in contrast to what we see with our well-tested 

presynaptically-centred scheme. For the models for which we had no way to control 

the cell's firing rate, any explanation for this could well be confounded by the high 

firing rates. These models were made for different parts of the brain and thus different 

kinds of cells - the Froemke rule for visual cortex cells (Froemke et al., 2006), the 

Pfister rule for the visual cortex and hippocampus (Pfister &Gerstner, 2006), and the 

Clopath rule for the cortex (Clopath et al., 2010).  

 

However, when this is observed in the Benuskova & Abraham rule, we can offer a 

hypothesis to explain this behaviour, which was observed in the symmetric pairing 

schemes. The symmetric schemes pair much more indiscriminately than the 

presynaptic-centred or nearest spike (which is in fact a subset of presynaptic centred) 

schemes, and as we have seen from the statistics on the occurrence of the "inverted" 

runs, do not favour either the medial or lateral path. During the HFS, the LTP and 

LTD pairings could become highly synchronised, leading to a brief runaway increase 

in the weights that is corrected by the time the stimulation period has ended - which 

would be accompanied by an increase in cell activity and uncertainty in what 

direction the plasticity would take. 

 

It is also worth considering that the immediate response of the cell to LTP 

induction is not directly predictable, and cell activity has been observed both 

decreasing and increasing in response to LTP (Kimura & Pavlides, 2000). The 

possibility that the symmetric schemes are in fact capturing a natural behaviour thus 

should not be dismissed.  
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The heterosynaptic LTD was not observed in all of the models we examined, 

notably the Froemke rule, and for the Clopath rule with certain parameters (the 

heterosynaptic LTD disappears when the BCM window is increased too far). It is 

possible that this is no co-incidence. When we consider that the Pfister rule only 

reproduced the experimental results when a BCM-like metaplasticity was introduced, 

it is possible that the explanation lies in metaplasticity itself. 

 

The models that reproduced all the characteristic features in the weight evolution 

(Benuskova & Abraham, modified Pfister and Clopath) all had some form of BCM-

like metaplasticity, whereas the Froemke rule which achieved partial concordance 

with experiment, had a (although in no way BCM-like) "suppression" mechanism 

which could be considered metaplasticity. It is possible that this could hint at a deeper 

link between heterosynaptic plasticity and metaplasticity (Hananeia & Benuskova 

2014), and almost definitely shows that STDP, while a powerful theoretical 

framework, is wholly insufficient as a complete theory of synaptic plasticity. Given 

that the most successful forms of metaplasticity we experimented with were BCM-

like, this gives the older and more established theory of BCM more credence when 

considered alongside the newer STDP. In fact, later research (Gjorgjieva et al., 2011) 

into the Pfister triplet model and BCM shows a tight concordance between the two for 

replicating complex neuron behaviours, again hinting a deeper link between STDP 

and metaplasticity. 

 

With the Benuskova & Abraham rule, we also made a preliminary investigation 

into increasing the biological robustness of the model - rather than having 250 

"virtual" fibres, we increased the number of actual simulated fibres to 10, each with 

25 "virtual" ones. This produced identical results, with the individual weights therein 

remaining equal across each fibre. This can be interpreted several ways. The lack of 

any change in the behaviour could be showing a limit to what can be achieved with a 

simplified neuron model, with the vastly more complicated and computationally 

expensive multi-compartmental models being a necessary next step to increasing 

biological realism. Alternatively, the success of our very simple neuron model not 

changing upon increasing the pathway density could be seen as a testament to the 

applicability of simplified models, Izhikevich's one in particular. 
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6. Further Work 

 

There are still many avenues of investigation which remain open after the 

experiments we have conducted. 

 

The first and most obvious of these is the further exploration of the enormous 

parameter space that many of these models have, especially the Pfister and Clopath 

models. Even for Benuskova & Abraham, for which we have done a significant 

amount of investigation, there is still a very large parameter space, exploration of 

which might be able to mitigate some of the difficulties found in the symmetric 

pairing schemes, such as the high incidence of results completely opposite to those 

that we expected.  

 

Secondly, the firing rates of the cell under all of the STDP rules except for 

Benuskova & Abraham were not in concordance with experiment, usually being 5-10 

times higher. Because of this, thorough examination of the short-term response to 

HFS was usually impossible, and any comparisons we made were qualitative at best. 

Two methods of adjusting the firing rate of the cell were attempted - firstly, in the 

models that use it, adjusting c0 to tune the fire rate, and secondly, lowering the 

number of "virtual fibres" in each of the inputs to decrease the input intensity and thus 

lower the cell's input levels. Both of these failed - Adjusting c0 introduced instability 

to the simulation, and lowering the amount of virtual fibres either completely silenced 

the cell or didn't change the firing rate at all, with no room in between these extremes 

that could be used for tuning. Finding a way to control the cell firing rate beyond 

these two methods would thus be a useful endeavour in improving the robustness of 

our results.  

 

Thirdly, since other types of HFS do exist (Bowden et al., 2012), it could be 

worthwhile to explore the effects of changing the HFS regime on the simulation's 

results and comparing to any relevant experiments. 

 

Finally, since each cell type has different dynamics, it would be worthwhile 

expanding our investigation to cover other kinds of cell, or even simply other 

experiments on the dentate gyrus granule cell. A viable candidate would be the CA1 
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pyramidal cell which was also studied in the Abraham (2001) paper that contained the 

experiment this investigation was based on. 
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7. Conclusion 

 

In this thesis we examined a background of the biological underpinnings of 

computational neuroscience as well differing ways to model both the neuron itself and 

also synaptic plasticity. Then we conducted a series of simulations on the Izhikevich 

neuron model to test the viability of several different models of synaptic plasticity 

when applied to a reproduction of an in-vivo experiment. 

 

In our first round of simulations investigating pairing schemes, we found a 

dramatic variance in results caused by adjustment of a relatively minor detail in the 

model. While all of the pairing schemes were indeed capable of reproducing the 

overall form of the experiment for individual runs, when long-term averages are 

considered, the symmetric and reduced symmetric schemes, in this case, failed. This 

is because these schemes have a high chance of potentiating the unstimulated pathway 

sometimes more than 50% of the time - leading to an average of zero modification in 

some cases. This could well be caused by the symmetric schemes counting pairings 

that would not have an effect in a natural cell, since the same behaviour is not 

observed anywhere near as often in the presynaptic-centred and nearest spike 

schemes. 

 

We found that the choice of synaptic plasticity model can have a profound effect 

on the accuracy of the  results, with some models completely failing to reproduce any 

of the characteristic behaviours found in experiment, namely conventional STDP and 

the unmodified Pfister rule. The failure of conventional STDP shows that the theory 

alone is likely incapable of a complete description of synaptic plasticity, lending 

credence to the many variations on its implementation. However, the failure of the 

Pfister rule must be considered in light of the fact that it was not designed for 

hippocampal cells, nor for a system with random inputs such as ours.  

 

A possible link between exhibition of heterosynaptic LTD and metaplasticity in the 

model was found, possibly explaining why there was such variance in the success of 

the models. This is shown by the reproduction of the heterosynaptic LTD only in 

models with metaplasticity - namely the Benuskova & Abraham rule, the modified 

Pfister rule, and the Clopath rule. This lends credence to the idea of metaplasticity in 
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general, and specifically to BCM-like metaplasticity, especially when considered 

alongside STDP such as in Izhikevich & Desai (2003). 

 

Our studies open the door to further investigation of the synaptic plasticity models 

examined here, perhaps on other experiments with other types of cell, or merely 

attempting the same exercise under a different neuron model. However, there are a 

great number of avenues for investigation in this field, more than can be considered in 

a single work - synaptic plasticity is still a theory in relative infancy and a great deal 

more research is needed for it in general. 
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Appendix 1: Presynaptic-centred Benuskova & Abraham implementation code 

 

#include<stdio.h> 

#include<stdlib.h> 

#include<math.h> 

#include<sys/time.h> 

 

typedef struct _neuron *neuron; 

 

neuron make_neuron_struct(); 

void init_neuron_memory(neuron n); 

neuron make_neuron(); 

void spontaneous_input(int time, neuron single_cell); 

void test_input(int time, neuron single_cell); 

void Med50(int time, neuron single_cell); 

void Lat50(int time, neuron single_cell); 

void cycle_cell(int time, neuron single_cell); 

void stdp_train_cell(int time, neuron single_cell); 

void bcm_threshold(int time, neuron single_cell); 

void test_sample(int time, neuron single_cell); 

void run_simulation(int time); 

void getTime(long *z); 

 

#define SIMULATION_PERIOD  25200000 //Number of time steps 

#define SPONT_PERIOD   3600000 //Period before HFS, spontaneous only 

#define MED_ONSET   5400000 //Medial HFS onset 

#define LAT_ONSET   19800000 //Lateral HFS onset 

#define BASELINE_START          2400000 //Start time to calculate baseline weight 

#define BASELINE_STOP           3600000 //Stop time to calculate baseline weight 

#define MIN30   1800000 //30 minutes 

#define MIN10   600000 //10 minutes 

#define MIN1   60000 //1 minute 

 

#define TIME_STEP  1 //Time step in ms 

#define SAMPLE_PERIOD   60000 //Time step between samples 

#define minutes   60000.0  

#define TEST_PERIOD  10000 //Interval between test pulses 

 

#define TEST_INTENSITY  150 //number of input fibers engaged by the test 

stimulus 

#define TRAIN_INTENSITY  250 //total number of input fibers 

#define AP   55.0 //Action potential peak 

#define P_HFS   0.4 //Probability of MPP firing during HFS 

#define P_theta   0.008//Probability of pp synchronous spont firing 

#define P_pp   0.0001//Probability of pp asynchronous spontaneous 

firing 

#define MAX    10000 //Maximum number of presynaptic spikes inbetween 

postsynaptic 

#define LENGTH   420  // length of simulation in minutes 

 

#define TAU   60000 //Integration period 

#define theta_M0  2000.0 //thetaM scaling parameter 

#define MAX_LOOP  30 

#define BOLTZMANN  0 

 

FILE *f_data, *f_voltage; 

/***********VARIABLES************/ 

 

//Initialisation 

double MPP_WEIGHT_INIT = 0.03; 

double LPP_WEIGHT_INIT = 0.03; 

double firing_theta = 24.0; //Excitation threshold 

 

//STDP parameters 

double tau_ltp = 20; 

double tau_ltd = 100; 

double A0_ltp = 0.02; 

double A0_ltd = 0.01; 

double upper_cap = 5; 

double lower_cap = 0.01; 

 

//Cell Parameters 

double coeff1 = 0.04; 

double coeff2 = 5; 

double coeff3 = 140; 
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double coeff4 = 1; 

 

double a = 0.02; 

double b = 0.2; 

double c = -69.0; 

double d = 2; 

 

int mpp_count = 0; 

int lpp_count = 0; 

 

//Other Vars 

int mpp_input, lpp_input, t1_gc, t2_gc, index_lpp, index_mpp; 

int t_lpp[MAX+1], t_mpp[MAX+1]; 

int last_mpp_test, last_lpp_test, last_sample; 

int N_MPP, N_LPP; 

int loop, k, burst, train, impulse; 

double input, rnd, av_frequency, mpp_thetaM[MAX+1], lpp_thetaM[MAX+1]; 

double av_mpp_weight[LENGTH + 2], av_lpp_weight[LENGTH + 2], av_thetaM[LENGTH + 2], 

square_mpp_weight[LENGTH + 2], square_lpp_weight[LENGTH + 2], square_theta_M[LENGTH + 

2]; 

 

 

/**********STRUCTURES************/ 

struct _neuron{ 

 double v; 

 double u; 

 int output; 

 

 double mpp_weight; 

 double lpp_weight; 

 

  double baseline_mpp; 

  double baseline_lpp; 

 

 double theta_M; 

 double mem; 

 double pf; 

 double boltzfactor; 

}; 

 

/***********INITIALISATION*********/ 

neuron make_neuron_struct(){ 

 neuron n; 

 

 n = (neuron) malloc(sizeof(struct _neuron)); 

  

 n->v = c; 

 n->u = b*c; 

 n->output = 0; 

 

 n->mpp_weight = MPP_WEIGHT_INIT; 

 n->lpp_weight = LPP_WEIGHT_INIT; 

  

 n->baseline_mpp = MPP_WEIGHT_INIT; 

 n->baseline_lpp = LPP_WEIGHT_INIT; 

 

 n->theta_M = 1.0; 

 n->mem = 0.0; 

 n->pf = 1.0; 

 n->boltzfactor = 0.0; 

 

 return n; 

} 

 

void init_neuron_memory(neuron n){ 

 n->boltzfactor = exp(-((double) TIME_STEP/ (double)TAU)); 

 if(BOLTZMANN == 0){ 

  n->pf = 1.0 / (1 - n->boltzfactor); 

 }else{ 

  n->pf = 1.0; 

 } 

} 

 

neuron make_neuron(){ 

 neuron n; 

 

 n = make_neuron_struct(); 
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 init_neuron_memory(n); 

 

 return n; 

} 

 

 

/*******SIMULATION***********/ 

 

void run_simulation(int t){ 

 int time, i; 

 neuron single_cell; 

 single_cell = make_neuron(); 

 

 for(i = 0; i<MAX; i++){ 

  t_mpp[i] =0; 

  t_lpp[i] = 0; 

  mpp_thetaM[i] = 0.0; 

  lpp_thetaM[i] = 0.0; 

 } 

 

 rnd = 0.0;  

 av_frequency = 0; 

 last_mpp_test = 0; 

 last_lpp_test = 0; 

 t1_gc = 0; 

 t2_gc = 0; 

 index_lpp = 0; 

 index_mpp = 0; 

 last_sample = 0; 

 burst = 1; 

 train = 1; 

 impulse = 1; 

 mpp_input = 0; 

 lpp_input = 0; 

 k = 0; 

 

 time = 0; 

  

 while(time <= t){ 

   if(time>= BASELINE_START && time <= BASELINE_STOP){ 

     if(time == BASELINE_START){ 

       single_cell->baseline_mpp = single_cell->mpp_weight; 

       single_cell->baseline_lpp = single_cell->lpp_weight; 

     } else { 

       single_cell->baseline_mpp = (single_cell->baseline_mpp + single_cell-

>mpp_weight)/2; 

       single_cell->baseline_lpp = (single_cell->baseline_lpp + single_cell-

>lpp_weight)/2; 

     } 

   } 

 

  if((time < MED_ONSET) || ((time > (MED_ONSET+MIN10)))){// && (time < 

LAT_ONSET)) || (time > (LAT_ONSET+MIN10))){ 

   spontaneous_input(time, single_cell); 

  } 

 

  if(((time > SPONT_PERIOD) && (time < MED_ONSET)) || ((time > 

(MED_ONSET+MIN10)))){// && (time < LAT_ONSET)) ||(time > (LAT_ONSET+MIN10))){ 

   test_input(time, single_cell); 

  } 

   

  if(time >= (MED_ONSET - 10000)&& time <= (MED_ONSET+10000)){ 

  fprintf(f_voltage, "%d %lf\n", time-MED_ONSET, single_cell->v); 

  } 

 

  if((time>=MED_ONSET) && (time <= (MED_ONSET+MIN10))){ 

   Med50(time, single_cell); 

  } 

   

  if((time>=LAT_ONSET) && (time <= (LAT_ONSET+MIN10))){ 

  // Lat50(time, single_cell); 

  } 

 

  if(time == 9000000){ 

    if(single_cell->mpp_weight > single_cell->lpp_weight){ 

      mpp_count = mpp_count + 1; 

    } else { 
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      lpp_count = lpp_count + 1; 

    } 

  } 

 

  cycle_cell(time, single_cell); 

 

  if((time == t2_gc) && (t1_gc > 0)){ 

    stdp_train_cell(time, single_cell); 

  } 

 

  bcm_threshold(time, single_cell); 

  test_sample(time, single_cell); 

  time  = time + TIME_STEP; 

 } 

 

 av_frequency = av_frequency / (double)SIMULATION_PERIOD*1000; 

 printf("Average output frequency\t"); 

 printf("%lf Hz\n", av_frequency); 

} 

 

/************SPONTANEOUS INPUT*************/ 

void spontaneous_input(int time, neuron n){ 

  

 mpp_input = 0; 

 lpp_input = 0; 

 

 //correlated inputs 

 rnd = (double)(random())/(double)RAND_MAX; 

 if(P_theta > rnd){ 

  mpp_input = 1; 

  N_MPP = TRAIN_INTENSITY; 

  lpp_input = 1; 

  N_LPP = TRAIN_INTENSITY; 

   

  if(t1_gc > 0){ 

   if((index_mpp <MAX)&&(index_lpp<MAX)&&(time>t2_gc)){ 

    t_mpp[index_mpp] = time; 

    t_lpp[index_lpp] = time; 

    mpp_thetaM[index_mpp] = n->theta_M; 

    lpp_thetaM[index_lpp] = n->theta_M; 

    index_mpp = index_mpp + 1; 

    index_lpp = index_lpp + 1; 

   } 

  } 

 } 

 

 //Asynchronous spontaneous LPP input 

 rnd = (double)(random())/(double)RAND_MAX; 

 if((lpp_input == 0) && (P_pp > rnd)){ 

  lpp_input = 1; 

  N_LPP = TRAIN_INTENSITY; 

   

  if(t1_gc > 0){ 

   if((index_lpp <MAX) && (time>t2_gc)){ 

    t_lpp[index_lpp] = time; 

    lpp_thetaM[index_lpp] = n->theta_M; 

    index_lpp = index_lpp + 1; 

   } 

  } 

 } 

 

 

 //Asynchronous spontaneous MPP input 

 rnd = (double)(random())/(double)RAND_MAX; 

 if((mpp_input == 0) && (P_pp > rnd)){ 

  mpp_input = 1; 

  N_MPP = TRAIN_INTENSITY; 

 

  if(t1_gc > 0 ){ 

   if((index_mpp < MAX) && (time > t2_gc)){ 

    t_mpp[index_mpp] = time; 

    mpp_thetaM[index_mpp] = n->theta_M; 

    index_mpp = index_mpp + 1; 

   } 

  } 

 } 

} 
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/******************TEST INPUT******************/ 

void test_input(int time, neuron n){ 

 

 if((time >= (SPONT_PERIOD+10000)) && (time - last_mpp_test >= 2*TEST_PERIOD)){ 

  last_mpp_test = time; 

  if(mpp_input==0){ 

   mpp_input = 1; 

   N_MPP = TEST_INTENSITY; 

   if(t1_gc>0){ 

    if((index_mpp<MAX) && (time > t2_gc)){ 

     t_mpp[index_mpp] = time; 

     mpp_thetaM[index_mpp] = n->theta_M; 

     index_mpp = index_mpp + 1; 

    } 

   } 

  } 

 } 

 

 if((time >= (SPONT_PERIOD+20000)) && (time - last_lpp_test >= 2*TEST_PERIOD)){ 

  last_lpp_test = time; 

  if(lpp_input == 0){ 

   lpp_input = 1; 

   N_LPP = TEST_INTENSITY; 

 

   if(t1_gc > 0){ 

    if((index_lpp < MAX) && (time > t2_gc)){ 

     t_lpp[index_lpp] = time; 

     lpp_thetaM[index_lpp] = n->theta_M; 

     index_lpp = index_lpp + 1; 

    } 

   } 

  } 

 } 

} 

 

 

 

/***************MPP HFS******************/ 

void Med50(int time, neuron n){ 

  

 mpp_input = 0; 

 lpp_input = 0; 

  

 //10 bursts of 5 trains 

 if((time >= (MED_ONSET + (burst-1)*MIN1 + (train-1)*1000 + (train-1)*25)) &&  

(time <= (MED_ONSET + (burst-1)*MIN1 + (train-1)*1000 + (train-1)*25 + 25))){ 

 

  rnd = (double)(random())/(double)RAND_MAX; 

  if(P_HFS > rnd){ 

   mpp_input = 1; 

   N_MPP = TRAIN_INTENSITY; 

 

   if(t1_gc >0){ 

    if((index_mpp < MAX) && (time >t2_gc)){ 

     t_mpp[index_mpp] = time;  

               mpp_thetaM[index_mpp] = n->theta_M; 

     index_mpp = index_mpp + 1; 

    } 

   } 

  } 

 

  if(impulse == 26){ 

   train = train + 1; 

   impulse = 1; 

  } 

  if(train == 6){ 

   burst = burst + 1; 

   train = 1; 

  } 

  impulse = impulse + 1; 

 

  //Spontaneous LPP input 

  rnd = (double)(random())/(double)RAND_MAX; 

  if((P_theta + P_pp) > rnd){ 

   lpp_input = 1; 
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   N_LPP = TRAIN_INTENSITY; 

 

   if(t1_gc > 0){ 

    if((index_lpp < MAX) && (time > t2_gc)){ 

     t_lpp[index_lpp] = time; 

     lpp_thetaM[index_lpp] = n-> theta_M; 

     index_lpp = index_lpp + 1; 

    } 

   } 

  } 

 } 

 else{ 

  //Inter-burst spontaneous LPP input 

  rnd = (double)(random())/(double)RAND_MAX; 

  if((P_theta+P_pp) > rnd) { 

          lpp_input = 1;  

   N_LPP = TRAIN_INTENSITY; 

          if(t1_gc > 0){  

    if((index_lpp < MAX) && (time > t2_gc)){ 

     t_lpp[index_lpp] = time;  

               lpp_thetaM[index_lpp] = n->theta_M; 

               index_lpp = index_lpp + 1; 

             } 

   } 

         }   

   //Inter-burst spontaneous MPP input 

     rnd = (double)(random())/(double)RAND_MAX;    

      if((P_theta+P_pp) > rnd) { 

          mpp_input = 1;  

   N_MPP = TRAIN_INTENSITY; 

          if(t1_gc > 0){  

    if((index_mpp < MAX) && (time > t2_gc)){ 

     t_mpp[index_mpp] = time;  

               mpp_thetaM[index_mpp] = n->theta_M; 

               index_mpp = index_mpp + 1; 

             } 

   } 

         }                 

       test_input(time, n);         

 } 

 

 if(time == (MED_ONSET + MIN10)){ 

  last_mpp_test = MED_ONSET + MIN10 - 10000; 

  last_lpp_test = MED_ONSET + MIN10; 

  burst = 1; 

  train = 1; 

  impulse = 1; 

 } 

} 

 

 

/***************LPP HFS******************/ 

void Lat50(int time, neuron n){ 

  

 mpp_input = 0; lpp_input = 0; 

 

 //10 bursts of 5 trains 

 if((time >= (LAT_ONSET + (burst-1)*MIN1 + (train-1)*1000 + (train-1)*25)) &&  

 (time <= (LAT_ONSET + (burst-1)*MIN1 + (train-1)*1000 + (train-1)*25 + 25))){ 

   

  rnd = (double)(random())/(double)RAND_MAX; 

  if(P_HFS > rnd){ 

   lpp_input = 1; 

   N_LPP = TRAIN_INTENSITY; 

 

   if(t1_gc > 0){ 

    if((index_lpp <MAX)&&(time >t2_gc)){ 

     t_lpp[index_lpp] = time;  

               lpp_thetaM[index_lpp] = n->theta_M; 

     index_lpp = index_lpp + 1; 

    } 

   } 

  } 

 

  if(impulse == 26){ 

   train = train+1; 

   impulse = 1; 
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  } 

  if(train == 6){ 

   burst = burst + 1; 

   train = 1; 

  } 

  impulse = impulse + 1; 

 

  //Spontaneous MPP input 

  rnd = (double)(random())/(double)RAND_MAX; 

  if((P_theta + P_pp) > rnd){ 

   mpp_input = 1; 

   N_MPP = TRAIN_INTENSITY; 

 

   if(t1_gc > 0){ 

    if((index_mpp < MAX) && (time > t2_gc)){ 

     t_mpp[index_mpp] = time; 

     mpp_thetaM[index_mpp] = n->theta_M; 

     index_mpp = index_mpp + 1; 

    } 

   } 

  } 

 } 

 else{ 

  //Inter-burst spontaneous LPP input 

     rnd = (double)(random())/(double)RAND_MAX;    

      if((P_theta+P_pp) > rnd){ 

          lpp_input = 1; 

   N_LPP = TRAIN_INTENSITY;       

   if(t1_gc > 0){  

    if((index_lpp < MAX) && (time > t2_gc)){ 

     t_lpp[index_lpp] = time;  

               lpp_thetaM[index_lpp] = n->theta_M; 

               index_lpp = index_lpp + 1; 

             } 

   } 

        }   

   //Inter-burst spontaneous MPP input 

  rnd = (double)(random())/(double)RAND_MAX;    

      if((P_theta+P_pp) > rnd){ 

          mpp_input = 1; 

   N_MPP = TRAIN_INTENSITY;    

   if(t1_gc > 0){  

    if((index_mpp < MAX) && (time > t2_gc)){ 

     t_mpp[index_mpp] = time;  

               mpp_thetaM[index_mpp] = n->theta_M; 

               index_mpp = index_mpp + 1; 

             } 

   } 

        }                 

      test_input(time, n);         

 } 

 if(time==(LAT_ONSET+MIN10)){ 

  last_mpp_test = LAT_ONSET+MIN10-10000; 

  last_lpp_test = LAT_ONSET + MIN10; 

 } 

} 

 

 

/*********Update neuron*************/ 

 

void cycle_cell(int time, neuron n){ 

   

 n->output = 0; 

  

 if(n->v >= AP){ 

  n->v = c; 

  n->u = n->u + d; 

 }else{ 

  input = mpp_input*n->mpp_weight*N_MPP + lpp_input*n->lpp_weight*N_LPP; 

  n->v = n->v + coeff1*(n->v*n->v) + coeff2*n->v + coeff3 - coeff4*n->u + 

input; 

 

  n->u = n->u + a*(b*n->v - n->u); 

 

  if(n->v >= firing_theta){ 

   n->v = AP; 

   n->output = 1; 
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   av_frequency = av_frequency + 1;                        

 

   if(t1_gc == 0){ 

    t1_gc = time; 

    t2_gc = time; 

   } else { 

    t1_gc = t2_gc; 

    t2_gc = time; 

   } 

  }    

 } // end of else 

} 

 

/**************STDP**************/ 

void stdp_train_cell(int time, neuron n){ 

 double ltp, ltd, A_ltp, A_ltd; 

 int j; 

  

 index_lpp = 0; 

 index_mpp = 0; 

 

 while(index_mpp < MAX){ 

  if(t_mpp[index_mpp] == 0){ 

   index_mpp = MAX; 

  }else{ 

       if(mpp_thetaM[index_mpp] > 0.01 && 

          mpp_thetaM[index_mpp] < 100){ 

     A_ltp = A0_ltp*(1/mpp_thetaM[index_mpp]); 

     A_ltd = A0_ltd*(mpp_thetaM[index_mpp]); 

        } 

   if(t2_gc > t_mpp[index_mpp]){ 

    ltp = A_ltp * exp(-(t2_gc - t_mpp[index_mpp])/tau_ltp); 

   } 

   if(t1_gc < t_mpp[index_mpp]){ 

    ltd = A_ltd * exp((t1_gc - t_mpp[index_mpp])/tau_ltd); 

   } 

 

   n->mpp_weight = n->mpp_weight*(1 + ltp-ltd); 

    

   //Caps. These are bad. 

   if(n->mpp_weight < lower_cap){ 

    n->mpp_weight = lower_cap; 

   } 

   if(n->mpp_weight > upper_cap){ 

    n->mpp_weight = upper_cap; 

   } 

   index_mpp = index_mpp + 1; 

  } 

 } 

 

 while(index_lpp < MAX){ 

    if(t_lpp[index_lpp] == 0){ 

   index_lpp = MAX; 

  }else{ 

         if(lpp_thetaM[index_lpp] > 0.001 &&  

            lpp_thetaM[index_lpp]<1000){ 

      A_ltp = A0_ltp*(1/lpp_thetaM[index_lpp]); 

      A_ltd = A0_ltd*(lpp_thetaM[index_lpp]); 

           } 

    if(t2_gc > t_lpp[index_lpp]){ 

    ltp = A_ltp * exp(-(t2_gc - t_lpp[index_lpp])/tau_ltp); 

   } 

   if(t1_gc < t_lpp[index_lpp]){ 

    ltd = A_ltd * exp((t1_gc - t_lpp[index_lpp])/tau_ltd); 

   } 

 

   n->lpp_weight = n->lpp_weight * (1+ltp-ltd); 

    

 

   //Caps. These are bad. 

   if(n->lpp_weight < lower_cap){ 

    n->lpp_weight = lower_cap; 

   } 

   if(n->lpp_weight > upper_cap){ 

     n->lpp_weight = upper_cap; 

   } 

   index_lpp = index_lpp + 1; 
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  } 

 } 

 

 for(j = 0; j<MAX; j++){ 

  t_mpp[j] = 0; 

  t_lpp[j] = 0; 

  mpp_thetaM[j] = 0.0; 

  lpp_thetaM[j] = 0.0; 

 } 

  

 index_mpp = index_lpp = 0; 

 t1_gc = t2_gc; 

} 

 

/*****************BCM*********************/ 

void bcm_threshold(int time, neuron n){ 

 n->mem = (n->mem*(n->pf - 1.0) + (n->output*n->output))/n->pf; 

 n->pf = n->pf*n->boltzfactor + 1.0; 

 n->theta_M = theta_M0*n->mem; 

} 

 

 

 

/**************Testing**************/ 

void test_sample(int time, neuron n){ 

 double percent_mpp_w, percent_lpp_w; 

 

 if((time ==0) || (time - last_sample >= SAMPLE_PERIOD)){ 

  last_sample = time; 

  percent_mpp_w = 100*(n->mpp_weight-n->baseline_mpp)/n->baseline_mpp; 

  percent_lpp_w = 100*(n->lpp_weight-n->baseline_lpp)/n->baseline_lpp; 

 

  av_mpp_weight[k] = av_mpp_weight[k] + n->mpp_weight; 

  square_mpp_weight[k] = square_mpp_weight[k] + n->mpp_weight*n-

>mpp_weight; //for S.D. 

  av_lpp_weight[k] = av_lpp_weight[k] + n->lpp_weight; 

  square_lpp_weight[k] = square_lpp_weight[k] + n->lpp_weight*n-

>lpp_weight;  //for S.D. 

  av_thetaM[k] = av_thetaM[k] + n->theta_M; 

  square_theta_M[k] = square_theta_M[k] + n->theta_M*n->theta_M; 

  k = k+1; 

 } 

} 

 

/*************** random seed *****/ 

void getTime(long *z){ 

 struct timeval tp; 

 struct timezone tzp; 

 

 gettimeofday(&tp, &tzp); 

 *z = tp.tv_usec; 

} 

  

 

/**********MAIN***********/ 

int main(void){ 

 int i; 

 long z; 

 double var_mpp; 

 double var_lpp; 

 double var_theta; 

 getTime(&z); 

 srandom(z); 

  

 for(i = 0; i<= LENGTH; i++){ 

  av_mpp_weight[i] = 0.0; 

  av_lpp_weight[i] = 0.0; 

  av_thetaM[i] = 0.0; 

 } 

  

 f_voltage = fopen("voltage.dat", "w"); 

 

 for(i = 0; i < MAX_LOOP; i++){ 

  run_simulation(SIMULATION_PERIOD); 

 } 

 

 f_data = fopen("data.dat", "w"); 
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 for(i = 0; i<= LENGTH; i  = i + 1){ 

   var_mpp = (square_mpp_weight[i]/MAX_LOOP) - 

(av_mpp_weight[i]/MAX_LOOP)*(av_mpp_weight[i]/MAX_LOOP); 

   var_lpp = (square_lpp_weight[i]/MAX_LOOP) - 

(av_lpp_weight[i]/MAX_LOOP)*(av_lpp_weight[i]/MAX_LOOP); 

   var_theta = (square_theta_M[i]/MAX_LOOP) - 

(av_thetaM[i]/MAX_LOOP)*(av_thetaM[i]/MAX_LOOP); 

 

   fprintf(f_data, "%d\t%6.3lf\t%6.3lf\t%6.3lf\t%6.3lf\t%6.3lf\t%6.3lf\n", i-60, 

av_mpp_weight[i]/MAX_LOOP,sqrt(var_mpp), av_lpp_weight[i]/MAX_LOOP, sqrt(var_lpp), 

av_thetaM[i]/MAX_LOOP, sqrt(var_theta)); 

 } 

 printf("MPP potentiated: %d times\nLPP potentiated %d times\n", mpp_count, 

lpp_count); 

 fclose(f_data); 

 fclose(f_voltage); 

 

 return 1; 

} 
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Appendix 2: Synaptic Plasticity routines for other STDP models 

 

Note: This is not complete code, but is extracts taken from the relevant portions of 

the programs for illustration. Compare with Appendix 2 for details on how these 

would be implemented; these are very much "drop in" replacements. 

 

Conventional STDP:  

 
A_ltp = A0_ltp; 

A_ltd = A0_ltd; 

if(t2_gc > t_lpp[index_lpp]){ 

 ltp = A_ltp * exp(-(t2_gc - t_lpp[index_lpp])/tau_ltp); 

} 

if(t1_gc < t_lpp[index_lpp]){ 

 ltd = A_ltd * exp((t1_gc - t_lpp[index_lpp])/tau_ltd); 

} 

 

n->lpp_weight = n->lpp_weight * (1+ltp-ltd) - decay*n->lpp_weight; 

    

 

Froemke:  

 
e_t1 = 1 - exp(-(t1_gc - t3_gc)/sup_post); 

e_t2 = 1 - exp(-(t2_gc - t1_gc)/sup_post); 

 

 

e_pre = 1 - exp(-(t_mpp[index_mpp] - t_mpp[index_mpp - 1])/sup_pre); 

 

A_ltp = A0_ltp; 

A_ltd = A0_ltd; 

if(t2_gc > t_mpp[index_mpp]){ 

 ltp =e_t2*e_pre*A_ltp * exp(-(t2_gc - t_mpp[index_mpp])/tau_ltp); 

} 

if(t1_gc < t_mpp[index_mpp]){ 

 ltd = e_t1*e_pre*A_ltd*exp((t1_gc - t_mpp[index_mpp])/tau_ltd); 

} 

 

n->mpp_weight = n->mpp_weight*(1 + ltp-ltd) - decay*n->mpp_weight; 

 

Pfister:  
 

//At each MPP spike 

r1_mpp = r1_mpp + 1; 

r2_mpp = r2_mpp + 1; 

 

//At each LPP spike 

r1_lpp = r1_lpp + 1; 

r2_lpp = r2_lpp + 1; 

 

//At each postsynaptic spike 

o1 = o1 + 1; 

o2 = o2 + 1; 

 

//This is done at each cycle of the cell 

r1_mpp = r1_mpp - r1_mpp/tau_ltp; 

r1_lpp = r1_lpp - r1_lpp/tau_ltp; 

r2_mpp = r2_mpp - r2_mpp/tau_x; 

r2_lpp = r2_lpp - r2_lpp/tau_x; 

 

o1 = o1 - o1/tau_ltd; 

o2 = o2 - o2/tau_y; 

 

//Main STDP routine 

if(t2_gc > t_mpp[index_mpp]){ 

 ltp = r1_mpp*(A2_ltp + A3_ltp*o2*(t2_gc - t_mpp[index_mpp])); 

} 

if(t1_gc < t_mpp[index_mpp]){ 

 ltd = o1*(A2_ltd + A3_ltd*r2_mpp*(t1_gc - t_mpp[index_mpp])); 

} 

 

n->mpp_weight = n-> mpp_weight *(1 +  ltp - ltd) - n->mpp_weight*decay; 
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Metaplastic Pfister:  
 

A2_ltp_eff = A2_ltp*(1/lpp_thetaM[index_lpp]); 

A3_ltp_eff = A3_ltp*(1/lpp_thetaM[index_lpp]); 

A2_ltd_eff = A2_ltd*(lpp_thetaM[index_lpp]); 

A3_ltd_eff = A3_ltd*(lpp_thetaM[index_lpp]); 

 

if(t2_gc > t_lpp[index_lpp]){ 

 ltp = r1*(A2_ltp_eff + A3_ltp_eff*o2*(t2_gc - t_lpp[index_lpp])); 

 } 

if(t1_gc < t_lpp[index_lpp]){ 

 ltd = o1*(A2_ltd_eff + A3_ltd_eff*r2*(t1_gc - t_lpp[index_lpp])); 

 } 

 

n->lpp_weight = n->lpp_weight*(1+ ltp - ltd) - n->lpp_weight*decay; 

 

 

Clopath:  
 

//At each MPP spike 

X_mpp++; 

 

//At each LPP spike 

X_lpp++; 

 

//Main STDP procedure 

void update_cell(neuron n){ 

  double A_ltp, A_ltd; 

  A_ltp = A0_ltp; // no meta 

  A_ltd = A0_ltd*n->theta_M; //Updated according to v. dependence 

 

  u_minus = u_minus + (1/tau_ltd)*(n->v - u_minus); 

  u_plus = u_plus + (1/tau_ltp)*(n->v - u_plus); 

  x_lpp = x_lpp + (1/tau_x)*(X_lpp - x_lpp); 

  x_mpp = x_mpp + (1/tau_x)*(X_mpp - x_mpp); 

 

  //LTP contribs 

  if(n->v > theta_plus && u_plus > theta_minus){ 

    if(n->lpp_weight < upper_cap){ 

      w_lpp_plus = A_ltp*x_lpp*(n->v - theta_plus)*(u_plus - theta_minus); 

    } 

    if(n->mpp_weight < upper_cap){ 

      w_mpp_plus = A_ltp*x_mpp*(n->v - theta_plus)*(u_plus - theta_minus); 

    } 

  } 

 

  //LTD contribs 

  if(u_minus > theta_minus){ 

    if(n->lpp_weight > lower_cap){ 

      w_lpp_minus = A_ltd*X_lpp*(u_minus - theta_minus); 

    } 

    if(n->mpp_weight > lower_cap){  

      w_mpp_minus = A_ltd*X_mpp*(u_minus - theta_minus); 

    } 

  } 

 

  //Update weights 

  n->mpp_weight = n->mpp_weight + w_mpp_plus - w_mpp_minus; 

  n->lpp_weight = n->lpp_weight + w_lpp_plus - w_lpp_minus; 

 

  n->mpp_weight = n->mpp_weight - decay*n->mpp_weight; 

  n->lpp_weight = n->lpp_weight - decay*n->lpp_weight; 

 

  w_mpp_minus = 0; 

  w_lpp_minus = 0; 

  w_mpp_plus = 0; 

  w_lpp_plus = 0; 

} 



80 

Appendix 3: List of Acronyms 

 

AMPA: α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid. 

BCM: Bienenstock - Cooper - Munro, used specifically in reference to their 

synaptic plasticity model. 

CA: Cornu ammonis, i.e. Ammon's horn.  

HFS: High-frequency stimulation. 

LPP: Lateral perforant path. 

LTD: Long-term depression. 

LTP: Long-term potentiation. 

NMDA: N-Methyl-D-aspartic acid 

MPP: Medial perforant path. 

STDP: Spike timing dependent plasticity. 


