Inactivation of a Thiol-Dependent Enzyme by Urate Hydroperoxide

A Bachelor of Biomedical Science Honours Thesis

Melanie Hamzah
27/10/15
Abstract

There are links between high serum urate (hyperuricemia) and many inflammatory diseases, yet the mechanism is obscure. Urate, the product of purine and ATP break down, builds up in plasma because humans lack the enzyme uricase to convert it to allantoin, which is freely excreted. Urate may benefit health by acting as an antioxidant that scavenges reactive oxygen species. However, hyperuricemia is associated with gout, metabolic syndrome and cardiovascular disease. Oxidative stress is also associated with all these inflammatory diseases.

During oxidative stress urate is converted to several reactive electrophiles, including urate hydroperoxide. This novel oxidant could contribute to the adverse effects of urate. Urate hydroperoxide is formed when urate is oxidized to a radical that subsequently combines with superoxide. Activated white blood cells called neutrophils, and xanthine oxidase along with myeloperoxidase/lactoperoxidase, can produce urate hydroperoxide. Previous studies characterized the formation of urate hydroperoxide and its oxidation of small biomolecules. In this investigation, I explored oxidation of thiols and the thiol-dependent enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by urate hydroperoxide. The effectiveness of urate hydroperoxide as a thiol oxidant was compared with taurine chloramine.

Ellman’s assay for reduced thiols was used to measure depletion of cysteine residues on GAPDH by urate hydroperoxide and taurine chloramine. GAPDH was exposed to oxidants in a dose-dependent manner, then assayed by measuring its ability to catalyse the production of NADH. Mass spectrometry was used to identify specific modifications of GAPDH.

Urate hydroperoxide oxidized exposed thiols on GAPDH and fully inactivated the enzyme at a ratio of about 5:1. Half of its activity was recovered by reduction with DTT. In comparison, taurine chloramine inactivated GAPDH at approximately 10:1 and DTT reduction recovered all activity. Hence, urate hydroperoxide inactivates GAPDH by reversible and irreversible routes. GAPDH increased in molecular mass by 132 Da with exposure to urate hydroperoxide, indicating the formation of a GAPDH-urate adduct. However, I could not identify which residue was modified with a tryptic digest. Formation of urate hydroperoxide during inflammation and its subsequent oxidative reactions may explain some of the adverse effects of hyperuricemia.
Preface

Dedications

I wish the best for my fellow BBiomedSci Honours students: Anishah Mandani, Mark Brinsden, Millie Taylor, Morgan Jones, Sarah Drake and Rebekah Crake.

Thank you lab mates and friends: Annika Seddon, Andrew Das, Bee Banish, Harry Hua, Masuma Zawari, Shufuka Nazari, Simone Bayer and Teagan Hoskin.

Thank you Alexander Peskin, Heather Parker, Louisa Forbes, Markus Dagnell, Paul Pace and Rufus Turner for your help in the lab.

Thank you everyone from the University of Otago Christchurch Centre for Free Radical Research and Pathology department for welcoming me with open arms.

Thank you Louise Paton for performing mass spectrometry on my samples.

To my wonderful supervisors, Tony Kettle and Mark Hampton, thank you for the advice and setting me down this path.

To my oldest and dearest friend Renee O’Halloran, thanks to being my sounding board and support beam.

Finally, I owe everything to my family. Mum, Dad, Sarah, Emilie and Adam; thank you for always being there.
# Table of Contents

Abstract .......................................................................................................................... 2
Preface ............................................................................................................................ 3
Dedications ..................................................................................................................... 3
List of Tables ................................................................................................................. 6
List of Illustrations and Figures .................................................................................... 7
List of Abbreviations .................................................................................................... 8
Chapter 1. Literature Review ......................................................................................... 10
  1.1 Introduction ............................................................................................................. 10
  1.2 Urate and Cardiovascular Disease ........................................................................ 12
  1.3 Urate and Inflammation ....................................................................................... 15
  1.3.1 NLRP3 Inflammasome ..................................................................................... 15
  1.3.2 Nitric Oxide ..................................................................................................... 16
  1.3.3 Proinflammatory Cytokines ............................................................................ 16
  1.4 Urate as an Antioxidant ....................................................................................... 17
  1.4.1 Singlet Oxygen, Peroxyl and Hydroxyl Radicals ............................................. 18
  1.4.2 Peroxynitrite ................................................................................................... 18
  1.4.3 Oxo-Heme Oxidants ..................................................................................... 19
  1.4.4 Metal Ion Coordination ................................................................................. 19
  1.5 Urate as a Pro-oxidant ....................................................................................... 19
  1.5.1 Low Density Lipoprotein ................................................................................ 20
  1.5.2 NADPH Oxidase ............................................................................................ 21
  1.5.3 Inactivation of Enzymes ............................................................................... 22
  1.5.4 Urate Hydroperoxide ..................................................................................... 23
  1.6 Conclusion ........................................................................................................... 25
  1.7 Summary ............................................................................................................. 26
Chapter 2. Optimising the Formation of Urate Hydroperoxide .................................... 27
  2.1 Introduction ........................................................................................................... 27
  2.2 Materials and Methods ....................................................................................... 30
  2.2.1 Materials ....................................................................................................... 30
  2.2.2 Cytochrome C Assay of Superoxide Production by Xanthine Oxidase .......... 31
  2.2.3 Xanthine Oxidase/Lactoperoxidase System Photometry ............................... 31
  2.2.4 Modified Ferrous Oxidation Xylenol Orange Assay for Hydroperoxides .... 32
  2.2.5 Statistical Analysis ......................................................................................... 34
  2.2.6 Graphs ............................................................................................................ 34
2.3 Results .......................................................................................................................... 35
2.3.1 Superoxide Production by Xanthine Oxidase .......................................................... 35
2.3.2 Xanthine Oxidase/Lactoperoxidase System Photometry ......................................... 36
2.3.3 FOX Assay of Urate Hydroperoxide ....................................................................... 38
2.4 Discussion .................................................................................................................... 42
Chapter 3. Urate Hydroperoxide and Reduced Thiols ......................................................... 43
3.1 Introduction .................................................................................................................. 43
3.2 Materials and Methods ............................................................................................... 45
3.2.1 Materials .................................................................................................................. 45
3.2.2 TMB Measurement of Taurine Chloramine ............................................................. 46
3.2.3 DTNB Assay for Reduced Thiols ............................................................................ 46
3.3 Results ......................................................................................................................... 48
3.3.1 DTNB Assay ............................................................................................................ 48
3.4 Discussion .................................................................................................................... 52
Chapter 4. Urate Hydroperoxide and Glyceraldehyde-3-Phosphate Dehydrogenase ......... 54
4.1 Introduction .................................................................................................................. 54
4.2 Materials and Methods ............................................................................................... 57
4.2.1 Materials .................................................................................................................. 57
4.2.2 GAPDH Assay ......................................................................................................... 58
4.2.3 NAD\(^+\) and NADH Photometry ......................................................................... 59
4.2.4 Continuous Inactivation of GAPDH by Urate Hydroperoxide .............................. 60
4.2.5 Discontinuous Inactivation of GAPDH by Oxidants .............................................. 61
4.2.6 Inactivation Kinetics for GAPDH .......................................................................... 62
4.2.7 Reactivation of GAPDH Following Dose-Dependent Inactivation by Oxidants .... 62
4.2.8 DTNB Measurement of Cysteine Residues on GAPDH ....................................... 63
4.2.9 Polyacrylamide Gel Electrophoresis ...................................................................... 64
4.2.10 GAPDH Mass Spectrometry ................................................................................ 65
4.3 Results ......................................................................................................................... 66
4.3.1 Optimising the GAPDH Assay .............................................................................. 66
4.3.2 GAPDH Inactivation by Continuous Urate Hydroperoxide Formation .............. 67
4.3.3 Discontinuous Inactivation of GAPDH .................................................................. 69
4.3.4 Inactivation Kinetics for GAPDH .......................................................................... 71
4.3.5 Reactivation of GAPDH with DTT ......................................................................... 73
4.3.6 Depletion of Cysteine Residues on GAPDH by Oxidants ...................................... 74
4.3.7 Polyacrylamide Gel Electrophoresis of GAPDH .................................................. 75
4.3.8 Mass Spectrometry of GAPDH .............................................................................. 78
4.4 Discussion ..................................................................................................................... 79

Chapter 5. Conclusions ..................................................................................................... 81

5.1 Summary of Findings .................................................................................................... 81
5.2 Strengths and Limitations ........................................................................................... 83
5.3 Recommendation for Future Work .............................................................................. 84

References ....................................................................................................................... 86

Appendix 1: Supplementary Figures .................................................................................. 96
Appendix 2: Supplementary Methods and Materials .......................................................... 105

5.1 Chapter 2 ...................................................................................................................... 105
5.2 Chapter 3 ...................................................................................................................... 106
5.3 Chapter 4 ...................................................................................................................... 108
5.3.1 Mass Spectrometry ................................................................................................. 110

**List of Tables**

**Table 1:** Studies that explored the clinical association between serum urate and cardiovascular disease. .......................................................................................................................... 14

**Table 2:** Description of substances and solutions used to perform the cytochrome c assay, ferrous oxidation-xylenol orange assay (FOX) and the xanthine oxidase/lactoperoxidase system. .............................................................................................................................. 30

**Table 3:** Description of substances and solutions used to perform the DTNB assay and prepare taurine chloramine and thiols. ...................................................................................... 45

**Table 4:** Description of substances and solutions used to perform the GAPDH assay, gel electrophoresis and mass spectrometry. ........................................................................................................ 57

**Table 5:** Species found during whole protein mass spectrometry of GAPDH treated with a low concentration of urate hydroperoxide. ..................................................................................... 78

**Table 6:** Volumes of substances used for the FOX assay of urate hydroperoxide formation. ................................................................................................................................. 105

**Table 7:** Samples made for the xanthine oxidase/lactoperoxidase system which was subsequently used to treat 70 µM cysteine or 30 µM glutathione. ................................................................................. 106

**Table 8:** Samples made for dose-dependent treatment of cysteine and glutathione with taurine chloramine. ...................................................................................................................... 107

**Table 9:** Samples made for dose-dependent exposure of glutathione to urate hydroperoxide. ................................................................................................................................. 107

**Table 10:** Xanthine oxidase/lactoperoxidase system in the quartz cuvette during continuous inactivation of GAPDH. ........................................................................................................ 108

**Table 11:** Xanthine oxidase/lactoperoxidase system samples used to treat GAPDH. ...... 109

**Table 12:** Sample composition for GAPDH reactivation experiment following inactivation by taurine chloramine. ........................................................................................................ 109

**Table 13:** Sample composition for the GAPDH reactivation experiment following inactivation by urate hydroperoxide. ........................................................................................................ 110
List of Illustrations and Figures

**Figure 1:** Oxidation of urate to allantoin in human serum.......................................................... 11
**Figure 2:** High serum urate due to a western diet can lead to inflammatory disease. ........ 13
**Figure 3:** Urate has an antioxidant cycle with ascorbate............................................................. 17
**Figure 4:** Urate’s pro-oxidant effects have physiological repercussions for inflammatory disease.......................................................... 20
**Figure 5:** Pathways for urate hydroperoxide formation *in vitro* and *in vivo* (theoretically) by photooxidation or inflammatory processes.......................................................... 24
**Figure 6:** A healthy human body balances pro-oxidant formation with the antioxidant defence system.................................................................................. 26
**Figure 7:** Riboflavin undergoes a photooxidation cycle to oxidise urate to urate hydroperoxide.................................................................................. 27
**Figure 8:** The xanthine oxidase/lactoperoxidase system to form urate hydroperoxide *in vitro*.................................................................................. 29
**Figure 9:** Optimised superoxide production by xanthine oxidase. ................................................. 35
**Figure 10:** Urate hydroperoxide absorption at 310 nm over time..................................................... 36
**Figure 11:** Absorbance of the xanthine oxidase/lactoperoxidase system........................................ 37
**Figure 12:** Urate hydroperoxide formed by the xanthine oxidase/lactoperoxidase system. 39
**Figure 13:** Optimising urate hydroperoxide formation (10 min reaction) by quadrupling urate and doubling xanthine oxidase.................................................. 40
**Figure 14:** Kinetics of urate hydroperoxide formation measured with the FOX assay............. 41
**Figure 15:** Consequences of glutathione depletion for a cell............................................................. 44
**Figure 16:** Depletion of free thiols by urate hydroperoxide............................................................ 49
**Figure 17:** Exposure of free thiols to dose-dependent taurine chloramine................................... 51
**Figure 18:** Dose-dependent depletion of glutathione by urate hydroperoxide............................... 52
**Figure 19:** Crystal structure and active site configuration of rabbit muscle GAPDH................. 55
**Figure 20:** Modifications of the GAPDH essential thiol formed during inactivation by oxidants.................................................................................. 56
**Figure 21:** Optimising the GAPDH assay....................................................................................... 66
**Figure 22:** GAPDH inactivation during continuous formation of urate hydroperoxide. .... 68
**Figure 23:** Inactivation of GAPDH by urate hydroperoxide............................................................ 69
**Figure 24:** Dose-dependent inactivation of GAPDH by taurine chloramine or urate hydroperoxide.................................................................................. 71
**Figure 25:** Kinetics of GAPDH inactivation by oxidants................................................................. 72
**Figure 26:** Reactivation of GAPDH following inactivation with taurine chloramine........... 73
**Figure 27:** Reactivation of GAPDH following inactivation with urate hydroperoxide.......... 74
**Figure 28:** Dose-dependent depletion of cysteine residues on GAPDH by oxidants............. 75
**Figure 29:** Non-reducing gel for the inactivation of GAPDH by urate hydroperoxide......... 76
**Figure 30:** Reducing gel for the inactivation of GAPDH by urate hydroperoxide............. 77
**Figure 31:** Neutrophil activity at inflammatory sites, during hyperuricemia, could produce urate hydroperoxide.................................................................................. 82
**Figure 32:** Standard curve for the FOX assay based on H$_2$O$_2$ absorbance at 560 nm.......... 96
**Figure 33:** FOX assay of each substance required to form urate hydroperoxide............... 96
**Figure 34:** Thiol standard curve and xanthine oxidase/lactoperoxidase system controls with the DTNB assay.................................................................................. 97
**Figure 35:** Depletion of free thiols by urate hydroperoxide controls................................. 98
**Figure 36:** Standard curve for GAPDH concentration vs. initial activity.......................... 98
**Figure 37:** GAPDH concentration and activity during spin column preparation.................. 99
**Figure 38:** NAD standard curves for absorbance at 260 and 340 nm. .................................................. 99
**Figure 39:** Dose-dependent exposure of NAD to taurine chloramine. .................................................. 100
**Figure 40:** Dose-dependent exposure of NAD to urate hydroperoxide. .................................................. 100
**Figure 41:** GAPDH activity following exposure to the substances of the xanthine oxidase/lactoperoxidase system. ......................................................................................................................... 101
**Figure 42:** Standard curve of GAPDH concentration vs. reduced thiol concentration during the DTNB assay in a quartz cuvette. ......................................................................................................................... 101
**Figure 43:** Depletion of cysteine residues on GAPDH by the xanthine oxidase/lactoperoxidase system. ................................................................................................................................. 102
**Figure 44:** Mass Spectrum for the GAPDH and urate hydroperoxide experiment treated with urate hydroperoxide (1:1 ratio). ................................................................. 104

---

**List of Abbreviations**

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1AT</td>
<td>α1-antitrypsin</td>
</tr>
<tr>
<td>AAPH</td>
<td>2,2’-Azobis(2-amidinopropyl) dihydrochloride</td>
</tr>
<tr>
<td>AMVN</td>
<td>2,2’-Azobis (2,4-dimethylvaleronitrile)</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>APS</td>
<td>Ammonium persulfate</td>
</tr>
<tr>
<td>BPG</td>
<td>1,3-Bisphosphoglycerate</td>
</tr>
<tr>
<td>Cata</td>
<td>Catalase</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>Cys</td>
<td>Cysteine</td>
</tr>
<tr>
<td>Cys-Cys</td>
<td>Cystine</td>
</tr>
<tr>
<td>DAMP</td>
<td>Damage-associated molecular patterns</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DTPA</td>
<td>Diethylene triamine pentaacetic acid</td>
</tr>
<tr>
<td>DTNB</td>
<td>5,5’-dithiobis-(2-nitrobenzoic acid)</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>FOX</td>
<td>Ferrous oxidation-xylene orange</td>
</tr>
<tr>
<td>GAP</td>
<td>Glyceraldehyde-3-phosphate</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyde-3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>Gly</td>
<td>Glycine</td>
</tr>
<tr>
<td>GSH</td>
<td>Reduced glutathione</td>
</tr>
<tr>
<td>GSSH</td>
<td>Glutathione disulfide/oxidized glutathione</td>
</tr>
<tr>
<td>His</td>
<td>Histidine</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>HX</td>
<td>Hypoxanthine</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>LDL</td>
<td>Low density lipoprotein</td>
</tr>
<tr>
<td>LPO</td>
<td>Lactoperoxidase</td>
</tr>
<tr>
<td>MCP-1</td>
<td>Monocyte chemoattractant protein-1</td>
</tr>
<tr>
<td>m/z</td>
<td>Mass-to-charge ratio</td>
</tr>
<tr>
<td>NAD</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NAD+</td>
<td>Oxidized nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>NADH</td>
<td>Reduced nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NADPH</td>
<td>Reduced nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor kappa-light-chain-enhancer of activated B cells</td>
</tr>
<tr>
<td>NLRP3</td>
<td>NACHT, LRR and PYD domains-containing protein 3</td>
</tr>
<tr>
<td>NOX</td>
<td>NADPH oxidase</td>
</tr>
<tr>
<td>Ox-LDL</td>
<td>Oxidized low density lipoprotein</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PB</td>
<td>Phosphate buffer</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulfate</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>Tau-Cl</td>
<td>Taurine Chloramidine</td>
</tr>
<tr>
<td>TEA</td>
<td>Triethanolamine</td>
</tr>
<tr>
<td>TEMED</td>
<td>Tetramethylethylenediamine</td>
</tr>
<tr>
<td>TMB</td>
<td>3,3',5,5'-Tetramethylbenzidine</td>
</tr>
<tr>
<td>TNB</td>
<td>Thionitrobenzoate</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl)aminomethane</td>
</tr>
<tr>
<td>UHP</td>
<td>Urate hydroperoxide</td>
</tr>
<tr>
<td>XO</td>
<td>Xanthine oxidase</td>
</tr>
<tr>
<td>YALDH</td>
<td>Yeast alcohol dehydrogenase</td>
</tr>
</tbody>
</table>
Chapter 1. Literature Review

1.1 Introduction

High levels of uric acid in our blood stream are associated with inflammatory disease, yet the pathological mechanism eludes us (1, 2). Uric acid (7,9-di-hydro-1H-purine-2,6,8(3H)-trione) is the product of purine and ATP break down and circulates the plasma as the monoanion urate, pKₐ 5.4 (2, 3). Mammals produce the enzyme uricase to convert urate to allantoin, enabling its excretion. However, humans cannot produce this enzyme because the uricase gene lost functionality during primate evolution (2, 4). Thus, we have a high concentration of urate in our blood serum, the normal range is 240 – 360 µM (2, 5).

Elevated serum urate may have evolved to prevent dehydration, promote serum antioxidant activity, fat storage and bipedal locomotion by increasing blood pressure (3, 6, 7). Urate has antioxidant activity and is potentially the most abundant antioxidant in our bloodstream (3, 8). This antioxidant scavenges a number of oxidant species, thus protecting other biomolecules from damage (3, 9, 10). Ascorbate, a serum antioxidant, reduces urate back to its antioxidant state hence promoting its activity (9, 10).

Yet, urate has a number of adverse effects on human health. Abnormally high serum urate, hyperuricemia, is associated with inflammatory diseases, including cardiovascular disease (1, 11). Hyperuricemia is characterised by inflammation and oxidative stress (5, 12). Under these conditions, urate acts as an endogenous signal molecule to initiate a number of inflammatory pathways (13-15). Urate promotes the oxidation of biomolecules, thus acting as a pro-oxidant, during oxidative stress and in lipid environments (16-18). This molecule forms a number of electrophilic intermediates on the oxidative pathway to allantoin (figure 1). Electrophilic oxidants damage biomolecules (19). In particular, oxidative conditions at an inflammatory site may produce the novel oxidant urate hydroperoxide. This species is stable enough to diffuse to biomolecules and cause oxidative damage (17, 19, 20). Formation of urate hydroperoxide during hyperuricemia may explain the pro-oxidant effects of urate.

In this literature review, I explain why this thesis focuses on the reactivity of urate hydroperoxide. A target of urate hydroperoxide oxidation could be biomolecules with thiol functional groups, such as cysteine and glutathione, due to their vulnerability to electrophiles (21, 22). In particular, urate hydroperoxide might inactivate thiol-dependent enzymes, which rely on a cysteine residue for activity (23-25). I hypothesize that urate
hydroperoxide oxidises thiol-dependent biomolecules, such as cysteine, glutathione and glycolytic enzyme GAPDH (26, 27). GAPDH uses an essential cysteine residue to covalently bind substrate glyceraldehyde-3-phosphate (GAP) (28). Oxidation of this residue reversibly or irreversibly inactivates GAPDH, which has repercussions for cell metabolism of glucose for energy (29). I aim to determine whether urate hydroperoxide inactivates this enzyme and the reversibility of inactivation. Mass spectrometry will be used to identify the structural change responsible for inactivation.

Figure 1: Oxidation of urate to allantoin in human serum. Urate is oxidized to a radical with the lone electron delocalised over the purine ring. The radical can dismutate to urate and dehydrourate. Dehydrourate is hydrolysed to 5-hydroxyisourate, which breaks down to allantoin. Alternatively, the urate radical can combine with superoxide to form urate hydroperoxide, this also degrades to allantoin. Figure adapted from (19).
1.2 Urate and Cardiovascular Disease

Urate is associated with cardiovascular disease (11), gout (5), renal disease (30), rheumatoid arthritis (12), hypertension (15), diabetes (2), metabolic syndrome (31) and cancer (32-34) (figure 2). The association between hyperuricemia and cardiovascular disease is debated. The literature has two positions: hyperuricemia is independently causative of cardiovascular disease or is a negative side effect of the disease. The association between hyperuricemia and cardiovascular disease in the general population is weak (11, 35-40). However, the association becomes stronger for patients with a high risk of cardiovascular disease. This includes patients with diabetes (41), hypertension (42, 43) and survivors of myocardial infarction or stroke (44-46) (table 1). For example, the GISSI-Prevenzione trial examined over 10,000 patients with myocardial infarction over 3.5 years. All-cause and cardiovascular disease mortality is significantly higher for patients with hyperuricemia. However, Levantesi et al. (46) did not have a balanced gender ratio, where 9,247 men and 1,593 women were examined, and did not compare to a healthy cohort. Studies on a specific population are not generalizable to other populations. The National Health and Nutrition Examination Survey (NHANES) III presented opposing evidence. Zalawadiya et al. (40) surveyed 11,009 healthy US participants and did not find an independent association between hyperuricemia and cardiovascular disease or coronary heart disease mortality (40). This study examined multiple ethnicities and could be a good representation of the US population. To verify hyperuricemia is associated with cardiovascular disease, a large and multicultural, cross-population study is required to examine individuals with high cardiovascular risk.
Figure 2: High serum urate due to a western diet can lead to inflammatory disease. Urate enters our body through diet and the consumption of purines. Purine breaks down to inosine, hypoxanthine, xanthine and urate. Urate enters the blood serum and is excreted through urine or the bile. The loss of uricase during human evolution led to build up of urate in human serum. Overconsumption of purine leads to hyperuricemia. Urate crystals form in the joints, causing gout. Pro-oxidant effects of urate aggravate oxidative stress and may explain the association between hyperuricemia and cardiovascular disease. Excess urate in urine (hyperuricosuria) leads to the formation of urate crystals in the kidneys. Figure adapted from (2)
Table 1: Studies that explored the clinical association between serum urate and cardiovascular disease.

The association is stronger for patients with a high risk of cardiovascular disease. All examples used multivariate analysis. Table adapted from (47).

<table>
<thead>
<tr>
<th>Study</th>
<th>References</th>
<th>N</th>
<th>Urate (µM)</th>
<th>Major findings</th>
<th>Independent association</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Studies in samples of general population</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austrian Elderly Women 2007</td>
<td>Strasak, AM (39)</td>
<td>28,613</td>
<td>&gt; 370</td>
<td>Serum urate is an independent predictor for all-cause death cardiovascular disease and stroke in elderly women.</td>
<td>Yes</td>
</tr>
<tr>
<td>MJ Health Screening 2009</td>
<td>Chen, J-H (38)</td>
<td>90,393</td>
<td>&gt; 380</td>
<td>Serum urate is associated with cardiovascular disease and ischemic stroke.</td>
<td>Yes</td>
</tr>
<tr>
<td>Taiwanese Cohort Study 2010</td>
<td>Wen, CP (11)</td>
<td>484,568</td>
<td>&gt; 380</td>
<td>High serum urate is a risk marker for cardiovascular disease mortality and all-cause mortality, but the association is not independent.</td>
<td>No</td>
</tr>
<tr>
<td>Large Chinese Cohort 2012</td>
<td>Chuang, S-Y (36)</td>
<td>2,049</td>
<td>&gt; 380</td>
<td>Serum urate is associated with development of ischemic heart disease.</td>
<td>Yes</td>
</tr>
<tr>
<td>Healthy Israeli Adults 2013</td>
<td>Kivity S (37)</td>
<td>9,139</td>
<td>M/F</td>
<td>Serum urate is associated with cardiovascular events. The association is stronger for women than men.</td>
<td>Yes</td>
</tr>
<tr>
<td>Middle-Aged and Elderly Chinese 2014</td>
<td>Qin, L (35)</td>
<td>8,510</td>
<td>&gt; 340</td>
<td>Serum urate is associated with cardiovascular disease. This is independent of risk factors and metabolic syndrome.</td>
<td>Yes</td>
</tr>
<tr>
<td>NHANES III 2015</td>
<td>Zalawadiya, SK (40)</td>
<td>11,009</td>
<td>&gt; 340</td>
<td>Serum urate is not independently associated with cardiovascular disease or coronary heart disease mortality.</td>
<td>No</td>
</tr>
<tr>
<td><strong>Studies involving selected groups of patients at high cardiovascular risk</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PreCIS Study 2008</td>
<td>Ioachimescu, AG (48)</td>
<td>3,098</td>
<td>&gt; 450</td>
<td>Serum urate is associated with cardiovascular disease in patients with high risk of cardiovascular disease.</td>
<td>Yes</td>
</tr>
<tr>
<td>Chinese Cohort High CVD Risk 2008</td>
<td>Wu, Y (11)</td>
<td>3,648</td>
<td>&gt; 380</td>
<td>Serum urate is independently associated with cardiovascular disease risk and all-cause mortality in patient with high cardiovascular disease risk.</td>
<td>Yes</td>
</tr>
<tr>
<td>JCare-Card 2011</td>
<td>Hamaguchi, S (45)</td>
<td>1,869</td>
<td>&gt; 410</td>
<td>Serum urate in patients with heart failure is associated with all-cause and cardiac mortality.</td>
<td>Yes</td>
</tr>
<tr>
<td>LURIC 2011</td>
<td>Silbernagel, G (44)</td>
<td>3,245</td>
<td>&gt; 410</td>
<td>Serum urate is independently associated with cardiovascular disease risk and all-cause mortality in subjects referred for coronary angiography.</td>
<td>Yes</td>
</tr>
<tr>
<td>Japanese Hypertension Patients 2011</td>
<td>Ito, H (41)</td>
<td>1,213</td>
<td>&gt; 330</td>
<td>Serum urate is associated with coronary heart disease in patient with type 2 diabetes.</td>
<td>Yes</td>
</tr>
<tr>
<td>Japanese Hypertension Patients 2012</td>
<td>Kawai, T (43)</td>
<td>669</td>
<td>&gt; 500</td>
<td>Serum urate is associated with cardiovascular disease, stroke event and mortality, and all-cause mortality in hypertension patients.</td>
<td>Yes</td>
</tr>
<tr>
<td>GISSI-Prevenzione Trial 2013</td>
<td>Levantesi, G (46)</td>
<td>10,840</td>
<td>&gt; 380</td>
<td>Serum urate is a risk factor cardiovascular disease event and all-cause mortality in patients with recent myocardial infarction.</td>
<td>Yes</td>
</tr>
<tr>
<td>Chinese Hypertension Patients 2015</td>
<td>Wang, J (42)</td>
<td>2,725</td>
<td>&gt; 420</td>
<td>Serum urate independently predicts all-cause and cardiovascular disease mortality in hypertension patients.</td>
<td>Yes</td>
</tr>
</tbody>
</table>
1.3 Urate and Inflammation

Inflammatory disease is caused by an immune response in the absence of pathogenic threat, or sterile conditions. Immune cells are recruited by damage-associated molecular patterns (DAMP), which are endogenous molecules secreted by dying cells (49). Necrotic, or dying cells also produce reactive oxygen species (ROS), which are harmful oxygen and peroxide radicals (50). Immune cells respond by releasing hydrolase, which cleave proteins, thus effecting an adjacent cell’s ability to survive (51). Urate should be counted among the DAMP which exacerbate a sterile inflammatory response (13). Urate crystals upregulate the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome (14, 52, 53). The NLRP3 inflammasome activates factors responsible for promoting an inflammatory response (54). Urate also depletes nitric oxide (NO), which is an endogenous signalling molecule for inflammatory pathways (15, 55, 56). Urate activates proinflammatory cytokines. These factors recruit the inflammatory response (30, 57-60).

1.3.1 NLRP3 Inflammasome

Urate could aggravate inflammation by activating the NLRP3 inflammasome, a protein complex in the inflammation signalling pathway (14, 52, 53). When the inflammasome forms it activates proinflammatory cytokines interleukin-1 beta/8 (IL-1β, IL-18) (52, 53). Exposure of THP-1, a human leukaemia monocyte cell line, to urate activated IL-1β. Thus the inflammasome formed. Activation of these cytokines was lost when a preceding enzyme on the inflammasome pathway, caspase-1, was inhibited (14). Martinon et al. (14) presented strong evidence for the IL-1β activation in response to urate, yet inflammasome activity and formation was not directly measured. Injection of urate crystals into the inflamed lungs of mice led to IL-1β activation and recruitment of immune cells lymphocytes and neutrophils (53). Whereas injection of urate crystals into inflammasome-deficient mice did not recruit an inflammatory response (53). The applicability of these studies is limited by the use of urate crystals, which form in the synovial fluids during gout (5). Urate crystals do not form during most inflammatory disease, however are found in atherosclerotic plaques. Interestingly, urate crystals in an atherosclerotic plaque were colocalized with superoxide generating enzyme xanthine oxidase. Hence there may be a pro-oxidant element to the adverse effects of urate crystals in atherosclerotic plaques (61).
1.3.2 Nitric Oxide

Depletion of NO, an inflammatory signalling molecule and relaxant of the arteries, could be a mechanism by which urate promotes inflammation (15, 55, 56). NO reacts with urate to produce 6-aminouracil. This reaction occurred when NO was bubbled through buffer, human serum and human aortic endothelial cell lysate with urate (55). Gersch et al. (55) exposed urate to NO in anaerobic conditions, hence these results have limited relevance to oxygenated endothelium, though, hypoxia could occur during inflammation and atherosclerosis (62). Under aerobic conditions, NO added to urate to form nitrosylated urate. This molecule decayed at a half-life of 2.2 min and transferred the NO moiety to glutathione (63). Suzuki (63) did not explore whether nitrosylated urate or glutathione could release NO. NO could be depleted or carried by nitrosylated urate (63).

Alternatively, urate could deplete NO by activating quencher arginase. In endothelial cells NO is exclusively synthesised from L-arginine, which can be diverted to urea and ornithine by arginase. Porcine pulmonary arterial endothelial cells treated with urate had a lower concentration of NO and cGMP, the secondary signalling molecule for the NO pathway. Urate activated arginase by lowering its affinity constant (15). Zharikov et al.’s (15) cell model was appropriate for human endothelium, but the authors studied one of many quenchers of NO. Depletion of NO might lead to endothelial dysfunction, which is a key factor for cardiovascular disease (55, 64). NO may have pro- or anti-inflammatory effects (64-66).

1.3.3 Proinflammatory Cytokines

Proinflammatory cytokines are proteins secreted by cells to recruit an inflammatory response (67). A range of proinflammatory cytokines are upregulated by urate: cyclooxygenase-2, cytosolic phospholipases A2, IL-1α, IL-1β and monocyte chemoattractant protein-1 (MCP-1) (30, 57-60). Incubation of rat vascular smooth muscle cells with a physiological concentration of urate increased MCP-1 mRNA and protein expression. The addition of ROS inhibitors halved MCP-1 protein expression, hence urate upregulated this protein through a pro-oxidant pathway (58). In another paper, vascular smooth muscle cells exposure to urate increased cyclooxygenase-2 mRNA and protein expression. Cell proliferation was promoted (30). The strength of these papers was the use of rat vascular smooth muscle cells to model human blood vessels. In humans, vascular smooth muscle cell secrete cytokines to the intima to recruit macrophages, a type of white
blood cell (68). Urate’s upregulation of these cytokines could promote cell proliferation and immune response during atherosclerotic plaque growth (68).

1.4 Urate as an Antioxidant

Antioxidants are preferentially oxidized to stable products by oxidants, hence preventing damage to biomolecules. Urate is a proven antioxidant and is responsible for > 60% of the antioxidant activity in blood serum (69). Urate depletes singlet oxygen (3), peroxyl and hydroxyl radicals (3, 70-72), peroxynitrite (73-75) and oxo-heme oxidants (3, 69). Transition metal ion coordination to urate hinders their reactivity (76). These oxidants are biologically relevant. Singlet oxygen is formed during photooxidation by photosensitisers such as riboflavin (67). Hydroxyl radicals are very powerful oxidants formed during radiolysis of water (3, 67). Oxo-heme oxidants form when the iron of hemoglobin binds oxygen and peroxide (3, 67). Transition metals generate hydroxyl radicals and superoxide (70). Peroxyl radicals are formed during the breakdown of organic peroxide (67). Peroxynitrite is a cytotoxic oxidant formed when NO adds to superoxide (73). Thus, urate’s removal of these species is important for maintaining a balance between antioxidants and pro-oxidants in serum.

Urate's antioxidant activity yields a urate radical with an unpaired electron delocalised over the purine ring (77). Ascorbate recovers urate by reducing the radical, thus creating an antioxidant cycle (figure 3). Ascorbate extends urate’s antioxidant activity (74, 78).

**Figure 3: Urate has an antioxidant cycle with ascorbate.** Urate scavenges singlet oxygen, oxo-heme oxidants, peroxynitrite, peroxyl and hydroxyl radicals to form the urate radical. The urate radical is also formed enzymatically by myeloperoxidase and lactoperoxidase. The radical electron of the urate radical is delocalised over the purine ring. Ascorbate is oxidized by the urate radical, thus regenerating urate. Figure adapted from (19).
1.4.1 Singlet Oxygen, Peroxyl and Hydroxyl Radicals

Ames et al. (3) heralded the antioxidant theory for urate by studying its depletion during gamma irradiation. Hydroxyl radicals and singlet oxygen depleted more than half of physiological urate (300 µM) in five minutes. These radicals consumed 20% of ascorbate in the same conditions (3). The results for hydroxyl radicals were not exclusive since gamma irradiation induces many ROS (67). Urate’s ability to scavenge these oxidants might be vital for preventing damage to biomolecules during irradiation (3).

Urate's antioxidant activity with peroxyl radicals is debated in the literature (9, 10, 71, 72). Azo-initiators 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) and 2,2'-Azobis (2,4-dimethylvaleronitrile) (AMVN) can be used to initiate organic peroxidation (67). Urate prevented inactivation of lysozyme, double-strand breaks in DNA plasmids and lipid peroxidation by AAPH-induced peroxyl radicals. Yet, urate had no effect on AMVN-induced peroxidation. The former oxidant is water-soluble while the latter is lipid-soluble, hence urate may not be able to scavenge across the lipid-water partition (71). Urate’s antioxidant activity with lipid peroxyl radicals is prolonged and replenished by the presence of ascorbate (9, 10). Frei et al. (9, 10) found that urate and ascorbate were depleted sequentially by peroxyl radicals, indicating urate is the first line of antioxidant defence. Ascorbate reduced the urate radical back to urate to form an antioxidant cycle (9, 10). Urate scored poorly with the total oxidant scavenging assay compared to glutathione, when scavenging hydroxyl and peroxyl radicals (72). Thus, there are disagreements in the literature for urate’s effectiveness with peroxyl radicals which may be explained by urate’s inability to scavenge lipid environments (9, 10, 71).

1.4.2 Peroxynitrite

Urate's ability to scavenge peroxynitrite, an oxidant and nitrating agent, is supported in the literature (73-75). Tyrosine and guanine are common targets of this oxidant (73). Urate prevented peroxynitrite-induced tyrosine nitrosylation and inhibited guanine nitration (73). Yet, urate failed to scavenge peroxynitrite with the pyrogallol red assay and was the least effective scavenger of peroxynitrite compared to ascorbate and glutathione. This experiment was performed in the presence of bicarbonate to model physiological conditions (73). Peroxynitrite oxidises bicarbonate, forming a carbonate radical which propagates the effect of peroxynitrite (67). In a similar study, Kuzkaya et al. (74) measured urate’s scavenging of peroxynitrite in the presence of physiological ascorbate and
bicarbonate. Urate’s antioxidant activity yielded a carbon-centred radical, which ascorbate reduced to form an ascoby radical. The presence of ascorbate or thiols tripled urate’s antioxidant capacity (74) Urate’s antioxidant activity therefore coexists with ascorbate, forming an antioxidant cycle (9, 10, 74). Urate’s antioxidant activity was ineffective against superoxide (74).

1.4.3 Oxo-Heme Oxidants

Ames et al. (3) published the only paper to show that urate scavenges oxo-heme oxidants in metalloenzymes. Ames et al. (3) oxidized haematin, a Fe-porphyrin co-ordinated to a hydroxide; and methemoglobin, an alternative oxidation state of haemoglobin; with hydrogen peroxide. Half of urate (300 µM) was consumed in four minutes as it scavenged the oxo-heme adducts (3).

1.4.4 Metal Ion Coordination

Davies et al. (76) published the only paper to link urate coordination of metal ions to antioxidant activity. Urate completely prevented the oxidation of ascorbate in a solution of Fe$^{3+}$. Allantoin was not formed, hence urate coordinated the metal ion instead of scavenging oxidants. Thus, urate lowered the metal ion's reductive potential and reactivity as an oxidant (76). However, Davies et al. (76) used urate 1-10 µM; which is well below the physiological concentration of urate. Few papers describe urate's antioxidant activity in hyperuricemia. Other studies examined urate coordination to metal ions but did not measure the effect on oxidation (79, 80). Fe ions are abundant in blood serum but are always chelated to metalloenzymes (81). ‘Free’ Fe ions, due to the overconsumption of Fe, produce ROS which damage biomolecules (82). This antioxidant activity may be crucial in preventing mutagenesis and carcinogenesis during Fe poisoning.

1.5 Urate as a Pro-oxidant

Pro-oxidants are species that directly or indirectly promote oxidative stress (83). Many antioxidants can act as pro-oxidants under specific conditions. Ascorbate and phenolics promote copper-induced oxidation of oxidised low density lipoprotein (oxLDL), phenolics also oxidise DNA at low pH (83-85). Compelling evidence is emerging that urate
acts as an antioxidant or pro-oxidant depending on the microenvironment (figure 4). Urate is a conditional pro-oxidant of low density lipoprotein (LDL) (16, 75, 86, 87). Urate upregulates NADPH (reduced nicotinamide adenine dinucleotide phosphate) oxidase (NOX), which generates ROS (18, 88, 89). A urate peroxyl radical inactivates yeast alcohol dehydrogenase (YADH) (90) and α1-antitrypsin (A1AT) (73, 91). Urate oxidation produces urate hydroperoxide, which could be a powerful oxidant of biomolecules (5, 12, 17, 19, 20).

**Figure 4: Urate’s pro-oxidant effects have physiological repercussions for inflammatory disease.** Depletion of NO could lead to endothelial dysfunction, the lack of ability to control vascular dilation in blood vessels. Activation of cytokines: nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), C-reactive protein (CRP) and MCP-1 aggravate inflammation. Activation of NOX produces ROS, hence elevates oxidative stress. Urate directly affects the renin-angiotensin system, as evident in hyperuricemia’s association with high blood pressure. These mechanisms feed the pathology of atherosclerosis and reduced glomerular filtration rate (GFR), a measure of kidney function. Reduced GFR, insulin resistance, diuretics and diet elevate serum urate. Figure adapted from (92).

### 1.5.1 Low Density Lipoprotein

Urate increases the oxidation of LDL, despite its well documented antioxidant capacity (16, 75, 86, 87). Urate acts as a pro-oxidant or antioxidant of LDL during copper-induced (CuSO₄) oxidation (16). Urate addition alongside the oxidant CuSO₄ extended the lag phase of lipid oxidation, hence acted as an antioxidant. On the contrary, when addition of urate followed CuSO₄ the rate and amount of lipid peroxides increased, hence urate acted as a pro-oxidant (16). Free metals are rare in serum, but there is growing evidence that transition metals are present in atherosclerotic plaques and facilitate its progress (93,
Urate’s pro-oxidant activity with LDL is not limited to copper-induced oxidation. A urate concentration equivalent to hyperuricemia (500 µM) doubled oxLDL formation during peroxynitrite-induced oxidation (75). These results are pathologically relevant because oxLDL is linked to atherosclerosis (95-97). Urate is present in the muscular endothelium where LDL becomes trapped and oxidized (16). Urate may act as a pro-oxidant for LDL oxidation, hyperuricemia would promote these effects.

Urate’s pro-oxidant effect was evident when copper-induced LDL oxidation was examined in human serum ultra-filtrate. Ultra-filtrate with 10 µM urate delayed peroxidation initiation. However, ultra-filtrate brought forward the propagation phase when it was added after initiation. Ultra-filtrate lost antioxidant and pro-oxidant activity when uricase removed urate, this is strong evidence that urate was responsible for enhancing oxidation of oxLDL (87). Urate’s pro-oxidant and antioxidant activity for LDL is evident ex vitro and in vitro (16, 75, 86, 87). The discrepancies in the literature for urate’s effect on oxLDL can be explained by the experimental method. Previous studies (9, 10, 98, 99) added urate prior to peroxidation initiation, hence did not account for the effect of oxidative stress on urate.

1.5.2 NADPH Oxidase

A number of studies have shown that urate upregulates neutrophil phagosomal and non-phagosomal NOX (18, 88, 89). The hydrophobic and oxidative nature of adipocytes provides the perfect microenvironment for urate to act as a pro-oxidant (18). Urate uptake by mouse 3T3-L1 differentiated adipocytes increased intracellular ROS. Urate increased uptake of NOX subunits p67phox and p47phox into membranes, enabling activation of non-phagocyte NOX. NOX transfers electrons from reduced nicotinamide adenine dinucleotide phosphate (NADPH) to oxygen to yield superoxide, hence generating ROS (18). This study is limited by the fact that the authors did not directly measure NOX, and many isoforms of NOX exist in adipocytes which may not require the subunits measured. The mechanisms of non-phagocyte NOX activation are elusive, however p67phox and p47phox are required for phagocyte NOX activation (100). Hence, this pro-oxidant effect could be significant for neutrophils at an inflammatory site (89). Also, 60 µM urate generated the most ROS; serum urate concentration is many times greater (230-360 µM) (2). A possibility unexplored by Sautin et al. (18) was that urate is acting as an oxidant in addition
to activating NOX. In support of this, NOX inhibitors did not completely remove ROS. Obesity accompanies hyperuricemia, hence these results are physiologically relevant (101).

Urate also activated the NOX of human aortic smooth muscle cells (88). Treatment with urate promoted cell proliferation and the Endothelin-1, which signals the contraction of blood vessels (vasoconstrictor) and associated with cardiovascular disease (88, 102). The uptake of the p47phox subunit into microsomal membranes increased, thus urate activated NOX. It was apparent that urate acted through a pro-oxidant mechanism since pre-treatment of the cells with antioxidant N-acetylcysteine prevented cell proliferation (88). These results link the pro-oxidant effects of urate to damage vascular smooth muscle cells during atherosclerosis (30, 58, 88).

1.5.3 Inactivation of Enzymes

The literature for urate's redox interaction with enzymes is lacking. Physiological urate (240 µM) enhanced inactivation of gamma irradiated A1AT, an anti-inflammatory serpin for elastase (91). A urate peroxyl radical formed via ROS oxidation was thought to be responsible for inactivation of this enzyme. Addition of ascorbate recovered urate’s antioxidant activity (91). The peroxyl radical could be a reactive intermediate to urate hydroperoxide which oxidises essential A1AT residues. Conflicting results were published more than a decade later by Whiteman et al. (73). Very high urate (1000 µM) offered a small but significant protection against peroxynitrite-induce A1AT inactivation. Urate’s antioxidant activity increased in the presence of bicarbonate (73). The discrepancy between these papers is due to the oxidant used. Aruoma and Halliwell (91) used irradiation to generate ROS. Urate scavenged the ROS to form a radical, and then combined with oxygen or superoxide to form the peroxyl radical. Whereas Whiteman et al. (73) used peroxynitrite prepared from peroxide and nitrite. Superoxide was absent in the reaction system, hence the peroxyl radical was unlikely to form (73). A serum urate concentration of 1000 µM is not an unreasonable concentration to model serum urate for humans. During hyperuricemia and starvation serum urate can rise to > 1000 µM (103).

A similar mechanism was proposed for inactivation of Yeast alcohol dehydrogenase (YALDH) in a study by Kittridge and Wilson (90). Addition of a very high concentration of urate (1000 µM) to an irradiated solution of YALDH resulted in a sharp loss of enzyme activity. Similarly to Aruoma and Halliwell (91), a urate peroxyl radical was thought to oxidise this enzyme. YALDH retained its activity when the urate solution was purged with
nitrogen, hence superoxide is essential for peroxyl radical formation (90). A flaw in Kittridge and Wilson’s (90) study is that they did not show inactivation for a physiologically relevant enzyme. YALDH is not found in humans and urate failed to inactive hog lactate dehydrogenase (LDH) (90). Kittridge and Wilson (90) and Aruoma and Halliwell (91) demonstrated a urate peroxyl radical, which could be analogous to urate hydroperoxide, can oxidise enzymes. The urate peroxyl likely oxidized catalytic residues.

YALDH is a thiol-dependent enzyme, oxidation of the cysteine ligands to sulfinic or sulfonic acids results in loss of the catalytic Zn (104). The catalytic methionine residues of A1AT are oxidized to sulfoxide adducts, resulting in irreversible inactivation (105). Further research is required to elucidate the pro-oxidant effect of urate on enzymes.

1.5.4 Urate Hydroperoxide

The biological context of urate hydroperoxide formation can be understood when we recall that activated white blood cells called neutrophils have all the machinery to produce urate hydroperoxide. Neutrophils are recruited to inflammatory sites where they are trapped and spill their oxidative contents (106, 107). This includes myeloperoxidase, which oxidises urate to the radical and NOX, which generates superoxide (17, 20, 108). Superoxide adds very quickly to the urate radical, at rate constant $k = 8 \times 10^8 \text{ M}^{-1}\text{s}^{-1}$, to form urate hydroperoxide (17, 19, 109). During hyperuricemia, the concentration of urate overwhelms other antioxidants leading to oxidative stress. Therefore, urate hydroperoxide could be formed at an inflammatory site during neutrophil invasion and hyperuricemia (20). In vitro urate hydroperoxide can also be formed by riboflavin photooxidation (figure 5) (20, 77).
Figure 5: Pathways for urate hydroperoxide formation in vitro and in vivo (theoretically) by photooxidation or inflammatory processes. The basic process involves conversion of urate to a radical and combination of the radical with superoxide to form urate hydroperoxide. In vitro urate hydroperoxide can be formed at high concentration using the riboflavin photocycle. During this process superoxide is generated and urate is converted to a radical. The proposed in vivo system for urate hydroperoxide formation involves neutrophil oxidants myeloperoxidase and superoxide. Neutrophils spill myeloperoxidase and hydrogen peroxide into inflammatory site during inflammation. These can convert urate to a radical. Neutrophil oxidative bursts produce superoxide, which adds to the urate radical. These reactions are described further in the next chapter. Urate hydroperoxide oxidises several biomolecules forming electrophilic product hydroxyisourate. Figure adapted from (20).

A recent study by Patrício et al. (20) characterised urate hydroperoxide’s reaction with small biomolecules. Urate hydroperoxide absorbs ultraviolet light at 308 nm: $\varepsilon_{308} = 6,540 \pm 380 \text{ M}^{-1}\text{cm}^{-1}$, this can be visualised on a spectrophotometer. This molecule decays quickly at half-life 41 min at room temperature (20). Urate hydroperoxide oxidized methionine to methionine sulfoxide, cysteine to cystine and glutathione to glutathione disulfide, in a two-electron reaction. The urate oxidative product was hydroxyisourate. Urate hydroperoxide had no effect on histidine, lysine, taurine or tryptophan (20). Urate hydroperoxide has not been studied with enzymes or larger biomolecules. Theoretically, urate hydroperoxide could act like lipid hydroperoxides. These species are powerful oxidants and will induce DNA, protein and cell membrane damage (110). Urate
hydroperoxide formation could explain the pro-oxidant effects of urate during hyperuricemia (20).

1.6 Conclusion

The association between serum urate and gout was proposed 150 years ago (111), yet our understanding of the pathology of hyperuricemia and inflammatory diseases is incomplete. The literature shows evidence for urate acting as an antioxidant, pro-oxidant and having pro-inflammatory effects. Urate can deplete NO (15, 55, 56), activate the NLRP3 inflammasome (14, 52, 53) and upregulate cytokines (30, 57-60) to exacerbate inflammation. These mechanisms recruit a sterile inflammatory response leading to the formation of ROS and tissue damage. Urate’s inflammation mechanisms are intertwined with its pro-oxidant effects.

Urate is an abundant antioxidant in humans and scavenges a range of oxidant species: singlet oxygen (3), peroxyl and hydroxyl radicals (3, 70-72), peroxynitrite (73-75) and oxo-heme oxidants (3, 69). Nonetheless there are flaws in urate's antioxidant activity. Urate cannot scavenge radicals into lipid environments, it must be regenerated by ascorbate and it cannot scavenge superoxide (74, 76, 78). Urate’s antioxidant ability during hyperuricemia and the depletion of antioxidants is not well understood. High concentrations of urate should help not hinder inflammatory diseases by removing ROS that initiate and propagate inflammation (112). Yet, hyperuricemia is associated with many inflammatory diseases (5, 11, 12, 30).

Like other antioxidants, urate has pro-oxidant activities in specific microenvironments. Urate oxidises LDL (16, 75, 86, 87), upregulates NOX (18) and inactivates enzymes YALD (90) and A1AT (73, 91). Urate-induced oxidation of LDL has many supporting papers, but the evidence for NOX activation and enzyme inactivation is sparse. These mechanisms are insufficient to justify urate’s association with cardiovascular disease. A new and convincing mechanism for urate’s pro-oxidant effects involves formation of urate hydroperoxide by enzymes xanthine oxidase and peroxidise, or riboflavin photooxidation (5, 12, 17, 19, 20). This novel oxidant depletes methionine, cysteine and glutathione (20). Urate hydroperoxide’s effect on enzymes has not been characterised. Whether urate hydroperoxide forms in vivo at inflammatory site remains to
be seen. However, neutrophils have all the mechanisms to produce urate hydroperoxide during the inflammatory response (17).

1.7 Summary

My literature search leads me to conclude that urate can be an antioxidant or pro-oxidant depending on its concentration and the oxidative state of blood serum. Basal urate undergoes an antioxidant cycle in which urate is oxidized by ROS, myeloperoxidase or lactoperoxidase, and is recovered by ascorbate. During hyperuricemia, depletion of antioxidants and in lipid environments; urate acts as a pro-oxidant to directly and indirectly produce oxidant species. Thus, urate ceases to provide antioxidant defence and tips the balance to oxidative stress, favouring the development of inflammatory disease (figure 6). Concentration and oxidative stress affects urate’s antioxidant capacity. Thus, urate as a pro-oxidant does not conflict with its roles as an antioxidant in vivo. Urate follows Paracelsus’ famous philosophy: "The dose makes...a poison" (113).

Figure 6: A healthy human body balances pro-oxidant formation with the antioxidant defence system (homeostasis). During oxidative stress the antioxidant defence system is overwhelmed by ROS. Oxidative stress characterises inflammatory disease, including cardiovascular disease, ischemia/reperfusion injury, heart failure and diabetes. Figure adapted from (114).
Chapter 2. Optimising the Formation of Urate Hydroperoxide

2.1 Introduction

Urate hydroperoxide is transient and highly reactive (19, 20). For this chapter I wanted to produce a high concentration of urate hydroperoxide to use in proceeding experiments and to study its formation. Urate hydroperoxide can be formed in vitro by riboflavin photooxidation or by enzymes xanthine oxidase and myeloperoxidase/lactoperoxidase (17, 19, 20, 77). These systems produce a urate hydroperoxide of the same structure (20).

![Diagram of riboflavin photooxidation cycle](image)

**Figure 7**: Riboflavin undergoes a photooxidation cycle to oxidise urate to urate hydroperoxide. Light promoted riboflavin (Rib) to a higher energy state (\(^{1}\text{Rib}^*\)), this rearranges to form a radical (\(^{3}\text{Rib}^*\)). The riboflavin radical is reduced by urate to form a riboflavin radical anion (\(^{1}\text{Rib}^-\)) and the urate radical. The riboflavin radical anion is oxidised by oxygen to form native riboflavin and superoxide. Thus, riboflavin receives an electron from urate and passes it to oxygen to act as a catalyst. The urate radical and superoxide combine to produce urate hydroperoxide. Figure adapted from (77).

Urate hydroperoxide can be formed at a high concentration with type I riboflavin photooxidation (20, 77). When riboflavin is illuminated with light at 440 nm it forms an excited state. The excited state rearranges to a radical with two extra electrons (115, 116). In this state riboflavin receives an electron from urate and passes it to oxygen. The
products, the urate radical and superoxide, combine to form urate hydroperoxide (figure 7) (77, 115, 116). The resulting hydroperoxide was catalase-resistant and quenched by superoxide dismutase, indicating formation of urate hydroperoxide (77). Patrício et al. (20) optimised the formation of urate hydroperoxide by exposing 600 μM urate to ultraviolet A light (365 nm) for 10 min. This method produced 300 μM urate hydroperoxide (20).

A compelling mechanism for the formation of urate hydroperoxide by myeloperoxidase was published by Meotti et al. (17). Myeloperoxidase typically catalyses the oxidation of chloride and hydrogen peroxide to hypochlorous acid (5, 12, 17). This peroxidase also performs a one-electron oxidation of urate to form a urate radical (17). Myeloperoxidase uses a peroxidase cycle, where the heme cycles through states compound I and II by redox reaction with substrates (117). Compound I catalyses the oxidation of urate with a first order rate constant \( k = 4.6 \times 10^5 \text{ M}^{-1}\text{s}^{-1} \). This is significantly higher than the rate constant for chloride catalysis \( k = 2.5 \times 10^4 \text{ M}^{-1}\text{s}^{-1} \). Compound II oxidises urate at second order rate constant \( k = 1.7 \times 10^4 \text{ M}^{-1}\text{s}^{-1} \). In spite of the high rate constants, myeloperoxidase preferentially catalyses the production of hypochlorous acid (17). Myeloperoxidase’s preference for chloride may be the result of high chloride concentration (100 μm) in neutrophil phagocytes (108). In vitro production of urate hydroperoxide involves use of xanthine oxidase to generate superoxide. Superoxide added to the urate radical to form approximately 20 μM urate hydroperoxide from > 100 μM urate (17).

Lactoperoxidase is antibacterial enzyme catalyses the two-electron oxidation of thiocyanate and hydrogen peroxide to hypothiocyanite. This peroxidase also converts urate to the urate radical. Urate was oxidized by compound I at a second-order rate constant \( k = 1.1 \times 10^7 \text{ M}^{-1}\text{s}^{-1} \) (19). This rate is the highest of lactoperoxidase’s substrates and > 20 times greater than catalysis by myeloperoxidase (17, 19). Compound II reduced urate in a second-order reaction with rate constant \( k = 8.5 \times 10^3 \text{ M}^{-1}\text{s}^{-1} \) to produce another urate radical. An enzyme system of xanthine oxidase, lactoperoxidase and their substrates produced approximately 20 μM urate hydroperoxide from 200 μM urate (19).
Figure 8: The xanthine oxidase/lactoperoxidase system to form urate hydroperoxide in vitro. The following substances combined in phosphate: hypoxanthine, urate, lactoperoxidase and xanthine oxidase (the initiator). Hypoxanthine is the substrate for xanthine oxidase, which generates superoxide, which dismutases to hydrogen peroxide. Lactoperoxidase converts urate and hydrogen peroxide to the urate radical. The urate radical and superoxide combine to form urate hydroperoxide. To stop the reaction, catalase and superoxide dismutase were added to deplete hydrogen peroxide and superoxide, hence quenching urate hydroperoxide formation. Figure adapted from (19).

The xanthine oxidase/lactoperoxidase system was chosen to produce urate hydroperoxide because I did not have the UV lamps required for riboflavin photooxidation. The use of enzymes to form urate hydroperoxide is quick and simple. However, enzymes create interference, their activity is variable and this system forms less urate hydroperoxide than riboflavin photooxidation. The goal of this chapter is to optimise the formation of urate hydroperoxide by a xanthine oxidase/lactoperoxidase system (figure 8).
2.2 Materials and Methods

2.2.1 Materials

Substances and solutions used throughout experimental work were put in table 2.

Table 2: Description of substances and solutions used to perform the cytochrome c assay, ferrous oxidation-xylenol orange assay (FOX) and the xanthine oxidase/lactoperoxidase system. The preparation and company sourced were described. Buffers were autoclaved before use.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Preparation</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalase from bovine liver</td>
<td>Stock of 2 mg/mL dissolved in phosphate buffer.</td>
<td>Sigma, C40</td>
</tr>
<tr>
<td>Cytochrome c from equine heart</td>
<td>Stock of 2 mg/mL dissolved in phosphate buffer.</td>
<td>Sigma, C2506</td>
</tr>
<tr>
<td>Diethylene triamine pentaacetic acid (DTPA)</td>
<td>Stock of 10 mM dissolved in phosphate buffer.</td>
<td>Sigma, D1133</td>
</tr>
<tr>
<td>Ferrous Ammonium Sulfate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOX reagent (modified)</td>
<td>In 25 mL MilliQ: 400 µM xylenol orange, 1 mM ferrous ammonium sulfate, 400 mM sorbitol, 200 mM sulfuric acid.</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Peroxide</td>
<td>Stock of 30% solution diluted to 20 µM in MilliQ using molar extinction coefficient: $\varepsilon(240) = 43.6 \text{ M}^{-1}\text{cm}^{-1}$ (118).</td>
<td>LabServ, BSPA5.500</td>
</tr>
<tr>
<td>Hypoxanthine</td>
<td>Stock of 10 mM in phosphate buffer, heated at 70 °C for 2 min to dissolve before use.</td>
<td>Sigma, H9377</td>
</tr>
<tr>
<td>Phosphate buffer</td>
<td>Approximately 80:20 of 50 mM NaH$_2$PO$_4$ and 50 mM K$_2$HPO$_4$ dissolved in MilliQ, pH 7.4.</td>
<td>BHD, 102034B</td>
</tr>
<tr>
<td>Potassium hydrogen orthophosphate (K$_2$HPO$_4$)</td>
<td>Dissolved in phosphate buffer at 1mg/mL, concentration determined with molar extinction coefficient: $\varepsilon(412) = 112.3 \text{ mM}^{-1}\text{cm}^{-1}$.</td>
<td>Sigma, L2005</td>
</tr>
<tr>
<td>Lactoperoxidase from bovine milk</td>
<td>Ultrapure water</td>
<td>Millipore Corporation</td>
</tr>
<tr>
<td>Sodium dihydrogen orthophosphate (NaH$_2$PO$_4$)</td>
<td></td>
<td>Anhydrus, Labserv, BSPSO766.500</td>
</tr>
<tr>
<td>D-Sorbitol</td>
<td>Concentrated stock 18.76 M.</td>
<td>Sigma, S1876</td>
</tr>
<tr>
<td>Sulfuric acid</td>
<td>Stock of 2 mg/mL dissolved in phosphate buffer and diluted 10 times.</td>
<td>AnalyR, 102761</td>
</tr>
<tr>
<td>Superoxide dismutase from bovine liver</td>
<td>In 10 mL MilliQ: 1 mM was dissolved in 1 ml 0.1 mM sodium hydroxide.</td>
<td>Sigma, S7571</td>
</tr>
<tr>
<td>Uric acid</td>
<td>Diluted at 1:20 ratio in phosphate buffer. This dilution was equivalent to approximately 90 µM. The extinction coefficient of xanthine oxidase was $\varepsilon(450) = 37,800 \text{ M}^{-1}\text{cm}^{-1}$ (119).</td>
<td>Sigma, U2625</td>
</tr>
<tr>
<td>Xanthine oxidase from bovine milk</td>
<td></td>
<td>Sigma, X1875</td>
</tr>
<tr>
<td>Xylenol Orange tetrasodium salt</td>
<td></td>
<td>Fluka, 33825</td>
</tr>
</tbody>
</table>
2.2.2 Cytochrome C Assay of Superoxide Production by Xanthine Oxidase

The cytochrome c assay was used to determine superoxide production by xanthine oxidase. The cytochrome c assay involved reduction of ferric to ferrous cytochrome c by superoxide. The colour change in the cuvette was orange to pink. Ferrous cytochrome c absorbed light at 550 nm (120). The following substances were mixed in plastic cuvettes in 50 mM phosphate buffer: 240 µg/mL cytochrome c, 100 µM DTPA, 100 µM hypoxanthine. Superoxide dismutase (10 µg/mL) was added as a negative control. The final volume was 1 mL. The Hitachi spectrophotometer (UV solutions Application program no. 2J24311-04 (build556)) was set to time scan, six cell mode. The spectrophotometer measured absorbance (-0.1 – 1) at 550 nm for 300 sec. Other setting included: spectral band width = 0.5 nm and lamp change mode = auto for 325 nm. The spectrophotometer was blanked with all substances except xanthine oxidase, 450 nM of this enzyme was added to initiate the assay. The initial rate was calculated for the first 30 sec as A.min\(^{-1}\) (ΔA). This value was used to calculate superoxide production by xanthine oxidase:

\[
\text{Rate of Superoxide Production (µMmin}^{-1}\) = \frac{ΔA}{0.0211}
\]

Samples were made in triplicate. Firstly, the concentration of enzyme of interest, xanthine oxidase, was optimised. The volume of 90 µM xanthine oxidase injected into the cuvette was varied to achieve concentrations 0 – 1800 nM. Next, the concentration of xanthine oxidase’s substrate, hypoxanthine, was varied by creating a dilution series in phosphate buffer. Each dilution was transferred (100 µL) into plastic to achieve concentrations 0 – 100 µM. Superoxide production was plotted against xanthine oxidase or hypoxanthine concentration.

2.2.3 Xanthine Oxidase/Lactoperoxidase System Photometry

The xanthine oxidase/lactoperoxidase system had unique absorbance spectrum between 240 – 340 nm due to the formation of purines (19). In particular, hypoxanthine, urate and urate hydroperoxide absorbed light at 250, 290 and 310 nm. The absorbance spectrum for urate hydroperoxide formation was monitored with kinetic mode on the 8453 Agilent spectrophotometer (UV visible chemstation Rev.A.10.01 [81]). The instrument was set to wavelength range 190 – 1100 nm, interval 1 nm and integration time 0.5 sec. Both the deuterium and tungsten lamps were used.
Samples were made in a 1 mL quartz cuvette. The final concentrations of substances were: 100 µM urate, 100 µM hypoxanthine, 100 µM DTPA, 200 nM lactoperoxidase and approximately 1.8 µM xanthine oxidase in 50 mM phosphate buffer. As controls, 100 µg/mL catalase and 10 µg/mL superoxide dismutase were added to quench the formation of urate hydroperoxide. A sample without additional urate was made to determine whether xanthine oxidase activity alone produced urate hydroperoxide. The spectrophotometer was set to measure the full spectrum (200 – 1000 nm) every 30 sec for 2000 sec. Measurements were made in triplicate. The absorbance spectrum was extracted for time points: 0, 120, 240, 360, 480 and 600 sec and plotted for 240 – 340 nm. The full system absorbance at 310 nm was extracted and plotted with time.

2.2.4 Modified Ferrous Oxidation Xylenol Orange Assay for Hydroperoxides

Hydroperoxide concentration was measured with the modified FOX assay. During this assay hydroperoxides oxidised ferrous to ferric iron, which formed a complex with xylenol orange (121). Formation of the ferric-xylenol orange complex changes the reagent colour from orange to brown and absorbed light at 560 nm. A modified FOX assay was used to measure urate hydroperoxide concentration (121). The assay samples were made with volume ratio 3:1 for the unknown hydroperoxide sample to FOX reagent. The samples were incubated for 45 min at room temperature then transferred into a 100 µL quartz cuvette. The Agilent spectrophotometer was set to standard mode with manual measurement at fixed wavelength 560 nm. The sample absorbance was compared with a standard curve for hydrogen peroxide to determine the hydroperoxide concentration. When the sample absorbance was outside the range of the linear standard curve the sample was diluted in phosphate buffer then reassayed. Hydroperoxide concentration was plotted against substance or concentration.

2.2.4.1 FOX Standard Curve with Hydrogen Peroxide

Since the concentration of urate hydroperoxide was unknown, a standard curve was made for the FOX assay against hydrogen peroxide. Hydrogen peroxide absorbed light at 240 nm, the Beer-Lambert law was used to calculate concentration its concentration:

\[ A = \varepsilon cl \]
Where $A =$ absorbance, $\varepsilon =$ molar extinction coefficient in $\text{M}^{-1}\text{cm}^{-1}$, $c =$ concentration in M, and $l =$ path length, 1 cm. The molar extinction coefficient of hydrogen peroxide was: $\varepsilon_{(240)} = 43.6 \text{M}^{-1}\text{cm}^{-1} (118)$. Measurement of hydrogen peroxide concentration was described in table 2. Hydrogen peroxide (20 µM) was diluted in 50 mM phosphate buffer to concentrations: 0 – 5 µM. The FOX assay was performed (2.2.4) and plotted absorbance at 560 nm against hydrogen peroxide stock concentration.

### 2.2.4.2 Initial Assay of Urate Hydroperoxide Formation

The FOX assay was performed on all the substances of the xanthine oxidase/lactoperoxidase system to determine their interferences for later experiments. The substances were diluted to 300 µL in 50 mM phosphate buffer: 100 µM hypoxanthine, 100 µM urate, 200 nM lactoperoxidase, 0.9 µM xanthine oxidase, 100 µg/mL catalase, 10 µg/mL superoxide dismutase and 50 mM phosphate buffer. FOX reagent (100 µL) was added to each sample (2.2.4).

Next, the FOX assay was performed on xanthine oxidase/lactoperoxidase system after a 10 min reaction period to form urate hydroperoxide. Samples were made to represent the full system, removal of each substance and addition of superoxide dismutase as control (Appendix 2, table 6). Hypoxanthine, urate, lactoperoxidase and xanthine oxidase (the initiator) were mixed in phosphate buffer. The final concentration of substances was the same as the previous paragraph. After 10 min incubation at room temperature, urate hydroperoxide production was quenched by adding 20 µg/mL catalase and 20 µg/mL superoxide dismutase. The samples were incubated for a further 10 min at room temperature. The FOX reagent (102 µL) was added and the assay was performed (2.2.4).

### 2.2.4.3 Optimising Urate Hydroperoxide Formation

This experiment optimised urate hydroperoxide formation detailed in 2.2.4.2, and measured the resulting hydroperoxide concentration with the FOX assay. The concentration of urate was increased from 100 to 400 µM, and xanthine oxidase from 0.9 to 1.8 µM. Samples (300 µL) were made to represent the old full system (2.2.4.2), quadruple urate, double xanthine oxidase and both (new full system). The final concentrations of the new full system were: 100 µM hypoxanthine, 400 µM urate, 200
nM lactoperoxidase and 1.8 µM xanthine oxidase in phosphate buffer. After 10 min incubation 100 µg/mL catalase and 10 µg/mL superoxide dismutase were added to stop the reaction. The FOX assay was performed as described in section 2.2.4.

2.2.4.4 Kinetics of Urate Hydroperoxide Formation

This experiment used the FOX assay to measure hydroperoxide concentration over time for the optimised xanthine oxidase/lactoperoxidase system (2.2.4.3). The reaction mixture was made up to 2 mL in phosphate buffer. A control solution was made with the addition of 10 µg/mL superoxide dismutase. Xanthine oxidase was added last and the stopwatch was immediately started. At time points 0, 2, 5, 10, 15, 20, 25 and 30 min, 220 µL of the urate hydroperoxide solution was transferred into an Eppendorf tube with 10 µL of 2 mg/mL catalase and 0.2 mg/mL superoxide dismutase. After 2 min incubation, 80 µL FOX reagent was added (2.2.4).

Hydroperoxide concentration was plotted vs. time. To calculate the initial rate of urate hydroperoxide formation, the data was converted into a linear graph. The first four points were squared and plotted them against time. The square-root of the gradient gave the rate in µMmin⁻¹.

2.2.5 Statistical Analysis

The equation and regression statistics of linear graphs were added with Excel. Statistical analysis of column graphs was performed with SigmaPlot for Windows version 11.0 (Systat Systems Incorporated 2008). One-way analysis of variance (ANOVA) was performed to determine if the groups were significantly different. The Holm-Sidak test compared the significance found by ANOVA to a control. ANOVA was performed on replicates where the p value to reject was 0.05. Tests included the Shapiro-Wilk normality test (sample size 5000), Post HOC test (power, Alpha value 0.05) and the Holm-Sidak test vs. a control. The differences between replicates was considered significant when p<0.05.

2.2.6 Graphs

All graphs were plotted with Microsoft Excel 2013 © Microsoft Corporation 2013. Column graphs were made for datasets with multiple conditions/substance. Datasets where concentration was varied were plotted as scatter graphs with an appropriate trend line.
Error bars represented the standard deviation for multiple experiments or multiple readings. The number of repeat experiments performed was given in the legend.

2.3 Results

2.3.1 Superoxide Production by Xanthine Oxidase

For this experiment I sought to optimise the superoxide generation by xanthine oxidase. The substrate inhibition of xanthine oxidase by hypoxanthine was determined to optimise superoxide production. The concentration of xanthine oxidase and hypoxanthine were varied in the assay cuvette and the resulting superoxide production was measured with the cytochrome C assay.

Superoxide production increased with xanthine oxidase concentration and plateaued at approximately 10 µMmin⁻¹ (figure 9 A). Approximately 0.2 µMmin⁻¹ superoxide was produced per nM xanthine oxidase. When hypoxanthine was varied, the superoxide production reached a maximum of 4.5 µMmin⁻¹ with 20 µM hypoxanthine (figure 9 B). Superoxide production (µMmin⁻¹) was 0.9 per µM hypoxanthine. There was some loss of superoxide production with concentrations of hypoxanthine above 60 µM, however it was
minor. Thus, a high concentration of xanthine oxidase (1.8 µM) and hypoxanthine (100 µM) were used for proceeding experiments since the substrate inhibition was minimal.

### 2.3.2 Xanthine Oxidase/Lactoperoxidase System Photometry

In this experiment I sought to visualise the formation of urate hydroperoxide and other products of the xanthine oxidase/lactoperoxidase system. This was achieved by monitoring the absorbance spectrum for the xanthine oxidase/lactoperoxidase system on a spectrophotometer.

![Urate hydroperoxide absorption at 310 nm over time](image)

**Figure 10: Urate hydroperoxide absorption at 310 nm over time.** The absorbance at 310 nm was extracted from the full xanthine oxidase/lactoperoxidase system (figure 11 A). This graph was representative of two experiments.
Figure 11: **Absorbance of the xanthine oxidase/lactoperoxidase system.** The valley at 290nm represented the depletion of hypoxanthine. The peaks at 290 and 310 nm was the formation of urate and urate hydroperoxide respectively. **A.** Urate hydroperoxide formation for the full enzyme system. **B.** Urate hydroperoxide formation plus catalase. **C.** Urate hydroperoxide formation in the absence of addition urate. These graphs were representative of two experiments.
Urate hydroperoxide formation by xanthine oxidase and lactoperoxidase was visualised by monitoring multiple wavelengths on a spectrophotometer (figure 11). Consumption of hypoxanthine by xanthine oxidase formed a trough at 250 nm, the product urate formed a peak at 290 nm. The full system (figure 11 A) had a peak at approximately 310 nm, which Patrício et al. (20) characterised to be urate hydroperoxide \( (\varepsilon_{308} = 6,530 \text{ M}^{-1}\text{cm}^{-1}) \). Urate hydroperoxide absorbance at 310 nm peaked at approximately 15 min, after which the absorbance declined as the molecule degraded (figure 10). Addition of catalase to the system eliminated the urate hydroperoxide peak (figure 11 B). The 310 nm peak was also lost when urate was removed from the system (figure 11 C). Thus, urate hydroperoxide formation was dependent on the presence of ROS and a high concentration of urate.

### 2.3.3 FOX Assay of Urate Hydroperoxide

For these experiments I sought to determine whether the FOX assay was appropriate for measurement of urate hydroperoxide formed by the xanthine oxidase/lactoperoxidase system. Since urate hydroperoxide was of an unknown concentration, a standard curve was made for the FOX assay of hydrogen peroxide as a comparison (figure 32). This standard curve was used as reference for the urate hydroperoxide concentration.

#### 2.3.3.1 Initial Assay Urate Hydroperoxide Formation

The goal of this experiment was to measure the hydroperoxide concentration formed by the xanthine oxidase/lactoperoxidase system and whether optimisation was required. The FOX assay was used to measure hydroperoxide concentration through absorbance at 560 nm. The substances of the xanthine oxidase/lactoperoxidase system were also assayed to determine their interference (figure 33).
The full xanthine oxidase/lactoperoxidase system formed approximately 4 µM hydroperoxide (figure 12). The addition of superoxide dismutase halved the hydroperoxide concentration. When urate was removed from the system, approximately 2.5 µM hydroperoxide was formed due to xanthine oxidase activity. The removal of hypoxanthine, lactoperoxidase and xanthine oxidase formed less than 1 µM hydroperoxide. No urate hydroperoxide was made in the absence of these substances (20); hence 1 µM hydroperoxide represented the baseline for the FOX assay. A hydroperoxide concentration above the baseline represented formation of urate hydroperoxide. The baseline was variable with repeat experiments. For succeeding experiments the spectrophotometer was blanked with the full system minus hypoxanthine, with FOX reagent. This method removed interference by substances that were not urate hydroperoxide. A urate hydroperoxide concentration of 3 µM was not useful, thus the system was optimised.
2.3.3.2 Optimising Urate Hydroperoxide Formation

I sought to optimise urate hydroperoxide formation by the xanthine oxidase/lactoperoxidase system by increasing the concentration of xanthine oxidase and urate. Samples were made to represent the old full system and new full system with double xanthine oxidase and quadruple the concentration of urate. The resulting hydroperoxide concentration was determined with the FOX assay.

![Graph demonstrating the comparison of old and new full systems for urate hydroperoxide formation.](image)

**Figure 13:** Optimising urate hydroperoxide formation (10 min reaction) by quadrupling urate and doubling xanthine oxidase. The new full system was composed of 100 μM hypoxanthine, 400 μM urate, 200 nM lactoperoxidase and 1.8 μM xanthine oxidase in 50 mM phosphate buffer. Urate hydroperoxide formation was measured with the FOX assay. This graph was for one experiment. The error bars represented the standard deviation for triplicate readings. One-way ANOVA followed by Holm-Sidak multiple comparison on triplicate readings was used to identify samples that were significantly different from the old full system (* p < 0.05).

Doubling the concentration of xanthine oxidase doubled the hydroperoxide concentration compared with the old full system (figure 13). Quadrupling the concentration of urate did not affect hydroperoxide concentration. The new reaction system produced approximately 6.5 μM urate hydroperoxide for a 10 min reaction. 400 μM urate was chosen for the optimised reaction system because it models the concentration of urate in serum during hyperuricemia. The concentration of lactoperoxidase and urate were varied with measurements of hydroperoxide concentration over time but there was no significant difference. The system was saturated by 100 μM urate and 100 nM lactoperoxidase.
2.3.3.3 Kinetics of Urate Hydroperoxide Formation

The purpose of this experiment was to measure the formation of urate hydroperoxide over time with and without the presence of superoxide dismutase. At five min intervals urate hydroperoxide solution was transferred into an Eppendorf with catalase and superoxide dismutase. The reaction stopped was stopped at the hydroperoxide concentration was measured with the FOX assay.

![Graph showing the kinetics of urate hydroperoxide formation measured with the FOX assay.](image)

Figure 14: Kinetics of urate hydroperoxide formation measured with the FOX assay. At each time point, 220 µL of the reaction mixture was transferred into a cuvette with catalase and superoxide dismutase and performed the FOX assay. A reaction mixture with superoxide dismutase was also made and the same method was used to measure hydroperoxide concentration. This graph was the mean of three experiments. The error bars represented the standard deviation for three experiments.

The urate hydroperoxide concentration peaked at > 15 µM at 20 min (figure 14). The initial rate of urate hydroperoxide formation was approximately 3.2 µMmin⁻¹. The maximum concentration of urate hydroperoxide formed and its subsequent degradation was variable between batches. When superoxide dismutase was added the hydroperoxide concentration remained constant at approximately 3 µM. This result supports that urate hydroperoxide was formed since it was superoxide-dependent. Future experiments used: 100 µM hypoxanthine, 400µM urate, 200 nM lactoperoxidase and 1.8 µM xanthine oxidase in 50 mM phosphate buffer with 20 min incubation. The reaction was stopped with 100 µg/mL catalase and 10 µg/mL superoxide dismutase.
2.4 Discussion

I successfully formed urate hydroperoxide with xanthine oxidase, lactoperoxidase and their substrates. Urate hydroperoxide formation was optimised by using a high concentration of hypoxanthine, xanthine oxidase and urate. I choose 100 µM hypoxanthine because the substrate inhibition of xanthine oxidase was minimal and this concentration had a high rate of superoxide. A high concentration of xanthine oxidase (1.8 µM) was used for the same reason. Increasing the concentration of urate > 100 µM did not affect urate hydroperoxide formation, but I choose to use 400 µM of this substance to match hyperuricemia. My optimised system formed > 15 µM urate hydroperoxide in 20 min.

The FOX assay was used to determine urate hydroperoxide concentration. I assumed that urate hydroperoxide oxidized Fe²⁺ at the same ratio as H₂O₂, and work by Patrício et al. (20) supports this assumption. The concentration of urate hydroperoxide was measured with iodine redox titration and the FOX assay and were found to be identical. Thus, the FOX assay accurately measures urate hydroperoxide concentration (20). Urate hydroperoxide concentration could not be measured photometrically because the xanthine oxidase/lactoperoxidase system produced many purine products, such as xanthine, urate and urate hydroperoxide, with overlapping spectrums at 310 nm (figure 11 A). Patrício et al. (20) calculated the extinction coefficient through riboflavin photooxidation, where the concentration of urate was constant and did not interfere.

Urate hydroperoxide was not an easy substance to form and use. The concentration of this oxidant was variable between batches and must be used immediately because it degrades quickly. Measurement of urate hydroperoxide with FOX assay, which requires 45 min to develop, hindered later experiments. The exact concentration of urate hydroperoxide was not known as I studied its reactivity. Thus, the concentration of urate hydroperoxide used to treat thiols in later chapters was not normalised. For future experiments, I hope to have the equipment to form urate hydroperoxide from photooxidation of riboflavin since it was shown to produce 300 µM urate hydroperoxide (20).
Chapter 3. Urate Hydroperoxide and Reduced Thiols

3.1 Introduction

Urate hydroperoxide depletion of thiols could be a secondary mechanism by which this oxidant promotes oxidative stress and inflammation. Thiols, also known as sulfhydryls, are essential functional groups for a range of reactions. The most important thiols in biology are cysteine and glutathione, which are responsible for building biomolecules and antioxidant protection (21, 24). Depletion or deficiency of these thiols is associated with cancer, sepsis, aging, impaired HIV survival, pulmonary and neurodegenerative disease (22, 122-125). In terms of inflammatory disease, lack of thiols exposes cells to oxidative stress and aggravates inflammation (126). This chapter explores the oxidation of cysteine and glutathione by urate hydroperoxide and discusses the implications for inflammation.

Cysteine, a thiol amino acid, is essential for protein structure and function. Two cysteine residues can form a disulfide bond to join secondary structure or monomers of proteins (24, 127). Cysteine is chemically diverse to enable enzyme catalysis. This thiol is capable of acting as a nucleophile and metal ion, proton, hydride and oxygen atom transfer (24). ATPase, protein tyrosine phosphatase and glycolytic enzymes use cysteine residues for catalysis (128). Cysteine is also a precursor for glutathione, coenzyme A and hydrogen sulfide synthesis (127). This thiol has antioxidant activity, though this is predominantly expressed through glutathione (129, 130). Depletion of cysteine will prevent synthesis of key biomolecules required for cell survival (127).

Glutathione, a thiol containing tripeptide, functions in protein and DNA synthesis, cell proliferation, reduction reactions, regulation of thiol-dependant enzymes, conjugation to toxins and antioxidant protection (21, 22). This thiol can scavenge hydroxyls, peroxyls and secondary radicals like hydroperoxides, dehydroascorbate and oxidized thiols (131). Glutathione’s thiol bond is facile, thus it can donate a hydride to form a sulfur-centred radical, or a carbon-centred radical with hydroxyl radicals. The radicals dimerise via a disulfide bond to glutathione disulfide (21). Glutathione disulfide is only reduced by glutathione reductase, which poorly replenishes glutathione during oxidative stress (22). Loss of this antioxidant affects many metabolic pathways. Glutathione depletion promotes lipid peroxidation, DNA fragmentation, increased intracellular calcium and loss of antioxidant and conjugation capacity (21, 132-135). On a cellular scale, glutathione depletion leads to tissue damage and inflammatory recruitment (figure 15) (134, 136-139).
Figure 15: Consequences of glutathione depletion for a cell. Poor diet, toxins, radiation, traumatic burns and infection perpetuate oxidative stress. Oxidative stress depletes antioxidants like glutathione. Loss of antioxidant balance (homeostasis) leads to cell functional and structural breakdown and death. Figure adapted from: (136).

Patrício et al. (20) found that urate hydroperoxide oxidized glutathione at a 2:1 ratio with second order rate constant $k = 13.7 \pm 0.8$ M$^{-1}$s$^{-1}$. Urate hydroperoxide did not form an adduct with either cysteine or glutathione. The aim of this chapter was to repeat these results for the oxidation of cysteine and glutathione. If urate hydroperoxide is formed at an inflammatory site, then I hypothesize it will oxidatively deplete cysteine and glutathione. The 5, 5'-dithiobis-(2-nitrobenzoic acid) (DTNB)/Ellman’s assay will be used to quantify thiol oxidation by urate hydroperoxide and determine the stoichiometry. Depletion of cysteine and glutathione in vivo will have severe consequences for a cell’s antioxidant protection, enzyme catalysis and biomolecule synthesis (21, 24, 127). These implications could be a mechanism by which hyperuricemia leads to tissue damage during inflammatory disease.

I compared the effectiveness of urate hydroperoxide with fellow neutrophil oxidant taurine chloramine. Taurine chloramine is formed when hydrogen peroxide formed during neutrophil oxidative burst combines with amino acid taurine (140, 141). This oxidant is routinely used in our lab. Peskin and Winterbourn (142, 143) characterised taurine chloramine’s oxidation of thiols and GAPDH.
3.2 Materials and Methods

3.2.1 Materials

Substances and solutions used throughout experimental work were put in table 3.

Table 3: Description of substances and solutions used to perform the DTNB assay and prepare taurine chloramine and thiols. The preparation and company sourced were described. Buffers were autoclaved before use.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Preparation</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic acid</td>
<td>100% glacial</td>
<td>AnalAr, B10001-78</td>
</tr>
<tr>
<td>Bleach</td>
<td>The concentration was approximately 500 mM.</td>
<td>Janola premium bleach</td>
</tr>
<tr>
<td>Catalase-treated phosphate buffer</td>
<td>Phosphate buffer (50 mM) was treated with 10 µg/mL catalase.</td>
<td>Sigma, 7477</td>
</tr>
<tr>
<td>Cysteine hydrochloride</td>
<td>Stock of 1 mM dissolved fresh in phosphate buffer.</td>
<td>Sigma, C8755</td>
</tr>
<tr>
<td>L-Cystine</td>
<td>Stock of 1 mM dissolved fresh in phosphate buffer.</td>
<td>Sigma, C8755</td>
</tr>
<tr>
<td>Dimethylformamide (DMF)</td>
<td>Transfer of acid was made with glass pipette.</td>
<td>J.T. Baker, 9221-06</td>
</tr>
<tr>
<td>DTNB Reagent</td>
<td>DTNB was dissolved in phosphate buffer at 10 mM and ultrasonicated for 2 min. Stored in dark and made fresh. ε(412) = 14,100 M⁻¹cm⁻¹ (144).</td>
<td>Sigma, D8130</td>
</tr>
<tr>
<td>Glutathione</td>
<td>Stock of 1 mM dissolved fresh in phosphate buffer</td>
<td>Sigma, G4251</td>
</tr>
<tr>
<td>Glutathione disulfide</td>
<td>Stock of 1 mM dissolved fresh in phosphate buffer</td>
<td>Sigma, G9027</td>
</tr>
<tr>
<td>Potassium iodide</td>
<td>Stock of 10 mM dissolved in MilliQ.</td>
<td>J.T. Baker, 3165</td>
</tr>
<tr>
<td>Sodium acetate</td>
<td>Stock of 400 mM dissolved in MilliQ, pH adjusted to 5.4 with acetic acid.</td>
<td>BHD, 102364Q</td>
</tr>
<tr>
<td>Taurine</td>
<td>10 mM dissolved in phosphate buffer, made fresh.</td>
<td>Sigma, T0625</td>
</tr>
<tr>
<td>Taurine Chloramine</td>
<td>Taurine (10 mM in phosphate buffer) and bleach were mixed at 10:1 molar ratio (142). Taurine chloramine was made fresh.</td>
<td></td>
</tr>
<tr>
<td>3,3',5,5'-Tetramethylbenzidine (TMB)</td>
<td>Stock of 20 mM dissolved in 100% DMF.</td>
<td>Fluka, 87748</td>
</tr>
<tr>
<td>TMB Reagent</td>
<td>Stock of 2 mM TMB/DMF (row above) diluted in 100 µM potassium iodide and 400 mM sodium acetate buffer. This reagent was kept in the dark and made fresh every week.</td>
<td></td>
</tr>
<tr>
<td>Urate hydroperoxide formed by the xanthine oxidase/lactoperoxidase system</td>
<td>In 50 mM phosphate buffer; 100 µM hypoxanthine, 400 µM urate, 200 nM lactoperoxidase and 1.8 µM xanthine oxidase. After 20 min the reaction was stopped with 100 µg/mL catalase and 10 µg/mL superoxide dismutase. This solution was used immediately quantified with the FOX assay and used for experiments.</td>
<td></td>
</tr>
<tr>
<td>Urate hydroperoxide control solution</td>
<td>This was the xanthine oxidase/lactoperoxidase system without hypoxanthine. In phosphate buffer; 400 µM urate, 200 nM lactoperoxidase, 1.8 µM xanthine oxidase, 100 µg/mL catalase and 10 µg/mL superoxide dismutase.</td>
<td></td>
</tr>
</tbody>
</table>
3.2.2 TMB Measurement of Taurine Chloramine

The TMB assay was used to quantify taurine chloramine (145). During this assay, chloramines oxidized colourless TMB to a blue product, which was photometrically measured at 645 nm. This reaction was catalysed by iodine. In a quartz cuvette, 20 µL of taurine chloramine solution (table 3) was diluted to 800 µL with phosphate buffer and was treated with 200 µL TMB reagent (table 3). The cuvette was incubated for 5 min then the absorbance was read at 645 nm on the Agilent spectrophotometer on standard mode. The concentration of taurine chloramine was determined with the Beer-Lambert law where: 
\[ \varepsilon_{(645)} = 30,000 \text{ M}^{-1}\text{cm}^{-1} \] (145). Taurine chloramine was diluted to 20 µM with phosphate buffer to be used experimentally.

3.2.3 DTNB Assay for Reduced Thiols

The DTNB assay was used to quantify reduced thiols. Colourless DTNB was reduced by reduced thiols to yellow thionitrobenzoate (TNB), which absorbs light at 412 nm (144). For the assay, 10 – 100 µM reduced thiol was transferred into a 1 mL plastic cuvette and was treated with 20 µM of 10 mM DTNB. Samples were made in triplicate. The cuvettes were incubated in the dark at room temperature for 10 min. The Agilent spectrophotometer was set to standard mode with manual measurement of fixed wavelength 412 nm. The spectrophotometer was blanked with 50 mM phosphate buffer and DTNB reagent before sample absorbance was read at 412 nm. The reduced thiol concentration was calculated with the DTNB extinction: 
\[ \varepsilon_{(412)} = 14,100 \text{ M}^{-1}\text{cm}^{-1} \] (144). Experiments with exposure of thiols to oxidants were performed with a discontinuous system, wherein the thiols and oxidants were prepared separately then combined. Thiols were diluted with phosphate buffer when the absorbance was above 1. Reduced thiol concentration was plotted against substance or concentration of oxidant.

3.2.3.1 Standard Curve and Controls

Standard curves were made for the DTNB assay of cysteine, glutathione, cystine and glutathione disulfide to determine the linearity and specificity of the assay for reduced thiols. A stock of 1 mM of the thiols was transferred into plastic cuvettes to achieve concentrations: 0 – 100 µM. The volume was made up to 980 µL with
phosphate buffer and the DTNB assay was performed (3.2.3). Absorbance at 412 nm was plotted vs. thiol concentration.

The DTNB assay was performed on the substances of the xanthine oxidase/lactoperoxidase system to determine their interference for later experiments. In plastic cuvettes, each substance was diluted to 980 µL with phosphate buffer. The final concentrations: 50 mM phosphate buffer, 78 µM hypoxanthine, 195 µM urate, 156 nM lactoperoxidase, 1.4 µM xanthine oxidase, 78 µg/mL catalase and 7.8 µg/mL superoxide dismutase. The substances of the xanthine oxidase/lactoperoxidase system were also transferred (780 µL) into plastic cuvettes with 200 µL of 350 µM cysteine or 150 µM glutathione. The DTNB assay was performed as previously described (3.2.3). The final concentration of substances was the same as section 3.2.3.2.

### 3.2.3.2 Depletion or Cysteine and Glutathione by Urate Hydroperoxide

Cysteine and glutathione were treated with urate hydroperoxide in a discontinuous system and the resulting reduced thiol concentration was measured with the DTNB assay. Samples were made for the xanthine oxidase/lactoperoxidase system with controls where each substance was removed or the addition of catalase and superoxide dismutase (Appendix 2, table 7). In these samples, urate hydroperoxide was allowed 20 min to form then catalase and superoxide dismutase were added to stop the reaction. Immediately after the reaction was stopped 780 µL of each sample was transferred into plastic cuvettes with 70 µM cysteine or 30 µM glutathione in triplicate. Cysteine and glutathione were diluted in 780 µL phosphate buffer to determine the untreated reduced thiol concentration. The DTNB assay was performed (3.2.3). The hydroperoxide concentrations of the xanthine oxidase/lactoperoxidase system samples were determined with FOX assay (2.2.4).

### 3.2.3.3 Dose-Dependent Depletion of Cysteine and Glutathione by Oxidants

The DTNB assay was performed on cysteine and glutathione treated with varying concentrations of taurine chloramine or urate hydroperoxide to determine the stoichiometry of reduced thiol depletion. Stock cysteine (125 µM) or glutathione (75 µM) were transferred into a plastic cuvette at 200 µL. The reduced thiols were then treated with varying volumes of 20 µM taurine chloramine (Appendix 2, table 8). This
experiment was also performed with urate hydroperoxide (2.3.3.3). Glutathione (200 µL of 150 µM) was dose-dependently treated with 12 µM urate hydroperoxide (Appendix 2, table 9). To account for interference by lactoperoxidase, a control solution was made with all the substances except hypoxanthine. The volume of the samples were equalled at 980 µL with phosphate buffer. The final concentrations of oxidants were 0 – 16 µM taurine chloramine and 0 – 9 µM urate hydroperoxide. Stock oxidant concentration was checked with the TMB (3.2.2) and FOX assay (2.2.3). The cuvettes were incubated for 10 min at room temperature and assayed with DTNB (3.2.3).

3.3 Results

3.3.1 DTNB Assay

I wanted to use the DTNB assay to quantify reduced thiol concentration and depletion with exposure to oxidants. A discontinuous system was used to treat cysteine and glutathione with oxidants. A standard curve was made for cysteine, glutathione, cystine and glutathione disulfide absorbance during the DTNB assay (Appendix 1, figure 34 A). Cysteine and glutathione linearly absorbed light at 412 nm, whereas the absorbance of the oxidized forms was negligible. Thus, the DTNB assay was exclusive to reduced form of these thiols. The reduced thiols were exposed to the individual substances of the xanthine oxidase/lactoperoxidase system and the resulting thiol concentration was measured (Appendix 1, figure 34 B and 35). Urate and lactoperoxidase deplete cysteine, thus interfered with the assay.

3.3.1.1 Reduced Thiol Depletion by Urate Hydroperoxide

In this experiment I sought to measure the effect of urate hydroperoxide on cysteine and glutathione. The DTNB assay was performed on these thiols following treatment with samples for the xanthine oxidase/lactoperoxidase system. The urate hydroperoxide concentration for the full system in both experiments was 10 µM.
Figure 16: Depletion of free thiols by urate hydroperoxide. **A.** Depletion of cysteine by urate hydroperoxide. The xanthine oxidase/lactoperoxidase system was incubated with 70 µM cysteine 30 µM glutathione for 10 min and DTNB assay was performed. The hydroperoxide concentration of each sample (for both cysteine and glutathione) were 0, 12, 16.3, 3.2, 5.8, 2.8, 2.1 and 1.7 µM. Thus, when the baseline absorbance was removed, the urate hydroperoxide concentration of the full system was 10 µM. These graphs were representative of two experiments. The error bars represented the standard deviation of triplicate readings for one experiment. One-way ANOVA followed by Holm-Sidak multiple comparison on triplicate readings was used to identify samples that were significantly different from the phosphate buffer control (* p <0.05).

When 70 µM cysteine was discontinuously exposed to urate hydroperoxide (full system) the reduced thiol concentration dropped to approximately 5 µM (figure 16 A). The addition of catalase and superoxide dismutase limited the reduced thiol depletion to approximately 30 µM. When hypoxanthine and xanthine oxidase were excluded from the system the concentration of cysteine dropped to 30 µM. When urate and
lactoperoxidase were excluded the reduced thiol concentration was close to the thiol concentration in phosphate buffer, 50 and 70 µM respectively. Thus, urate and lactoperoxidase depleted cysteine, as seen with the control experiment (Appendix 1, figure 35 A). It was clear that urate hydroperoxide (full system) depleted cysteine compared to the control (without hypoxanthine), however the sole effect of urate hydroperoxide was obscure. Dose-dependent depletion of cysteine by urate hydroperoxide was not performed because the interference by urate and lactoperoxidase were too strong and inconsistent.

When approximately 30 µM glutathione was exposed to urate hydroperoxide the reduced thiol concentration dropped to approximately 7 µM (full system, figure 16 B). The addition of catalase and superoxide dismutase limited the depletion to approximately 20 µM. The control solutions without urate and xanthine oxidase had similar glutathione concentrations as the phosphate buffer control. There was a small increase in reduced thiol concentration when hypoxanthine and lactoperoxidase were left out of the system. This was most likely interference by catalase. Formation of urate hydroperoxide depleted glutathione (full system) compared to the control (without hypoxanthine).

3.3.1.2 Dose-Dependent Depletion of Reduced Thiols by Taurine Chloramine

I sought to determine the stoichiometry of cysteine and glutathione depletion by taurine chloramine. These thiols were dose-dependently exposed to taurine chloramine and the resulting reduced thiol concentration was measured with DTNB. Approximately 25 or 15 µM cysteine or glutathione was exposed to 0 – 13 µM taurine chloramine.
3.3.1.3 Dose-Dependent Depletion of Glutathione by Urate Hydroperoxide

Glutathione was exposed to urate hydroperoxide in a dose-dependent manner to determine the stoichiometry of its oxidation. Approximately 25 µM glutathione was treated with 0 – 10 µM urate hydroperoxide. The resulting thiol concentration was measured with the DTNB assay.
Urate hydroperoxide linearly depleted glutathione (figure 18). The stoichiometry of glutathione oxidation by urate hydroperoxide was 2:1. This ratio was identical to results by Patrício et al. (20) and taurine chloramine depletion of reduced thiols (figure 17). This ratio implies a urate hydroperoxide molecule oxidises glutathione to glutathione disulfide, thus depleting two reduced thiols.

3.4 Discussion

The depletion of reduced thiols by taurine chloramine and urate hydroperoxide was measured through loss of DTNB absorbance at 412 nm. Lactoperoxidase interfered with the depletion of cysteine by urate hydroperoxide, but it was apparent from Figure 16 A. that urate hydroperoxide oxidises this amino acid. Lactoperoxidase and urate seem to deplete cysteine (figure 16 A and 35 A). Cysteine could bind lactoperoxidase in the absence of hydrogen peroxide, then enter the peroxidase cycle to be oxidized to cystine (146-149). Cysteine has antioxidant properties and may scavenge oxidized urate (74). This result was consistent with previous work by Kuzkaya et al. (74), wherein urate’s antioxidant capacity was extended by the presence of cysteine to reduce the urate radical.
Glutathione was depleted by urate hydroperoxide at ratio 2:1. This ratio suggests glutathione passed a hydride to urate hydroperoxide and dimerised to glutathione disulfide. Thus, urate hydroperoxide did not form an adduct to the thiol. Patrício et al. (20) published mass spectrometry data with the same ratio for glutathione depletion by this oxidant. Together, this was strong evidence that urate hydroperoxide oxidises glutathione to glutathione disulfide. Lactoperoxidase marginally depleted glutathione, thus it was unlikely to enter this enzyme’s peroxidase cycle (figure 16 B and 35 B). Steric hindrance by the glycine and glutamate side-chains may have prevented oxidation by lactoperoxidase (150).

Cysteine is an essential building block for biomolecules, thus urate hydroperoxide depletion of this molecule will affect anabolism of the cell. Dose-dependent depletion of cysteine by urate hydroperoxide could be performed with the riboflavin photooxidation system to bypasses interference by lactoperoxidase. My findings could be expanded to other important thiol-containing compounds such as cysteine analogue, homocysteine; or glutathione precursor, cysteinylglycine (151). Also, the glutathione to glutathione disulfide ratio could be measured for cells exposed to urate hydroperoxide. Mass spectrometry should be performed on cysteine and glutathione treated with urate hydroperoxide to confirm that this oxidant did not form an adduct to cysteine or glutathione.

Urate hydroperoxide will deplete cysteine at inflammatory sites, hence starving the surrounding cells of this essential amino acid. Serum cysteine is mainly protein-bound or oxidized; the concentration of free cysteine is only 10 µM (151). Therefore, urate hydroperoxide may have a more significant effect on protein-bound cysteine used by enzymes for catalysis. Urate hydroperoxide formation will aggravate oxidative stress by depleting antioxidants like glutathione, leading to exposure of the cell to oxidants and toxins. However, glutathione is a minor antioxidant in blood serum and is present at 4 µM (151). For urate hydroperoxide to affect the glutathione pool it must be uptaken into cells where the concentration is up to 10 mM (152). Urate hydroperoxide is unlikely to achieve concentrations of 5 mM to deplete this pool, hence it must work in conjunction with other oxidants. We would expect oxidants to be abundant during oxidative stress induced by hyperuricemia.
Chapter 4. Urate Hydroperoxide and Glyceraldehyde-3-Phosphate Dehydrogenase

4.1 Introduction

Inactivation of thiol-dependent enzymes by urate hydroperoxide could be the link between hyperuricemia and inflammatory disease. Enzymes that rely on a cysteine residue for catalysis, or thiol-dependent enzymes, are ubiquitous in biology (24). Catalytic cysteines are powerful soft nucleophiles with highly polarizable empty d-orbitals. They are often paired with a histidine residue, which lowers the pKa of cysteine from 8.3 to 2.5 – 8 (153, 154). These attributes make catalytic cysteines vulnerable to electrophilic oxidants like urate hydroperoxide (154, 155). Oxidation of catalytic cysteines inactivates the enzyme (23, 153). Metabolic pathways affected by thiol-dependent enzyme inactivation include glycolysis, electron transport, oxidative signalling and glutathione metabolism. These pathways are essential for cell function, therefore cell survival may be affected by electrophilic oxidants (24). The aim of this chapter is to determine whether urate hydroperoxide inactivates a thiol-dependent enzyme and the resulting modification. I used GAPDH as a model for thiol-dependent enzymes.

GAPDH catalyses the sixth step of glycolysis and is essential for the function of all cells (29). This enzyme also functions in cell proliferation, oxidative signalling, apoptosis, membrane transport, cytoskeleton dynamics, DNA replication and repair (29, 156, 157). GAPDH catalyses the addition of an inorganic phosphate to GAP using cofactor oxidized nicotinamide adenine dinucleotide (NAD\(^+\)), the products are 1,3-bisphosphoglycerate (BPG) and reduced nicotinamide adenine dinucleotide (NADH). The mechanism for catalysis is hydride transfer from GAP to NAD\(^+\), in which the catalytic cysteine (Cys149) forms a covalent bond to GAP (158-162) (figure 19). GAPDH inactivation uncouples oxidation and phosphorylation during glycolysis, preventing the production of ATP and leading to cell death (27, 163). Loss of function for this enzyme has repercussions for breakdown of glucose for energy (29).
Figure 19: Crystal structure and active site configuration of rabbit muscle GAPDH. This enzyme is a homotetramer with the active site is a NAD-binding Rossman fold domain. The essential cysteine is positioned to covalently bind GAP. His176 transfers a hydride from the intermediate to NAD+, producing NADH. Figure adapted from (28).

The essential GAPDH thiol can undergo a number of modifications, following oxidant exposure, resulting in inactivation (figure 20). Cys149 is consecutively oxidized to sulfenic, sulfinic and sulfonic acid. Sulfenic acid is highly reactive and forms a disulfide bond between Cys149 and Cys153 in rabbit muscle GAPDH, or mixed a disulfide bond with other thiol molecules (27, 143). Though, it is debatable whether Cys149 and Cys153 are close enough to form a disulfide bond (27, 162). This modification is reversible with reduction by glutathione. Sulfinic acid is stable and is solely removed by sulfiredoxin, whether this occurs in vivo is unclear (164). Sulfonic acid is the final state of overoxidation and is essentially irreversible (23). Oxidants and alkylating agents form adducts to Cys149, resulting in permanent loss of activity (26, 165).
Urate hydroperoxide inactivation of thiol-dependent enzymes may link hyperuricemia and tissue damage during inflammatory disease. I hypothesize that urate hydroperoxide inactivates the thiol-dependent enzyme GAPDH and oxidises its cysteine residues. My basis for this hypothesis is that electrophilic oxidants induce modifications to thiol-dependent enzymes (24). As a hydroperoxide, urate hydroperoxide is a highly reactive oxidant (20). GAPDH was chosen as a model for thiol-dependent enzymes because it is an abundant and essential enzyme in all cells. I aim to determine the concentration of urate hydroperoxide that was required to inactivate GAPDH, whether inactivation was reversible and the structural modification that occurred.
4.2 Materials and Methods

4.2.1 Materials

Substances and solutions used throughout experimental work were put in table 4.

Table 4: Description of substances and solutions used to perform the GAPDH assay, gel electrophoresis and mass spectrometry. The preparation and company sourced were described. Buffers were autoclaved before use.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Preparation</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>4% Acrylamide stacking gel</td>
<td>In MilliQ: 4% Acrylamide/bis, 0.6 M Tris HCl (pH 8.8), 0.1% SDS, 0.05% APS and 0.16% TEMED.</td>
<td></td>
</tr>
<tr>
<td>15% Acrylamide resolving gel</td>
<td>In 0.6 M Tris HCl (pH 8.8): 25% Acrylamide/bis, 0.15% SDS, 0.08% APS, 0.2% TEMED.</td>
<td></td>
</tr>
<tr>
<td>40% Acrylamide/bis solution</td>
<td>Acrylamide to Bis = 37.5:15</td>
<td>BioRad, 1610148</td>
</tr>
<tr>
<td>Ammonium persulfate (APS)</td>
<td>Stock of 10% (w/v) dissolved in MilliQ.</td>
<td>Sigma, A3678</td>
</tr>
<tr>
<td>Ammonium Bicarbonate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio-gel polyacrylamide beads</td>
<td>Bio-gel P-6DG desalting gel, 990-180 µM.</td>
<td>BioRad, 150-0738</td>
</tr>
<tr>
<td>Bromophenol blue</td>
<td></td>
<td>Sigma, B1131</td>
</tr>
<tr>
<td>DL-dithiothreitol (DTT)</td>
<td>0.1 M was dissolved in 50 mM phosphate buffer. For SDS-PAGE used 1 M DTT.</td>
<td>Sigma, D9779</td>
</tr>
<tr>
<td>Electrode buffer</td>
<td>In MilliQ: 25 mM Tris, 192 mM glycine, 0.1% SDS, pH adjusted to 8.3.</td>
<td></td>
</tr>
<tr>
<td>Formic acid</td>
<td></td>
<td>Merck, 1.00263.100</td>
</tr>
<tr>
<td>GAP</td>
<td>Diluted from 45 mg/mL to 10 mM in phosphate buffer.</td>
<td>Sigma, G-5251</td>
</tr>
<tr>
<td>Glycerol</td>
<td></td>
<td>Sigma, G5516</td>
</tr>
<tr>
<td>Glycerine (Gly)</td>
<td></td>
<td>Sigma, G8898</td>
</tr>
<tr>
<td>β-mercaptoethanol</td>
<td></td>
<td>Sigma, 63699</td>
</tr>
<tr>
<td>NAD⁺</td>
<td>Stock of 10 mM dissolved in phosphate buffer.</td>
<td>Sigma, N-7004</td>
</tr>
<tr>
<td>NADH</td>
<td>Stock of 1 mM dissolved in phosphate buffer.</td>
<td>Sigma, N8129</td>
</tr>
<tr>
<td>Protein Standard Dual Colour</td>
<td>Protein ladder for SDS-PAGE.</td>
<td>Precision Plus, #16103744110029</td>
</tr>
<tr>
<td>Rabbit Muscle GAPDH</td>
<td>Dissolved in 50 mM TEA buffer, ε(280) = 149 M⁻¹cm⁻¹ (166).</td>
<td>ICN Biomedical Inc., [9001-50-7]</td>
</tr>
<tr>
<td>Sodium dodecyl sulfate (SDS)</td>
<td></td>
<td>Fisher Science, SP53053</td>
</tr>
<tr>
<td>Solvent A (mobile phase)</td>
<td>In MilliQ: 0.1% formic acid</td>
<td></td>
</tr>
<tr>
<td>Solvent B (mobile phase)</td>
<td>In acetonitrile: 0.1% formic acid</td>
<td></td>
</tr>
<tr>
<td>Tetramethylethylenediamine (TEMED)</td>
<td></td>
<td>Sigma, T9281</td>
</tr>
<tr>
<td>Triethanolamine (TEA)</td>
<td></td>
<td>BDH, 103704U</td>
</tr>
<tr>
<td>TEA buffer</td>
<td>In MilliQ: 50 mM TEA and 50 mM NaH₂PO₄ anhydrous, pH adjusted to 8.5 with HCl.</td>
<td></td>
</tr>
<tr>
<td>Tris(hydroxymethyl)aminomethane-HCl (Tris-HCl)</td>
<td>In MilliQ: 60 mM Tris-HCl (pH 6.8), 20% (v/v) glycerol, 2% (v/v) SDS, 5% (v/v) β-mercaptoethanol and 0.25 M bromophenol blue.</td>
<td>Roche, 10708976001</td>
</tr>
</tbody>
</table>
4.2.2 GAPDH Assay

The GAPDH assay was used to assess the enzymes activity after various treatments. This assay exposed GAPDH to its substrates and measured the formation of NADH at 340 nm. This method was optimised from Seidler (167). The assay was performed with a Hitachi spectrophotometer and 1 mL quartz cuvette. The spectrophotometer was set to measure 0.1 – 1 absorbance at 340 nm for 300 sec, spectral band width = 2 at 25°C. The assay required approximately 60 nM GAPDH, 0.5 mM GAP, 1 mM NAD⁺ and 50 µM DTPA, dissolved in 1 mL TEA buffer. The spectrophotometer was blanked with all substances except GAPDH, which initiated the assay. The initial rate of GAPDH activity was calculated as A.min⁻¹ over 10 – 50 sec. GAPDH activity was expressed as a percent by designating GAPDH diluted in phosphate buffer as 100% activity. Graphs were plotted for GAPDH activity (%) vs. substance or concentration of oxidant.

4.2.2.1 Optimising the GAPDH Assay

The concentration of NAD⁺ and DTT used during the GAPDH assay was optimised to achieve high activity (A.min⁻¹). GAPDH activity was assayed over a number of concentrations of NAD⁺ to determine the saturation concentration for this substrate. The concentration of NAD⁺ was varied by diluting a 10 mM stock of in phosphate buffer to make a dilution series. Each dilution (100 µL) was transferred into the assay cuvette (with 2 mM DTT) to achieve final concentrations 0 – 1.4 µM. Next the concentration of DTT required to activate the enzyme was determined. The concentration of DTT was high enough to reduce the enzyme yet easily removed with spin columns. Stock DTT (100 mM) was added at different volumes to the assay cuvette to achieve final concentrations 0 – 7.5 mM. The other substances of the assay were diluted in TEA buffer and the assay was performed (4.2.2).

The linearity of GAPDH activity with concentration was determined by creating a standard curve. GAPDH (25 µM) was diluted in TEA buffer. The concentration of GAPDH in the cuvette was 0 – 400 nM.

4.2.2.2 Preparation of Reduced GAPDH with Spin Columns

GAPDH was isolated from DTT with spin columns to allow treatment of the enzyme with oxidants in later experiments. GAPDH was reduced with 2 mM DTT for
30 min. Mini-Bio-Spin® chromatography columns were prepared by adding 700 µL wet Bio-Gel polyacrylamide and allowing excess liquid to flow through. Columns were washed four times with MilliQ and once with TEA buffer. The columns were packed by centrifugation at 1000 g for 2 min. GAPDH and DTT samples were injected on top of each column at a maximum volume of 75 µL. The columns were centrifuged at 1000 g for 4 min to elute GAPDH.

The effectiveness of spin column isolation was assessed by measuring concentration and activity for each step of GAPDH reduction and isolation (Initial, addition of DTT and isolation with spin columns). The assay cuvette did not have additional DTT (4.2.2).

4.2.3 NAD\(^+\) and NADH Photometry

The purpose of this experiment was to determine whether taurine chloramine or urate hydroperoxide oxidised NAD\(^+\) or NADH, thus creating interference with the GAPDH assay. NAD\(^+\) absorbed light at 260 nm while NADH absorbed at 260 and 340 nm (168). Photometric measurement at 340 nm was used to show the formation or depletion of NADH. The Agilent spectrophotometer was blanked with phosphate buffer in a 1 mL quartz cuvette. The buffer was replaced with the NAD solution dissolved in phosphate buffer and triplicate readings were made. The extinction coefficients were: \(\varepsilon_{(260)} = 18,000\) M\(^{-1}\)cm\(^{-1}\) and \(\varepsilon_{(340)} = 6,220\) M\(^{-1}\)cm\(^{-1}\) (168). NAD concentration was plotted vs. concentration of oxidant.

Standard curves were made for NAD\(^+\) and NADH absorbance at 260 and 340 nm. NAD\(^+\) or NADH (10 mM) was diluted with phosphate buffer to make a dilution series. The NAD dilutions (100 µL) were added to 900 µL phosphate buffer and the absorbance at 260 and 340 nm was measured for both oxidation states. The final concentrations for NAD\(^+\) and NADH were 0 – 20 and 0 – 150 µM respectively.

4.2.3.1 Dose-Dependent Treatment of NAD\(^+\) and NADH with Oxidants

The oxidation state of NAD was photometrically measured following dose-dependent treatment with oxidants. NAD\(^+\) and NADH were exposed to varying volumes of taurine chloramine or urate hydroperoxide and incubated for 10 min at room temperature. Samples were transferred into a 100 µL quartz cuvette. The absorbance
was read at 260 and 340 nm, having blanked the Agilent spectrophotometer with the same concentration of oxidant (4.2.3).

In Eppendorf tubes, NAD⁺ (25 µL of 80 µM) was exposed to varying volumes of 30 µM taurine chloramine and the volume was equalled at 375 µL with phosphate buffer. The final concentrations of taurine chloramine were 0 – 28 µM. NADH (40 µM) was treated with 0 – 159 µM taurine chloramine. The same method was used to dose-dependently treat NAD with urate hydroperoxide. NAD⁺ (40 µL of 60 µM) and NADH (40 µM) were treated with varying volumes of 8 µM urate hydroperoxide (2.3.3.3). Samples were made up to 600 µL with phosphate buffer. The final urate hydroperoxide concentrations were 0 – 3.8 µM or 0 – 7 µM. Due to interference by the xanthine oxidase/lactoperoxidase system, only samples with the five lowest concentrations of urate hydroperoxide could be read.

### 4.2.4 Continuous Inactivation of GAPDH by Urate Hydroperoxide

The GAPDH assay was combined with the xanthine oxidase system in a quartz cuvette and the GAPDH activity was assayed. This was a continuous system where urate hydroperoxide was formed as GAPDH activity was assayed at 340 nm (4.2.2). Samples were made in triplicate to represent the full xanthine oxidase/lactoperoxidase system, removal of a substance or addition of quenchers (Appendix 2, table 10). The final concentration of the xanthine oxidase/lactoperoxidase system were 100 µM hypoxanthine, 250 µM urate, 200 nM lactoperoxidase and 1.8 µM xanthine oxidase. All samples had 60 nM GAPDH (DTT-reduced), 0.5 mM GAP, 1 mM NAD⁺ and 50 µM DTPA in 1 mL TEA buffer. The spectrophotometer was blanked before the addition of xanthine oxidase and GAPDH as initiators for the two systems. As a control, the substances used to assay GAPDH activity were diluted in TEA buffer to represent 100% GAPDH activity.

The raw data (absorbance vs. time) for one replicate per sample was collated as a graph. The GAPDH activity for each triplicate was calculated for time periods: 30 – 60, 60 – 120, 120 – 180, 180 – 240 and 240 – 360 sec. These rates were plotted at time points 45, 90, 150, 210 and 270 sec vs. percent GAPDH activity.
4.2.5 Discontinuous Inactivation of GAPDH by Oxidants

A discontinuous system was used to measure the inactivation of GAPDH by taurine chloramine or urate hydroperoxide. GAPDH and the oxidants were prepared separately and mixed together in Eppendorf tubes as samples. GAPDH was reduced and isolated with a spin column at a high concentration (10 µM) and diluted 10 times in the samples with the oxidant. This experimental design allowed a maximum concentration of oxidant in the samples whilst the GAPDH concentration was constant with measurable activity.

4.2.5.1 GAPDH Inactivation by Urate Hydroperoxide

GAPDH was treated with the substances of the xanthine oxidase/lactoperoxidase system and assayed for change in enzyme activity. The final concentrations were the same as later experiments for inactivation of GAPDH by urate hydroperoxide (next paragraph). Each substance of the xanthine oxidase/lactoperoxidase system was diluted in 180 µL phosphate buffer. The concentrations were: 100 µM hypoxanthine, 400 µM urate, 200 nM lactoperoxidase, 1.8 µM xanthine oxidase or 50 mM phosphate buffer. Next, 20 µL of 10 µM GAPDH was added to each solution. After 10 min incubation the GAPDH activity for each sample was measured (4.2.2).

Xanthine oxidase/lactoperoxidase system samples (Appendix 2, table 11) were made in Eppendorf tubes. After 20 min incubation, having stopped the reaction with the quenchers, the hydroperoxide concentration was measured with the FOX assay. GAPDH (1 µM) was treated with 180 µL of each sample. After 10 min incubation GAPDH activity was assayed. A control was made with 1 µM GAPDH diluted in catalase-treated phosphate buffer to represent the active enzyme. The final concentration of substances were approximately 80 µM hypoxanthine, 330 µM urate, 160 nM lactoperoxidase, 1.5 µM xanthine oxidase, 80 µg/mL catalase (160 µg/mL for G.) and 8 µg/mL superoxide dismutase (16 µg/mL for F.).

4.2.5.2 Dose-Dependent Inactivation of GAPDH by Oxidants

The GAPDH assay was used to assess the effect of oxidants on enzyme activity. GAPDH (20 µl of 10 µM) was treated with a varying volume of 20 µM taurine chloramine or 7 µM urate hydroperoxide. Catalase-treated phosphate buffer was added to equal the volume of samples at 200 µL. The final concentration of oxidants were 0 –
16 μM taurine chloramine or 0 – 6 μM urate hydroperoxide (2.3.3.3). Samples were incubated at room temperature for 10 min and assayed for GAPDH activity (4.2.2). The stock concentrations of taurine chloramine and urate hydroperoxide were confirmed with the TMB (3.2.2) and FOX (2.2.4) assay respectively.

4.2.6 Inactivation Kinetics for GAPDH

The GAPDH assay was performed at various time points during discontinuous inactivation by oxidants. GAPDH was exposed to the oxidant in an Eppendorf tube and at set time points this solution was injected into the spectrophotometer and assayed for GAPDH activity. Three cuvettes were prepared in the Hitachi spectrophotometer with all the substances for the GAPDH assay, bar GAPDH. The spectrophotometer measured 340 nm throughout the experiment. In an Eppendorf tube, 20 μl of 10 μM GAPDH was combined with 180 μL of the oxidant and the stopwatch was immediately started. At three given time points, 60 μL of the sample was injected into a quartz cuvette. Four samples were made with staggered time points. The time points for a given sample were at least 45 sec apart to allow a linear slope to be made. Time points for samples:

1. 10, 60, 100 sec
2. 20, 75, 120 sec
3. 30, 90, 170 sec
4. 45, 140, 200 sec

The kinetics experiment was repeated three times for each oxidant. GAPDH activity (%) was plotted vs. time.

GAPDH (20 μL of 10 μM) was mixed with 180 μL of 20 μM taurine chloramine or 3 μM urate hydroperoxide. Taurine chloramine degrades slowly at room temperature, thus its concentration was similar for all the time points. Urate hydroperoxide degrades quickly, hence each sample was made from a new urate hydroperoxide solution. This increased the variability in the experiment because the urate hydroperoxide concentration was not identical per sample.

4.2.7 Reactivation of GAPDH Following Dose-Dependent Inactivation by Oxidants

This experiment assayed the reversibility of GAPDH inactivation by oxidants by reactivating the enzyme with DTT. Two sets of samples were made to represent before and
after inactivated GAPDH was exposed to DTT. Both samples sets were dose-dependently exposed to oxidants (4.2.5.2). One sample was exposed to catalase-treated phosphate buffer and served as a control to measure GAPDH inactivation. The second sample set was reduced with 2 mM DTT. All samples had a uniform concentration of substances.

GAPDH (1 µM) was dose-dependently exposed to 20 µM taurine chloramine (Appendix 2, table 12) or 7 µM urate hydroperoxide (Appendix 2, table 13). After 10 min incubation, the samples sets were either treated with DTT (2 mM) or diluted with catalase-treated phosphate buffer. Samples were incubated for 30 min before measuring the GAPDH activity. The final concentrations of oxidants were 0 – 18 µM taurine chloramine or 1 – 6 µM urate hydroperoxide. GAPDH was diluted in catalase-treated phosphate buffer and reduced with DTT to represent 100% GAPDH activity. GAPDH activity (%) was plotted against oxidant concentration for inactivate and reactivated samples.

4.2.8 DTNB Measurement of Cysteine Residues on GAPDH

The DTNB assay was used to measure depletion of cysteine residues on GAPDH by oxidants. This assay was modified to measure reduced thiol concentration in quartz cuvettes (162). GAPDH was reduced with DTT for 30 min and passed through spin columns twice to isolate GAPDH (4.2.2.2). The 380 µL samples were treated with 20 µL of 10 mM DTNB reagent and incubated for approximately 10 min in the dark. The Agilent spectrophotometer was blanked with TEA buffer treated with DTNB reagent. The assay solution was transferred into a 100 µL quartz cuvette and the absorbance was read at 412 nm on an Agilent spectrophotometer as previously described (3.2.3). The reduced thiol concentration was calculated with the DTNB extinction coefficient and plotted against substance or oxidant concentration.

A standard curve was made by varying the concentration of GAPDH exposed to DTNB. A stock of 1 µM GAPDH was diluted to 0 – 1200 nM with TEA buffer to make a dilution series. GAPDH (3 µM) was also treated with the substances of the xanthine oxidase/lactoperoxidase system to determine their interference with the assay. The final concentrations were the same as section 4.2.8.1: 50 mM phosphate buffer, 90 µM hypoxanthine, 360 µM urate, 190 nM lactoperoxidase, 1.7 µM xanthine oxidase, 95 µg/mL catalase and 9.5 µg/mL superoxide dismutase. After 10 min incubation the DTNB assay was performed.
4.2.8.1 Dose-Dependent Depletion of Cysteine Residues on GAPDH by Oxidants

The DTNB assay was used to measure the concentration of cysteine residues on GAPDH following dose-dependent exposure to oxidants (4.2.8). GAPDH (3 µM) was treated with varying volumes of 20 µM taurine chloramine or 9 µM urate hydroperoxide (2.3.3.3) discontinuously. The volume was made up to 190 µL with phosphate buffer. After 10 min incubation the DTNB assay was performed (4.2.8). The stock oxidant concentrations were determined with the TMB (3.2.2) and FOX assay (2.2.4).

4.2.9 Polyacrylamide Gel Electrophoresis

Laemmli-SDS-PAGE was performed to separate and visualise GAPDH and the xanthine oxidase/lactoperoxidase system (169). SDS-PAGE involved the movement of proteins through a polyacrylamide gel matrix with the applied electrical current. Proteins were separated by mass and charge, with small proteins travelling faster through the matrix. SDS, an anionic detergent, was used to promote the movement of the protein with the charge. Proteins were treated with coomassie brilliant blue, which stains proteins blue (170).

Two stacking gels were made from a 15% acrylamide resolving gel and 4% stacking gel. The composition of the gels was given in table 4. The resolving gel was poured first and was dried at room temperature for 20 min. The stacking gel was poured on top and wells were created with a comb. The following samples were made to 100 µM using a discontinuous system as previously described. The final concentration of substances were 1.5 µM GAPDH and 0 – 10.5 µM urate hydroperoxide (2.3.3.3).

1. Protein marker (Precision Plus protein standards dual colour)
2. GAPDH
3. Urate hydroperoxide
4. 1:1 GAPDH and urate hydroperoxide
5. 2:7 GAPDH and urate hydroperoxide
6. 1:7 GAPDH and urate hydroperoxide

For the non-reducing gel, 20 µL of each sample was transferred into an Eppendorf tube with 2.5 µL phosphate buffer and 5 µL non-reducing sample buffer. For the reducing gel, the phosphate buffer was replaced with 2.5 µL of 1 M DTT. Samples (28 µL) were injected into the following wells of the gel: well 4 – sample 1, well 5 – sample 2, well 6 –
sample 3, well 7 – sample 4 and well 8 – sample 5. The protein marker Precision Plus protein Standards Dual Colour was injected (3 µM) into well 3. The gel tanks were filled with Tris-Gly, pH 8.3 electrode buffer and ran for 60 min at 200 V. A BioRad gel dock (universal hood 11-S.N.765/00260) was used to visualise the protein. Documentation was performed with Quality One Chemidoc XRS (version 4.6.1.build 05). The gels where exposed to light for 500 sec and an image was taken.

4.2.10 GAPDH Mass Spectrometry

Whole protein mass spectrometry was performed on samples of GAPDH treated with urate hydroperoxide (2.3.3.3) and/or DTT in a discontinuous system. This method allowed identification of molecular weight changes to the GAPDH monomer with treatments. Proteins entered the mass spectrometer from the high performance liquid chromatography (HPLC) column. Electrospray ionisation applied a high voltage and temperature to the protein to form an ionised aerosol. This method minimised fragmentation of the proteins. The ionised proteins were separated based on their mass-to-charge (m/z) ratio by the quadrupole ion trap and were sent to the detector (171). Molecular weight was calculated from m/z and charge of the ionised protein:

\[
\frac{m}{z} = \frac{(m + nH^+)}{n}
\]

Where: \(m/z\) = mass-to-charge ratio, \(m\) = mass (Da), \(H^+\) = mass of hydrogen (1.008 Da) and \(n\) = number of charges. GAPDH (4.2 µM) was incubated with urate hydroperoxide (3.5 µM) (2.3.3.3) for 10 min. Samples were then treated with 2 mM DTT for 30 min or were diluted with phosphate buffer. The final volume was 100 µL:

A. GAPDH
B. GAPDH and DTT
C. GAPDH and urate hydroperoxide
D. GAPDH, urate hydroperoxide and DTT

The Velos Pro ion-trap mass spectrometer (Thermo Scientific) was set to positive ion mode. The resulting mass spectrums were deconvoluted with ProMass for Xcalibur. The full description for the conditions of HPLC and mass spectrometry was put in Appendix 2 (5.3.1).
4.3 Results

4.3.1 Optimising the GAPDH Assay

In these experiments I wanted to optimise the GAPDH assay to allow assessment of GAPDH activity after oxidant treatments. The concentration of \( \text{NAD}^+ \) and DTT were varied from 0 – 1.4 µM and 0 – 7.5 mM respectively in the assay cuvette. The resulting GAPDH activity was measured at 340 nm.

![Graph A: Vary NAD⁺](image)

**Figure 21:** Optimising the GAPDH assay. **A.** Optimising the \( \text{NAD}^+ \) concentration used for the GAPDH assay. The concentration of \( \text{NAD}^+ \) was varied in the cuvette during the GAPDH assay. The concentrations for all other substances were constant for the assay. **B.** Optimising the DTT concentration used for the GAPDH assay. The concentration of DTT was varied in the cuvette during the GAPDH assay. The concentrations for all other substances were constant. These graphs represented two experiments.

During \( \text{NAD}^+ \) optimisation, GAPDH activity reached a maximum of 0.08 A.min\(^{-1}\) at 1 mM \( \text{NAD}^+ \), after which the activity plateaued (figure 21 A). The addition of DTT to the assay cuvette dramatically increased the GAPDH activity (figure 21 B). The enzyme activity reached a maximum at 1 mM DTT, at a rate six times greater than in the absence of DTT. There was some loss of GAPDH activity with DTT concentrations > 1 mM, but the activity was still high. Based on these results, GAPDH was reduced with 2 mM DTT and isolated with spin columns. GAPDH was assayed with 1 mM \( \text{NAD}^+ \). The optimised GAPDH assay used concentrations: 60 nM GAPDH (reduced with 2 mM DTT), 0.5 mM GAP, 1 mM \( \text{NAD}^+ \) and 50 µM DTPA in TAE buffer.

A series of experiments were preformed to assess the interference of the xanthine oxidase/lactoperoxidase system on GAPDH activity. GAPDH activity was linear with
concentration in the presence of DTT (Appendix 1, figure 36). This enzyme was isolated from DTT with spin columns with a workable concentration and activity (Appendix 1, figure 37). NAD absorbance at 260 and 340 nm was used to assess the oxidation state (Appendix 1, figure 38). Exposure of this cofactor to taurine chloramine and urate hydroperoxide did not affect the oxidation state at concentrations used for GAPDH inactivation assay (Appendix 1, figure 39 and 40).

4.3.2 GAPDH Inactivation by Continuous Urate Hydroperoxide Formation

In this experiment I sought to measure the effect of urate hydroperoxide on GAPDH as it was formed by the xanthine oxidase/lactoperoxidase system. In a quartz cuvette the GAPDH assay and the xanthine oxidase/lactoperoxidase systems were mixed in TEA buffer. The absorbance at 340 nm was monitored. None of the substances used to make urate hydroperoxide affected GAPDH activity (Appendix 1, figure 41).
Figure 22: GAPDH inactivation during continuous formation of urate hydroperoxide. The substances of the GAPDH assay and xanthine oxidase/lactoperoxidase system were mixed in a quartz cuvette. Xanthine oxidase and GAPDH were the initiators. Each sample represented the removal of a substance from the xanthine oxidase/lactoperoxidase system or addition of catalase and superoxide dismutase. The control ‘TEA buffer’ only had the substances for the GAPDH assay to represent 100% GAPDH activity. **Top:** Raw data of each sample’s absorbance at 340 nm. **Bottom:** GAPDH activity vs. time for each sample expressed as a percent. These graphs represented one experiment and the error bars were standard deviation for triplicate readings.

Figure 22 illustrates how the xanthine oxidase/lactoperoxidase system *in situ* effects GAPDH activity. Compared with the TEA buffer control, the full system had a significantly lower maximum absorbance (figure 22 A). The addition of superoxide dismutase was not effective in increasing the maximum absorbance, whereas the addition of catalase protected formation of NADH. All other controls (without hypoxanthine, urate,
lactoperoxidase and xanthine oxidase) had similar absorbance to TEA buffer. When the GAPDH activity was converted into a percent, the effect of urate hydroperoxide formation became distinct (figure 22 B). Initially, the full system caused a 40% loss of activity, this increased to approximately 70% in 4 min. During this time period approximately 5 µM urate hydroperoxide was made (figure 14). The addition of superoxide dismutase did not prevent the inactivation of GAPDH. All other samples had similar GAPDH activities.

The loss of GAPDH activity with the full xanthine oxidase/lactoperoxidase system implies a urate oxidant was responsible. Urate hydroperoxide was not solely responsible for inactivation of GAPDH since other oxidants were formed. Next, a discontinuous system was used to determine inactivation of GAPDH by urate hydroperoxide. The advantage of this system was that urate hydroperoxide dominated the oxidants formed.

### 4.3.3 Discontinuous Inactivation of GAPDH

#### 4.3.3.1 Inactivation of GAPDH by Urate Hydroperoxide

For this experiment, I sought to determine whether the xanthine oxidase/lactoperoxidase system effected GAPDH activity. GAPDH was discontinuously exposed to samples for this system and the enzyme activity was assayed. The urate hydroperoxide concentration for the full system was 5 µM.

![Figure 23: Inactivation of GAPDH by urate hydroperoxide.](image)

GAPDH was treated with samples for the xanthine oxidase/lactoperoxidase system. These samples included the full system, removal of a substance or addition of catalase or superoxide dismutase. The hydroperoxide concentrations for samples A – G were 5, 2.7, 3.6, 0.9, 0.3, 0.1 and 0.2 µM. This graph was representative of two experiments. The error bars represented the standard deviation of triplicate readings for one experiment. One-way ANOVA followed by Holm-Sidak multiple comparison on triplicate readings was used to identify samples that were significantly different from the phosphate buffer control (* p <0.05).
GAPDH was treated with the xanthine oxidase system to determine the effect of urate hydroperoxide on enzyme activity (figure 23). The full system with 5 µM urate hydroperoxide caused a 60% loss of GAPDH activity. The addition of catalase to the xanthine oxidase/lactoperoxidase system did not prevent GAPDH inactivation, whereas superoxide dismutase minimised the loss of activity to 20%. Hence, superoxide was essential for oxidant formation and GAPDH inactivation. When urate was removed from the system, 2.7 µM urate hydroperoxide was formed and approximately 40% of GAPDH activity was lost. Hypoxanthine, lactoperoxidase and xanthine oxidase were essential for urate hydroperoxide formation. When they were removed from the system there was minimal loss of GAPDH activity. These controls provide strong evidence that the loss of GAPDH activity was due to urate hydroperoxide as opposed to superoxide, hydrogen peroxide or other products formed.

4.3.3.2 Dose-Dependent Inactivation of GAPDH by Taurine Chloramine and Urate Hydroperoxide

The purpose of this experiment was to determine the stoichiometry of GAPDH inactivation by taurine chloramine and urate hydroperoxide. GAPDH (1 µM) was exposed to 0 – 12 µM taurine chloramine or 0 – 6 µM urate hydroperoxide in a dose-dependent manner.
Figure 24: Dose-dependent inactivation of GAPDH by taurine chloramine or urate hydroperoxide.
Reduced GAPDH was incubated with for 10 min with varying concentrations of oxidant. The resulting activity of GAPDH was quantified by measuring the formation of NADH at 340 nm on a spectrophotometer. GAPDH activity was lost with increasing concentration of oxidant. The concentration of GAPDH was approximately 1 µM. This graph combines at least three experiments.

Treatment of GAPDH with 10 µM taurine chloramine caused complete loss of activity (figure 24). The stoichiometry of inactivation for taurine chloramine to GAPDH was approximately 10:1. Urate hydroperoxide also showed dose-dependent inactivation of GAPDH. Approximately 5 µM urate hydroperoxide completely inactivated 1 µM GAPDH, hence the ratio of inactivation was approximately 5:1. The rate of inactivation was -18% activity per µM urate hydroperoxide. Urate hydroperoxide was a more successful inactivator of GAPDH than neutrophil derived oxidant taurine chloramine.

4.3.4 Inactivation Kinetics for GAPDH

I studied the kinetics of GAPDH inactivation by taurine chloramine and urate hydroperoxide to determine the reactivity of these oxidants. GAPDH was exposed to an oxidant in a discontinuous system and the resulting solution was immediately injected into the solution into assay cuvettes at different time points. Thus, the loss of GAPDH activity was measured with time.
Figure 25: Kinetics of GAPDH inactivation by oxidants. GAPDH was exposed to oxidants and the resulting activity was assayed at three time points. This method was repeated three times and the time points measured were staggered. Time = 0 was the GAPDH activity in catalase-treated phosphate buffer. A. Kinetics of GAPDH exposure to taurine chloramine. B. Kinetics of GAPDH inactivation by urate hydroperoxide. These graphs were representative of three experiments.

Half of GAPDH activity was instantly lost upon exposure to taurine chloramine (figure 25 A). GAPDH activity continued to decline over the span of minutes. These results suggested GAPDH inactivation by taurine chloramine had two reactions: a fast and slow reaction. The fast reaction was not be characterised and represented the greater loss of GAPDH activity. The decline from 10 sec to 3 min represented a decline of approximately 9% per min. The concentrations of GAPDH and taurine chloramine were approximately 1 and 18 µM respectively.

GAPDH exposure to urate hydroperoxide was met with a fast loss of GAPDH activity over 2 min (figure 25 B). The decline in activity was smooth, hence the cause of inactivation might be a one-step reaction. GAPDH activity declined at a rate of approximately 23% per min. For this experiment, a low concentration of urate hydroperoxide (approximately 3 µM) was used which only inactivated half of the enzyme. Inactivation of GAPDH with higher concentrations of urate hydroperoxide was too quick to make a curve with multiple points.
4.3.5  Reactivation of GAPDH with DTT

This series of experiments explored whether inactivation of GAPDH by taurine chloramine or urate hydroperoxide was irreversible by reactivating the enzyme with DTT. I sought to confirm experiments by Peskin and Winterbourn (143) that taurine chloramine inactivation of GAPDH was reversible. GAPDH was exposed to taurine chloramine in a dose-dependent manner then samples were reduced with 2 mM DTT.

![Graph showing GAPDH activity](image)

**Figure 26: Reactivation of GAPDH following inactivation with taurine chloramine.** GAPDH was dose-dependently exposed to taurine chloramine for 10 min. DTT (2 mM) was added to reactivate half of the samples and incubated for a further 30 min before measuring GAPDH activity. This graph combines at least three experiments.

Figure 26 illustrates how GAPDH was reactivated following exposure to taurine chloramine. GAPDH treatment with taurine chloramine resulted in a dose-dependent loss of GAPDH activity as previously described (4.3.3.2). Reduction by DTT recovered at least 80% of GAPDH activity regardless of taurine chloramine concentration. These results were similar to Peskin and Winterbourn (143) and confirms that taurine chloramine inactivation of GAPDH was reversible by reduction. Taurine chloramine likely inactivates GAPDH by forming disulfide bond with the essential thiol, and may pass through a sulfinic acid intermediate (143).

Next, the reactivation experiment was performed with GAPDH exposed to urate hydroperoxide.
Figure 27: Reactivation of GAPDH following inactivation with urate hydroperoxide. GAPDH was dose-dependently treated with urate hydroperoxide for 10 min. Half of the samples were reduced with 2 mM DTT and incubated the samples for a further 30 min before measuring GAPDH activity. This graph combines at least three experiments.

Urate Hydroperoxide completely inactivated GAPDH, as shown in section 4.3.3.2. Reduction of the inactivated samples by DTT recovered approximately half of the activity lost (figure 27). This indicates GAPDH inactivation by urate hydroperoxide could be caused by reversible and irreversible modification.

4.3.6 Depletion of Cysteine Residues on GAPDH by Oxidants

This experiment served as a link between GAPDH inactivation and modification by oxidants. I wanted to determine whether cysteine residues on GAPDH were oxidized by taurine chloramine and urate hydroperoxide. The DTNB assay was performed on GAPDH discontinuously treated with oxidants in quartz cuvettes. Cysteine and GAPDH linearly absorbed light at 412 nm (Appendix 1, figure 42). The substances of the xanthine oxidase/lactoperoxidase system did not interfere with the assay (Appendix 1, figure 43).
A. Taurine Chloramine  
B. Urate Hydroperoxide

Figure 28: Dose-dependent depletion of cysteine residues on GAPDH by oxidants. A. Dose-Dependent depletion of GAPDH thiols by taurine chloramine. B. Dose-dependent depletion of cysteine residues on GAPDH by urate hydroperoxide. The final concentration of the GAPDH monomer was approximately 3 µM. These graphs combine three experiments which were normalised to a reduced thiol concentration of 36 µM.

The DTNB assay of 3 µM GAPDH revealed 36 cysteine residues. Treatment of GAPDH with taurine chloramine oxidized 23 µM of the cysteine residues measured with DTNB (figure 28 A). The reduced thiol concentration plateaued at approximately 10 µM taurine chloramine. Similar results were seen for treatment of GAPDH with urate hydroperoxide (figure 28 B). Approximately 7 µM urate hydroperoxide was required to deplete 23 µM of cysteine residues on GAPDH.

A GAPDH concentration of 3 µM should have produced 48 µM reduced thiols. However, as shown with the standard curve (Appendix 1, figure 42 B), one quarter of the cysteine residues on GAPDH were not measurable with DTNB. Thus, taurine chloramine and urate hydroperoxide depleted half of the cysteine residues on GAPDH. Previous studies determined that half of the cysteine residues on GAPDH were vulnerable to oxidants (27, 172).

4.3.7 Polyacrylamide Gel Electrophoresis of GAPDH

I performed SDS-PAGE on GAPDH samples treated with urate hydroperoxide to determine if there were major structural changes to the proteins. GAPDH and the proteins
of the xanthine oxidase/lactoperoxidase system were separated under reducing and non-reducing conditions.

Figure 29: Non-reducing gel for the inactivation of GAPDH by urate hydroperoxide. GAPDH was exposed to urate hydroperoxide in a dose-dependent manner. The controls consisted of a protein marker, GAPDH and urate hydroperoxide. Lane 1: protein marker. Lane 2: 1.5 µM GAPDH. Lane 3: 10.5 µM urate hydroperoxide. Lane 4: 2.2 µM urate hydroperoxide + 1.5 µM GAPDH (approximately 3:2). Lane 5: 5.5 µM urate hydroperoxide + 1.5 µM GAPDH (7:2). Lane 6: 10.5 µM urate hydroperoxide + 1.5 µM GAPDH (7:1).

Separation of samples under non-reducing conditions allowed visualisation of the quaternary structure of GAPDH (figure 29). The GAPDH control produced two major bands at approximately 36 and 37 kDa (lane 2). These species were likely the GAPDH monomers. The species formed above 75 kDa were impurity or other quaternary structures. The faint band at 150 kDa was likely the native homodimer of GAPDH (144 kDa (173)). The xanthine oxidase/lactoperoxidase system (lane 3) produced bands at 16, 60, 80 and 150 kDa. These bands represent superoxide dismutase monomer (16 kDa (174)), catalase monomer (57.5 kDa (175)), lactoperoxidase dimer (77.5 kDa (176)) and xanthine oxidase monomer (150 kDa (177)) respectively. Dose-dependent exposure of GAPDH to urate hydroperoxide (lanes 4 – 6) produced bands which were a combination of the two controls (lane 2 and 3). Thus there were no large molecular weight change for GAPDH exposed to urate hydroperoxide.
Figure 30: Reducing gel for the inactivation of GAPDH by urate hydroperoxide. GAPDH was exposed to urate hydroperoxide in a dose-dependent manner. The controls consisted of a protein marker, GAPDH and urate hydroperoxide. Lane 1: protein marker. Lane 2: 1.5 µM GAPDH. Lane 3: 10.5 µM urate hydroperoxide. Lane 4: 2.2 µM urate hydroperoxide + 1.5 µM GAPDH (approximately 3:2), Lane 5: 5.5 µM urate hydroperoxide + 1.5 µM GAPDH (7:2), Lane 6: 10.5 µM urate hydroperoxide + 1.5 µM GAPDH (7:1).

Separation of samples under reducing conditions allowed visualisation of the tetrameric structure of GAPDH (figure 30). GAPDH ran as a single band at approximately 36 kDa in reducing conditions (lane 2). This band represented the GAPDH monomer. The major bands for the xanthine oxidase/lactoperoxidase system were the same as non-reducing conditions (figure 29) (lane 3). Dose-dependent exposure of GAPDH to urate hydroperoxide produced a combination of bands seen in the controls (lane 4 – 6). A faint band formed at approximately 70 kDa which was not present in the GAPDH or urate hydroperoxide samples. However, it was too faint to be a significant modification. The results for reducing and non-reducing conditions were consistent. There was no major change in GAPDH’s molecular weight following exposure to urate hydroperoxide.
4.3.8 Mass Spectrometry of GAPDH

Using mass spectrometry, I hoped to identity modifications to residues to explain the loss of GAPDH activity following exposure to urate hydroperoxide. All work with the mass spectrometer and analysis was carried out by Dr. Louise Paton. I prepared the samples for mass spectrometry and performed the tryptic digest. GAPDH was treated with urate hydroperoxide and/or DTT. The samples ran through the mass spectrometer as complete proteins.

<table>
<thead>
<tr>
<th></th>
<th>A. GAPDH</th>
<th>B. GAPDH + DTT</th>
<th>C. GAPDH + UHP</th>
<th>D. GAPDH + UHP + DTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mw (Da)</td>
<td>35,734</td>
<td>35,732</td>
<td>35,732</td>
<td>35,734</td>
</tr>
<tr>
<td>Δ mass (Da)</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>%</td>
<td>28.1</td>
<td>48</td>
<td>38</td>
<td>41.2</td>
</tr>
<tr>
<td>Mw (Da)</td>
<td>35,691</td>
<td>35,807</td>
<td>35,805</td>
<td>35,810</td>
</tr>
<tr>
<td>Δ mass (Da)</td>
<td>-43</td>
<td>75</td>
<td>72</td>
<td>77.4</td>
</tr>
<tr>
<td>%</td>
<td>26.1</td>
<td>32</td>
<td>34</td>
<td>27.7</td>
</tr>
<tr>
<td>Mw (Da)</td>
<td>35,775</td>
<td>35,877</td>
<td>35,865</td>
<td>35,865</td>
</tr>
<tr>
<td>Δ mass (Da)</td>
<td>41</td>
<td>145</td>
<td>132</td>
<td>132</td>
</tr>
<tr>
<td>%</td>
<td>24.2</td>
<td>7</td>
<td>13</td>
<td>10.7</td>
</tr>
<tr>
<td>Mw (Da)</td>
<td>35,846</td>
<td>112</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Δ mass (Da)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The mass spectrums had a small population of species at 36 kDa, indicating HPLC successfully separated GAPDH (Appendix 1, figure 44). The species found per sample and delta masses were presented in table 5. The m/z values for the GAPDH monomer was seen in sample A. The species found were approximately 36 kDa and differed by 155 Da. When DTT was added (sample B) the 35,732 Da species became distinct and likely represented the reduced GAPDH monomer. GAPDH was treated with urate hydroperoxide (sample C) and three major species were found. The main species represented the reduced GAPDH monomer (35,732 Da). The 35,805 Da species had a similar molecular weight and percent to a species formed when GAPDH was reduced with DTT (35,807 Da) (samples B). Thus, this species was not unique to urate hydroperoxide treatment. Of interest was the species with a molecular weight of 35,865 Da (sample C). This species was formed during urate hydroperoxide treatment and remained after DTT reduction (sample D). A delta mass of 132 was too low to be the 35,877 Da species of sample B.
The 35,865 Da species of sample C may have been the cause of irreversible inactivation of GAPDH following treatment with urate hydroperoxide. A delta mass of 132 indicated the formation of a urate adduct. However, the molecular weight of urate was 168. The purine ring of urate may have degraded during mass spectrometry to lose atoms. A tryptic digest of GAPDH with trypsin was performed and the resulting peptides were measured with tandem mass spectrometry. The sequence coverage of GAPDH by the peptides was too low to determine the oxidative modification to GAPDH.

4.4 Discussion

Urate hydroperoxide is a powerful oxidant of thiol-dependant GAPDH. When I exposed GAPDH to urate hydroperoxide the activity was lost in a dose-dependent manner. The inactivation ratio for urate hydroperoxide to GAPDH was 5:1. In comparison, taurine chloramine required twice the concentration to inactivate the same concentration of GAPDH. Urate hydroperoxide was therefore a stronger oxidant of GAPDH than taurine chloramine and hydrogen peroxide (143). DTT only recovered half of GAPDH activity following inactivation by urate hydroperoxide. The same concentration of DTT completely removed the effects of taurine chloramine on GAPDH. These results indicate urate hydroperoxide partially permanently inactivates GAPDH. Permanent inactivation of enzymes affect a cell’s ability to survive and proliferate since the enzyme would have to be broken down and replaced (24).

Neither taurine chloramine nor urate hydroperoxide completely oxidized the cysteine residues on GAPDH during the DTNB assay. This finding was consistent with previous work by Ishii et al. (27). Of the four cysteine residues on the GAPDH monomer, Cys149 and Cys153 quickly cleave DTNB, whereas Cys244 and Cys281 reacts slowly with DTNB. Oxidants only deplete Cys149 and Cys153, hence the DTNB assay measures approximately half the reduced thiols following oxidant treatment (27). Urate hydroperoxide depletion of cysteine residues on GAPDH was too variable to determine the stoichiometry of depletion. This may become apparent with repeat experiments. Future experiments could include measurement of the kinetics of oxidation of cysteine residue on GAPDH with the DTNB assay.

Urate hydroperoxide increased the mass of the GAPDH monomer by 132 Da during whole protein mass spectrometry. This could be an adduct of urate to GAPDH. However,
the molecular weight of urate is 168 Da and it is difficult to speculate what loss of mass allows an addition of 132 Da. The purine ring may have collapsed resulting in the loss of some atoms. Urate adducts of 140 and 166 Da have been seen in our lab (Rufus Turner, unpublished data). A tryptic digest was performed on GAPDH treated with urate hydroperoxide however the sequence coverage for the resulting peptides was only 35%. This coverage was too poor to determine which residue the urate formed on. The tryptic digest must be optimised to deliver more GAPDH peptides. This could be achieved by performing a double protease digest with trypsin and chymotrypsin to maximise the number of cleavage sites. I plan to perform a trypsin/chymotrypsin digest, followed by mass spectrometry in the future.
Chapter 5. Conclusions

5.1 Summary of Findings

My research describes a new mechanism for urate acting as pro-oxidant through formation of the novel oxidant urate hydroperoxide. I studied the formation and reactivity of urate hydroperoxide with thiols. An enzyme system with xanthine oxidase and lactoperoxidase was used to form urate hydroperoxide. The concentration of this oxidant was measured with the FOX assay. Urate hydroperoxide formation was optimised using a maximum concentration of hypoxanthine, urate and xanthine oxidase. The optimised system formed approximately 15 µM urate hydroperoxide in 20 min at initial rate 3.2 µMmin⁻¹. This was a useful concentration for future experiments. Urate hydroperoxide depleted cysteine and glutathione. The depletion of glutathione by urate hydroperoxide was at a 2:1 ratio, which implies glutathione was oxidised to glutathione disulfide and did not form an adduct.

Urate hydroperoxide caused a dose-dependent loss of activity in thiol-dependent enzyme GAPDH. The ratio of inactivation was approximately 5:1. The inactivated enzyme was reduced with DTT and half of the activity was recovered. Hence, urate hydroperoxide partially, permanently inactivates GAPDH. Using mass spectrometry I identified a 132 Da increase in mass of GAPDH after treatment with urate hydroperoxide. This modification could be a urate adduct, however I could not confirm this theory with a tryptic digest followed by tandem mass spectrometry. Urate hydroperoxide oxidised half of the cysteine residues on GAPDH and may have formed the urate adduct to the catalytic cysteine. However, I could not confirm oxidation of cysteine was responsible for permanent loss of activity. Overall, these results suggest that urate hydroperoxide could be a strong oxidant of thiol-dependent enzymes. The mechanism of inactivation requires more work to elucidate.

Urate hydroperoxide may be produced by neutrophil oxidative bursts during hyperuricemia (figure 31). Thus, this research links hyperuricemia and tissue damage leading to inflammatory disease. Urate hydroperoxide could deplete cysteine and glutathione, hence starving the cell of essential biomolecules and aggravating oxidative stress. Thiol-dependent enzymes; such as glycolytic enzymes, protein tyrosine phosphatase and cysteine protease; could be irreversible inactivated by urate hydroperoxide. Since thiol-dependent enzymes are ubiquitous in biology, permanent loss of these enzymes may
lead to loss of cell function and death. Factors secreted during apoptosis or necrosis recruits inflammatory cells. This is positive feedback for inflammation, oxidative stress and urate hydroperoxide formation.

Figure 31: Neutrophil activity at inflammatory sites, during hyperuricemia, could produce urate hydroperoxide. Membrane-bound NADPH oxidase generates superoxide using NADPH as a cofactor. Superoxide can dismutate to hydrogen peroxide, which is a substrate for neutrophil myeloperoxidase. Myeloperoxidase produces hypochlorous acid from chloride and hydrogen peroxide. It also converts urate to a radical. Superoxide and the urate radical are in proximity to combine and form urate hydroperoxide. Figure adapted from (108).

Urate hydroperoxide formation explains the pro-oxidant effects of urate during hyperuricemia. Previous studies found that urate promoted lipid peroxidation and enzyme inactivation. Urate hydroperoxide may have formed during these experiments and led to the oxidation of the biomolecules studied. For example, urate hydroperoxide may have formed during Aruoma and Halliwell’s (91) radiolysis of A1AT. A1AT relies on a cysteine residue for activity, thus urate hydroperoxide may have formed an adduct to this enzyme analogous to my findings with GAPDH (178). In support of this, the authors proposed a urate peroxyl radical inactivated the enzyme. Peroxyl radicals degrade to hydroperoxides, thus our theories are analogous (67).
5.2 Strengths and Limitations

To the best of my knowledge, no other study has measured urate hydroperoxide’s effect on enzymes. I presented strong in vitro evidence that urate hydroperoxide inactivates GAPDH. Urate hydroperoxide inactivation of thiol-dependent enzyme GAPDH is new and important for understanding the pro-oxidant effects of urate during hyperuricemia. My research provides a new mechanism for the numerous pro-oxidant effects of urate, which were previously unexplained. This research paves the way for in-depth research on urate hydroperoxide.

A major limitation of this study is that there is no evidence urate hydroperoxide is formed in vivo. However, neutrophils, which are abundant at inflammatory sites, have all the machinery to produce this oxidant. Measuring urate hydroperoxide’s presence in vivo is difficult due to its reactive and transient nature. The formation of a urate adduct to thiol-dependent enzymes could be used as a biomarker for urate hydroperoxide’s formation in vivo. I cannot discern urate hydroperoxide’s effect on all thiol-dependent enzymes based on its inactivation of GAPDH. A diverse pool of thiol-dependent enzymes should be studied to conclude that urate hydroperoxide inactivates thiol-dependent enzymes in general.

In this thesis I postulated that urate hydroperoxide could be formed at an inflammatory site extracellularly. However for urate to have a significant effect on thiols it must be uptaken into cells through a urate transporter. Urate is uptaken into vascular smooth muscle cells though anion transporter URAT1 (179), urate hydroperoxide could also be uptaken through this transporter. However, whether urate transporters allow uptake of oxidised urate has not been explored.

My work was completely in vitro and therefore has limited applicability to in vivo. In vitro experiments place the substrates in a proximity that might not be achieved in vivo. For example, urate hydroperoxide formation at an endothelium inflammatory site might be hindered by blood flow washing away the proteins. Also, neutrophils may only form urate hydroperoxide when the inflammatory site is overwhelmed by oxidative stress because antioxidants like ascorbate and glutathione reduce oxidants. During oxidative stress there would be a multitude of other oxidants which could be as powerful as urate hydroperoxide. At best, I argue that urate hydroperoxide could contribute to tissue damage by oxidative stress in conjunction with other oxidants.
5.3 Recommendation for Future Work

There is strong evidence that urate hydroperoxide inactivates GAPDH but I could not identify the modification. GAPDH treated with urate hydroperoxide may form an adduct, however the results from the tryptic digest were too poor to support this. I hope to optimise the tryptic digest and characterise the oxidative modification to GAPDH in the future.

This thesis described urate hydroperoxide’s inactivation of one thiol-dependent enzyme. My work must be extended to other thiol-dependent enzymes such as protein tyrosine phosphatase, protein tyrosine kinase and other glycolytic enzymes. Urate hydroperoxide inactivation of these enzymes will build a picture of this oxidant’s reactivity with thiol-dependent enzymes. Also, urate hydroperoxide could oxidise other biomolecules. In particular, urate hydroperoxide’s depletion of ascorbate should be characterised. Urate hydroperoxide’s ability to oxidise past the lipid-water barrier could also be characterised by measuring the oxidation of lipids and lipid-soluble antioxidants such as coenzyme, α-tocopherol and carotenes.

To give this research cellular context I suggest exposing cells and bacteria to urate hydroperoxide and measuring the change of cell viability. However, this requires urate hydroperoxide uptaken into cells and use of an appropriate cell model. Since the pathological context of this research is hyperuricemia I suggest cells to model the human endothelium. Cells could be exposed to hyperuricemia and the xanthine oxidase/lactoperoxidase system to make urate hydroperoxide in situ. Whether urate hydroperoxide could be uptaken by urate transporters should be explored. Additionally, we could determine the viability of urate hydroperoxide formation in vivo by exposing neutrophils to hyperuricemic conditions during their oxidative bursts and measuring hydroperoxide formation. There is also the possibility of creating antibodies for the urate adduct to GAPDH. This would allow detection of urate hydroperoxide’s oxidation of GAPDH in cells.

The formation of urate adducts to enzymes has potential as a biomarker of urate hydroperoxide formation in vivo. Future experiments could include spiking clinical plasma samples with urate hydroperoxide and performing mass spectrometry to detect the formation of adducts on isolated thiol-dependent enzymes, depletion of antioxidants and other oxidized species. Also, urate adducts could be developed as a biomarker for hyperuricemia patients risk of heart disease. This would involve measuring urate adducts in
clinical samples from patients suffering hyperuricemia and a control population and correlating to risk of heart disease.

I will be continuing this project as summer studentship wherein I will study urate hydroperoxide inactivation of protein tyrosine phosphatase and the protective effects of ascorbate. I will optimise the riboflavin photooxidation system for urate hydroperoxide formation. The possibilities for future work with urate hydroperoxide are numerous and exciting. Research into this novel oxidant could provide a mechanism for hyperuricemia’s pro-oxidant effects, therefore advancing our understanding of its association with inflammatory disease.
References

111. Garrod AB. Observations on certain pathological conditions of the blood and urine, in gout, rheumatism, and Bright's disease. Med Chir Trans. 1848;31:83.
94

Appendix 1: Supplementary Figures

Figure 32: Standard curve for the FOX assay based on H$_2$O$_2$ absorbance at 560 nm. The absorbance of hydrogen peroxide was linear at 560 nm. This standard curve was used to determine the concentration of urate hydroperoxide with the FOX assay. The assumption must be made that urate hydroperoxide oxidized Fe$^{2+}$ at the same stoichiometry as hydrogen peroxide. This graph was the mean of three experiments. The error bars represented the standard deviation of three experiments.

\[ y = 0.1077x \]
\[ R^2 = 0.9956 \]

Figure 33: FOX assay of each substance required to form urate hydroperoxide. The final concentration of substances were: 100 µM hypoxanthine, 100 µM urate, 200 nM lactoperoxidase 0.9 µM xanthine oxidase, 100 µg/mL catalase and 10 µg/mL superoxide dismutase. None of the substances produced a significant concentration of hydroperoxide compared to the phosphate buffer control. This graph was the mean of two experiments. The error bars represented the standard deviation for the two experiments. One-way ANOVA followed by Holm-Sidak multiple comparison was performed on the mean of two experiments to identify samples that were significantly different from phosphate buffer (* p <0.05).
Figure 34: Thiol standard curve and xanthine oxidase/lactoperoxidase system controls with the DTNB assay. **A.** Standard curve for DTNB absorbance at 412 nm vs. concentration of cysteine, glutathione, cystine and glutathione disulfide. Cysteine and glutathione produce linear absorbance at 415 nm. The absorbance for cystine and glutathione was negligible. **B.** DTNB assay of all substances of the xanthine oxidase/lactoperoxidase system: 50 mM phosphate buffer, 78 µM hypoxanthine, 195 µM urate, 156 nM lactoperoxidase, 1.4 µM xanthine oxidase, 78 µg/mL catalase and 7.8 µg/mL superoxide dismutase. The absorbance for hypoxanthine, xanthine oxidase and superoxide dismutase were negligible. The absorbance for urate, lactoperoxidase and catalase were small but significant. These graphs represented one experiment. The error bars represented the standard deviation for triplicate readings. One-way ANOVA followed by Holm-Sidak multiple comparison on triplicate readings was used to identify samples that were significantly different from phosphate buffer (* p <0.05).
**Figure 35: Depletion of free thiols by urate hydroperoxide controls.**

**A. Cysteine**

DTNB assay of depletion of cysteine by the substances of the xanthine oxidase/lactoperoxidase system. Hypoxanthine, xanthine oxidase and superoxide dismutase did not significantly affect the cysteine concentration. However, lactoperoxidase depleted three quarters of cysteine. Catalase caused a 1 µM increase in reduced thiol concentration due to its interaction with DTNB.

**B. Glutathione**

DTNB assay of depletion of glutathione by the substances used of the xanthine oxidase/lactoperoxidase system. Catalase caused a 1 µM increase in reduced thiol concentration, whereas all other substances caused a 1 µM loss. These graphs were representative of two experiments. Error bars were based on standard deviation for triplicate readings. One-way ANOVA followed by Holm-Sidak multiple comparison on triplicate readings was used to identify samples that were significantly different from thiols in phosphate buffer (* p < 0.05).

**Figure 36: Standard curve for GAPDH concentration vs. initial activity.** The assay cuvette contained 2 mM DTT. Initial GAPDH activity increased linearly with enzyme concentration. The concentration of GAPDH used for proceeding assays were > 60 nM. This graph represented one experiment. The error bars represented the standard deviation for triplicate readings.
Figure 37: GAPDH concentration and activity during spin column preparation. A. GAPDH concentration during spin column preparation. A small dilution was seen with DTT treatment. Two thirds of GAPDH was lost when the protein was isolated with spin columns. B. GAPDH activity during spin column preparation. GAPDH activity increased significantly when the enzyme was treated with DTT. Following isolation with spin columns, the GAPDH activity dropped due to the loss of protein. Reduction of GAPDH with DTT was necessary to achieve a measurable activity, even though a significant amount of protein was lost. These graphs represented one experiment. The error bars represented the standard deviation for triplicate readings.

Figure 38: NAD standard curves for absorbance at 260 and 340 nm. A. NAD\(^+\) standard curve at 260 nm. NAD\(^+\) absorbance was linear with extinction coefficient 50,800 M\(^{-1}\) cm\(^{-1}\), absorbance at 340 nm was negligible. B. NADH standard curve at 340 nm. NADH absorbance was linear with the extinction coefficient 4,100 M\(^{-1}\) cm\(^{-1}\). Absorbance at 340 nm was exclusive to NADH, hence it can be used to show the loss or formation of this oxidation state. These graphs represented one experiment and error bars represented standard deviation for triplicate readings.
Figure 39: Dose-dependent exposure of NAD to taurine chloramine. A. Treatment of NAD$^+$ to taurine chloramine at 260 nm. Taurine chloramine did not significantly change the absorbance at 260 or 340 nm, hence taurine chloramine does not reduce this cofactor. B. Treatment of NADH to taurine chloramine at 340 nm. Taurine chloramine caused a loss of absorbance for NADH which plateaued at half of the initial absorbance. The initial ratio of depletion for NADH to taurine chloramine was 1:2. High concentrations (> 80 µM) were required to deplete half of NADH. The interaction of taurine chloramine with NAD would not significantly affect the GAPDH assay since the concentrations of these substances were low. These graphs represented one experiment and the error bars are standard deviation for triplicate readings.

Figure 40: Dose-dependent exposure of NAD to urate hydroperoxide. A. Dose-dependent treatment of NAD$^+$ with urate hydroperoxide and measurement of absorbance at 260 nm. B. Dose-dependent treatment of NADH with urate hydroperoxide and measurement of absorbance at 340 nm. Urate hydroperoxide did not significantly change the absorbance at 260 or 340 nm for either oxidative states. Urate hydroperoxide does not seem to oxidatively interact with either of these molecules at concentrations that could be formed during exposure of GAPDH to urate hydroperoxide. These graphs represented one experiment. The error bars represented the standard deviation for triplicate readings.
Figure 41: GAPDH activity following exposure to the substances of the xanthine oxidase/lactoperoxidase system. GAPDH in phosphate buffer represented 100% activity. The concentration of substances was the same as later experiments where GAPDH was treated with urate hydroperoxide: 90 \( \mu \)M hypoxanthine, 360 \( \mu \)M urate, 190 nM lactoperoxidase, 1.6 \( \mu \)M xanthine oxidase. All substances had > 80% activity compared with the phosphate buffer control. This graphs represented one experiment. The error bars represented the standard deviation for triplicate readings. One-way ANOVA followed by Holm-Sidak multiple comparison on triplicate readings was used to identify samples that were significantly different from the phosphate buffer control (* \( p < 0.05 \)).

Figure 42: Standard curve of GAPDH concentration vs. reduced thiol concentration during the DTNB assay in a quartz cuvette. Approximately 12 thiols per micromolar GAPDH were measured. This equated to 12 cysteine residues per GAPDH tetramer. GAPDH has four cysteine residues per subunit, hence four thiols per GAPDH tetramer did not react with DTNB under these conditions. These graphs represented one experiment. The error bars represented the standard deviation for triplicate readings.
Figure 43: Depletion of cysteine residues on GAPDH by the xanthine oxidase/lactoperoxidase system. GAPDH (3 µM) was incubated with 50 mM phosphate buffer, 90 µM hypoxanthine, 360 µM urate, 190 nM lactoperoxidase, 1.7 µM xanthine oxidase, 95 µg/mL catalase and 9.5 µg/mL superoxide dismutase. The DTNB assay was performed in quartz cuvettes. Compared with phosphate buffer, hypoxanthine and lactoperoxidase had no effect on the reduced thiol concentration. Urate, xanthine oxidase, catalase and superoxide dismutase increased the reduced thiol concentration. One-way ANOVA followed by Holm-Sidak multiple comparison on triplicate readings was used to identify samples that were significantly different from GAPDH in phosphate buffer (* p <0.05).
B: GAPDH + DTT

C: GAPDH + Urate Hydroperoxide
Figure 44: Mass Spectrum for the GAPDH and urate hydroperoxide experiment treated with urate hydroperoxide (1:1 ratio). A: GAPDH isolated with spin columns. B: GAPDH reduced DTT. C: GAPDH exposed to urate hydroperoxide. D: GAPDH exposed to urate hydroperoxide and reduced with DTT. These graphs represented one experiment.
## Appendix 2: Supplementary Methods and Materials

### 5.1 Chapter 2

**Table 6: Volumes of substances used for the FOX assay of urate hydroperoxide formation.** Each sample represented the full system, removal of a substance or addition of superoxide dismutase. When urate hydroperoxide formation was complete the FOX reagent was added.

<table>
<thead>
<tr>
<th>Substance Used</th>
<th>A: Without HX</th>
<th>B: Without Urate</th>
<th>C: Without LPO</th>
<th>D: Without XO</th>
<th>E: Full System</th>
<th>F: With SOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mM HX</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1 mM Urate</td>
<td>30</td>
<td>-</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>5.7 µM LPO</td>
<td>17</td>
<td>17</td>
<td>-</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>90 µM XO</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>50 mM PB</td>
<td>250</td>
<td>250</td>
<td>277</td>
<td>264</td>
<td>247</td>
<td>244</td>
</tr>
<tr>
<td>0.2 mg/mL SOD</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Stop Reaction.</td>
<td>2 mg/mL Cata</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Vol. 306 µL</td>
<td>0.2 mg/mL SOD</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>FOX assay.</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>Vol. 408 µL</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>102</td>
</tr>
</tbody>
</table>
### 5.2 Chapter 3

Table 7: Samples made for the xanthine oxidase/lactoperoxidase system which was subsequently used to treat 70 µM cysteine or 30 µM glutathione. Samples A-G represented the full system or controls where each substance was removed or quencher added. After 10 min incubation the reaction was stopped with catalase and superoxide dismutase. Samples (780 µL) were transferred into plastic cuvettes with cysteine or glutathione.

<table>
<thead>
<tr>
<th>Vol. used (µL)</th>
<th>Reaction System</th>
<th>Final vol. 3.300µL</th>
<th>Xanthine Oxidase/Lactoperoxidase System Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HX</td>
<td>Urate</td>
<td>LPO</td>
</tr>
<tr>
<td>10 mM HX</td>
<td>-</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>1 mM Urate</td>
<td>825</td>
<td>-</td>
<td>825</td>
</tr>
<tr>
<td>5.7 µM LPO</td>
<td>115.8</td>
<td>115.8</td>
<td>-</td>
</tr>
<tr>
<td>90 µM XO</td>
<td>66</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>50 mM PB 0.2 mg/mL SOD</td>
<td>2293.2</td>
<td>3085.2</td>
<td>2376</td>
</tr>
<tr>
<td>2 mg/mL Cata</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stop Reaction</td>
<td>165</td>
<td>165</td>
<td>165</td>
</tr>
<tr>
<td>Final vol. 3.630 µL</td>
<td>165</td>
<td>165</td>
<td>165</td>
</tr>
</tbody>
</table>
Table 8: Samples made for dose-dependent treatment of cysteine and glutathione with taurine chloramine. Taurine chloramine (20 µM) was mixed at an increasing volume to 25 µM cysteine or 15 µM glutathione. The volume of each sample was equalled with phosphate buffer. After 10 min the DTNB assay was performed.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Taurine Chloramine Depletion of Cysteine</th>
<th>Final Concentrations (µM)</th>
<th>Volumes in Plastic Cuvettes (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[Tau-Cl] [Cys]</td>
<td>125 µM Cys 20 µM Tau-Cl 50 mM PB 10 mM DTNB</td>
</tr>
<tr>
<td>Blank</td>
<td></td>
<td>0 0</td>
<td>0 0 980 20</td>
</tr>
<tr>
<td>PB</td>
<td></td>
<td>0 25</td>
<td>200 0 780 20</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>15.6 0</td>
<td>0 780 0 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 2</td>
<td>25 200 100 680 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 4</td>
<td>25 200 200 580 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 6</td>
<td>25 200 300 480 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 8</td>
<td>25 200 400 380 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 10</td>
<td>25 200 500 280 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 12</td>
<td>25 200 600 180 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 15.6</td>
<td>25 200 780 0 20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Taurine Chloramine Depletion of Glutathione</th>
<th>Final Concentrations (µM)</th>
<th>Volumes in Plastic Cuvettes (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[GSH] 75 µM GSH 20 µM Tau-Cl 50 mM PB 10 mM DTNB</td>
<td></td>
</tr>
<tr>
<td>PB</td>
<td></td>
<td>0 15</td>
<td>200 0 780 20</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>8 15</td>
<td>200 100 680 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9 15</td>
<td>200 200 580 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 15</td>
<td>200 300 480 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 15</td>
<td>200 400 380 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 15</td>
<td>200 500 280 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 15</td>
<td>200 600 180 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 15.6</td>
<td>200 780 0 20</td>
</tr>
</tbody>
</table>
Table 9: Samples made for dose-dependent exposure of glutathione to urate hydroperoxide. An increasing volume of urate hydroperoxide was added to 30 µM glutathione. The volume was equalled with phosphate buffer. Control samples, with the xanthine oxidase/lactoperoxidase system without hypoxanthine, were made to match urate hydroperoxide samples. After 10 min incubation the DTNB assay was performed.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Final Concentrations (µM)</th>
<th>Volumes in Plastic Cuvettes (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PB</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>UHP</td>
<td>9.1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1.2</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>2.3</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>3.5</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>4.7</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>5.9</td>
<td>30</td>
</tr>
<tr>
<td>13</td>
<td>7.0</td>
<td>30</td>
</tr>
<tr>
<td>14</td>
<td>9.1</td>
<td>30</td>
</tr>
</tbody>
</table>

5.3 Chapter 4

Table 10: Xanthine oxidase/lactoperoxidase system in the quartz cuvette during continuous inactivation of GAPDH. These substances were accompanied by the substances for the GAPDH assay. The two initiators, xanthine oxidase and GAPDH, were added last to start both systems.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol. used (µL)</td>
<td>50 mM TEA Buffer</td>
<td>830</td>
<td>525</td>
<td>765</td>
<td>550</td>
<td>353</td>
<td>515</td>
<td>465</td>
<td>465</td>
</tr>
<tr>
<td>10 mM HX</td>
<td></td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1 mM Urate</td>
<td></td>
<td>-</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>5.7 µM LPO</td>
<td></td>
<td>-</td>
<td>35</td>
<td>-</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>90 µM XO</td>
<td></td>
<td>-</td>
<td>20</td>
<td>20</td>
<td>-</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>0.2 mg/mL SOD</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>2 mg/mL Cata</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
</tbody>
</table>
Table 11: Xanthine oxidase/lactoperoxidase system samples used to treat GAPDH. Samples A-G represented the xanthine oxidase/lactoperoxidase system with controls where each substance removed or quenchers were added. After 20 min incubation the formation of urate hydroperoxide was stopped with catalase and superoxide dismutase.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mM HX</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1 mM Urate</td>
<td>120</td>
<td>120</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>5 µM LPO</td>
<td>12</td>
<td>12</td>
<td>-</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>90 µM XO</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>50 mM PB</td>
<td>279</td>
<td>159</td>
<td>171</td>
<td>165</td>
<td>159</td>
<td>144</td>
<td>144</td>
</tr>
<tr>
<td>0.2 mg/mL SOD</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>2 mg/mL Cata</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 12: Sample composition for GAPDH reactivation experiment following inactivation by taurine chloramine. This experiment involved two sets of samples to represent before and after DTT treatment. The concentration of taurine chloramine was varied by adding different volumes of a 20 µM solution and equalling the volume with catalase-treated phosphate buffer.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Final Concentration of Substances (µM)</th>
<th>Volume of Substances used (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[Tau-Cl]</td>
<td>[GAPDH]</td>
</tr>
<tr>
<td>GAPDH Inactivation Controls</td>
<td>Tau-Cl Control</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>DTT Treated</td>
<td>Tau-Cl Control</td>
<td>18</td>
</tr>
<tr>
<td>PB Control</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>18</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 13: Sample composition for the GAPDH reactivation experiment following inactivation by urate hydroperoxide. This experiment involved two sets of samples to represent before and after DTT treatment. The concentration of urate hydroperoxide was varied by adding different volumes of a 7 µM solution and equaling the volume with catalase-treated phosphate buffer.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Final Concentration of Substances (µM)</th>
<th>Volume of Substances used (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[UHP] [GAPDH] [DTT] 10 µM GAPDH 7 µM UHP 50 mM Cata-treated PB 0.1 M DTT</td>
<td></td>
</tr>
<tr>
<td>GAPDH Inactivation Controls</td>
<td>UHP Control</td>
<td>5.7 0 0 0 180 4 0</td>
</tr>
<tr>
<td>1</td>
<td>0.9 1 0 20 30 154 0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.9 1 0 20 60 124 0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.8 1 0 20 90 94 0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3.8 1 0 20 120 64 0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.7 1 0 20 150 34 0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.7 1 0 20 180 4 0</td>
<td></td>
</tr>
<tr>
<td>DTT Treated</td>
<td>UHP Control</td>
<td>5.7 0 0 0 180 0 4</td>
</tr>
<tr>
<td>7</td>
<td>0.9 1 200 20 0 180 4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.9 1 200 20 60 120 4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2.8 1 200 20 90 90 4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3.8 1 200 20 120 60 4</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4.7 1 200 20 150 30 4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5.7 1 200 20 180 0 4</td>
<td></td>
</tr>
</tbody>
</table>

5.3.1 Mass Spectrometry

GAPDH samples (0.5 µg) were injected onto an Accucore-150-C4 (50 x 2.1 mm, 2.6 µM, Thermo Scientific) column using a Dionex Ultimate 3000 HPLC system (Thermo Scientific). Proteins were eluted from the column (60°C) with an acetonitrile gradient from 9:1 of solvent A:B (table 4) to 2:8 over 4.6 mins. The flow rate of the mobile phase was 400 µL/min. The eluted protein was passed to a Velos Pro mass spectrometer. Mass spectral data was taken between m/z 400 and 2000 on positive ion mode. Proteins peaks were averaged and deconvoluted using ProMass for Xcalibur (version 2.8). The tune file was set to capillary temperature of 275°C and spray voltage of 4 kV. Three microscans were averaged, the maximum inject time was 10 ms and automatic gain control target settings were 3 × 10^4 in full mass spectrometry and 1 × 10^4 in multi-stage mass spectrometry.