
Exploring geometrical structures in

high-dimensional computer vision data

Xiping Fu

a thesis submitted for the degree of

Doctor of Philosophy
at the University of Otago, Dunedin,

New Zealand.

27 January 2016



Abstract

In computer vision, objects such as local features, images and video sequences
are often represented as high dimensional data points, although it is commonly
believed that there are low dimensional geometrical structures that underline
the data set. The low dimensional geometric information enables us to have a
better understanding of the high dimensional data sets and is useful in solving
computer vision problems.

In this thesis, the geometrical structures are investigated from di�erent per-
spectives according to di�erent computer vision applications. For spectral clus-
tering, the distribution of data points in the local region is summarised by a
covariance matrix which is viewed as the Mahalanobis distance. For the action
recognition problem, we extract subspace information for each action class.
The query video sequence is labeled by information regarding its distance to the
subspaces of the corresponding video classes. Three new algorithms are intro-
duced for hashing-based approaches for approximate nearest neighbour (ANN)
search problems, NOKMeans relaxes the orthogonal condition of the encoding
functions in previous quantisation error based methods by representing data
points in a new feature space; Auto-JacoBin uses a robust auto-encoder model
to preserve the geometric information from the original space into the binary
codes; and AGreedy assigns a score, which re�ects the ability to preserve the
order information in the local regions, for any set of encoding functions and an
alternating greedy method is used to �nd a local optimal solution.

The geometric information has the potential to bring better solutions for com-
puter vision problems. As shown in our experiments, the bene�ts include in-
creasing clustering accuracy, reducing the computation for recognising actions
in videos and increasing retrieval performance for ANN problems.
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Notations

Most of the notations are de�ned when they are introduced for the �rst time
and clear in the context. For quick reference, here are the common symbols
used throughout the thesis:

N : the number of data points in a data set

xi: the i-th data point in a data set

X : the data set matrix where each column is a data point

D: the dimension of the high dimensional space

d: the dimension of the low dimensional space

Rd: the d dimensional Euclidean space

B: the binary code matrix where each column is a binary code of a data point

1: the all one column vector

I : the identity matrix

sign: the sign function which returns �1 or 1 as entries depending on the sign
of the input entries

M: the general manifold space

exp: the exponential map in Riemannian manifold

log: the logarithmic map in Riemannian manifold

G(d;D): the Grassmannian manifold which is a space of all the d dimensional
subspaces of the D dimensional Euclidean space

;: the empty set

Tp(M): the tangent space of manifoldM at p

jjAjjF : the Frobenius norm of matrix A

x



Chapter 1

Introduction

In computer vision, we are often confronted with high dimensional data sets. For exam-
ple, the local image descriptor SIFT (Lowe, 2004) is represented as a 128D feature vector
and the global image descriptor GIST (Oliva and Torralba, 2001) can be represented as a
960D feature vector. The high dimension of the data sets poses challenges for us to solve
the corresponding computer vision problems including clustering, classi�cation, and vi-
sualisation tasks. The performance of machine learning tasks deteriorates quickly as the
dimension of the data set increases, and this phenomenon is often referred as ‘the curse of
dimensionality’ (Donoho, 2000).

Although the data sets are represented in high dimensional space, it is believed that they
have some low dimensional intrinsic structures due to the intrinsic freedom of the computer
vision objects. As a case in point, suppose we take 1; 000 pictures of a cup. The cup is on
a table, and all of the pictures are taken under same camera parameters as well as same
environment such as illumination conditions. The only di�erence is the camera positions
which are sampled from a circle. On one hand, only one parameter (radian) is enough to
represent the relationship between all of the pictures, i.e., each picture can be determined
by a scalar. On the other hand, we might represent each image by a high dimensional
descriptor such as a 960D GIST vector. Assuming that the high dimensional representation
is faithful, we expect some low dimensional structure inside the data points in the high
dimensional Euclidean space. In addition, for the data set that consists of high dimensional
vectors of the 1; 000 pictures, the 1D geometric information enables us to have a better
understanding of the distribution of the data points in the high dimensional space. Such
information can be further used for solving other computer vision tasks such as visualising
the data set in low dimensional space.

From the discussion above, we can see that geometric information from the data set
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plays a pivotal role in solving di�erent computer vision problems. Manifold learning has
many successful techniques for discovering the intrinsic geometric information of the data
set, including Isomap (Tenenbaum, De Silva, and Langford, 2000) and LLE (Roweis and Saul,
2000) to learn the low dimensional representation of the data set. For instance, the main task
of Isomap is to learn the low dimensional representation of the original data set. The data
points in the low dimensional space are assumed to preserve the geodesic distance between
data points in the original space, i.e., the low dimensional representation is faithful to the
geometric information. Thus, the distance information in the low dimensional space has
a better semantic meaning than the distance calculated in the original space directly. In
addition, the geometric information can also be used as additional information for solving
computer vision problems. For instance, the curvature is used to describe the distribution
of the data points in a local region, and this information has been used for clustering the
data set (Kim, Tompkin, and Theobalt, 2013).

1.1 Goal and objectives

The quality of the approximation has an intimate relationship with the information we
obtained from the corresponding problems. As discussed in Jordan and Mitchell (2015), the
key feature of di�erent machine learning algorithms is that they are approximating some
functions in essence. This means that the more information we obtain from the data set, the
better mathematical model we might build for �tting real-world computer vision problems.

In this thesis, our main goal is to �nd structures, i.e., explore appropriate geometric
information, in high dimensional data sets for computer vision problems. Although it is
commonly assumed that data sets have low dimensional structures in high dimensional
spaces, the low dimensional structures are unclear for real world data sets. This is partly
due to the variety of the computer vision objects and the noise which is introduced when
we describe the objects. The structure can be any kind of information which helps us to
have a better understanding of the data set from the geometric perspective. For example,
the covariance of a data set in the local region helps us to �gure out how the data points
are distributed. Thus, the covariance information is also a kind of structure or geometric
information of the data set, and it can be used for solving real world problems.

According to di�erent application scenarios we focus on, our objectives consist of three
computer vision problems: spectral clustering for intersecting multiple manifolds problems,
video classi�cation based on representation in the product of Grassmannian manifolds, and
hashing-based approximate nearest neighbour (ANN) search problems.

2



• Spectral clustering for intersecting multiple manifolds problems.

Clustering is widely used in �elds such as computer vision, information science and
machine learning. The goal of clustering is to divide the data set into di�erent clusters
based on some similarity information between the data points (Rodriguez and Laio,
2014). There are many approaches available (Berkhin, 2006). As an example, K-
means is a simple algorithm that partitions a data set into K groups by minimising
intra-cluster Euclidean distance.

In the past decades, spectral clustering algorithms have been developed to overcome
some of the shortcomings of traditional clustering methods (Shi and Malik, 2000; Ng,
Jordan, and Weiss, 2002; Von Luxburg, 2007). Traditional algorithms often assume
normally distributed clusters, while spectral algorithms are capable of clustering non-
Gaussian, non-linear data. Spectral clustering works by representing data similarity
as a weighted graph. Each point in the data set is a node in the graph, and the non-
zero edges in the graph connect similar data points. This graph can be mapped into
a new space by computing eigenvectors of an associated matrix. Finally, K-means is
used to cluster the data in the new space.

• Video classi�cation based on representation in the product of Grassmannian

manifolds.

Human action recognition is a challenging research topic in computer vision with
numerous applications. For instance, it can be used to construct gesture based human
computer interfaces or build an automated surveillance system to detect abnormal
activities in public places (Aggarwal and Ryoo, 2011).

The representation of video sequences plays a pivotal role for practical action recog-
nition systems. The raw pixels of the video sequence are the starting point of di�erent
representations. For example, both the optical �ow and the gradient information can
be extracted based on the set of pixel values (Chaudhry, Ravichandran, Hager, and
Vidal, 2009; Lin, Jiang, and Davis, 2009; Shechtman and Irani, 2005; Dalal, Triggs, and
Schmid, 2006; Niebles, Wang, and Fei-Fei, 2008). The raw pixel can also be used to rep-
resent video sequences directly. The di�erence between consecutive video sequences
has an intimate relationship with linear space. Thus, Grassmannian manifolds are of-
ten used to summarise the video sequences (Turaga, Veeraraghavan, and Chellappa,
2008; Lui, Beveridge, and Kirby, 2010). After representation, the distance information
in the manifold space or other geometric information of the data points is used for
the action recognition task.
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• Hashing-based approaches for ANN search problems.

Recent years have witnessed a surge of research interest in hashing methods which
return ANN data points. It has been shown that ANN often has good enough per-
formance for many real world applications including feature matching (Brown and
Lowe, 2003), image retrieval (Frome, Singer, Sha, and Malik, 2007) and object recog-
nition (Torralba, Fergus, and Weiss, 2008). For example, in content-based image re-
trieval (CBIR), the task is to retrieve similar images when given a query image. This
is often done by representing all of the images as points in a speci�c space, and then
retrieving the nearest neighbour points as similar images. Naive exhaustive search-
ing is linear in the number of images in the collection and becomes infeasible for
very large collections. Even specialised data structures such as KD-trees deteriorate
to linear search complexity or worse if the dimensionality of the data is large (We-
ber, Schek, and Blott, 1998). Since computer vision problems often have very large
collections and high dimensional data, approximation algorithms are of interest.

The main idea of hashing is to encode data points into binary codes which enables
fast retrieval and reduces storage space. As a case in point, one 960D GIST feature
takes 960 � 4 = 3840 bytes if it is stored as a �oating point vector, while it only
occupies 128=8 = 16 bytes if it is represented as a point in 128D Hamming space.
Further, calculating the distance between two points in Hamming space is very quick
since it only involves a bitwise XOR operation followed by a bit count.

1.2 Research methods

Although the tasks have a variety of formats among di�erent computer vision problems,
the �nal mathematical models are to deal with high dimensional data sets in essence. The
main di�culty is to decide what kind of geometric information can be used. For speci�c
computer vision problems, we have to analyse the problem and get a better understanding
of where the bottleneck is.

We explore the geometric information from two perspectives. The �rst one is to inves-
tigate whether techniques from related �elds such as the mathematical concepts from the
theory of manifolds and techniques from manifold learning can be used. Manifolds are a
well-studied mathematical model and provide nonlinear generalisations of many concepts
in Euclidean space. In the past decades, we can see lots of successful works have ideas
rooted in manifold concepts. One of the main purpose of manifold learning is to uncover
the manifold structure in the data set, and then use the information from the manifold
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structure to solve real-world problems. Thus, the concepts and techniques from these two
�elds are our �rst priority to investigate.

The second perspective is to explore appropriate geometric information for correspond-
ing computer vision problems. In addition to the techniques provided from the �eld of man-
ifolds and manifold learning, we should also pay attention to new geometric information
for speci�c computer vision problems. Here the new geometric information is de�ned in a
broader sense including any kind of information related to the distribution information of
a data set. The new geometric information is tailored according to the need for addressing
the corresponding problems. Thus it has the potential to bring better solutions. Consider-
ing a set of data points, the order information of the data points according their distances
to some �xed point can be viewed as a kind of geometric information extracted from the
data. In later sections, we will see that the order information can be triangulated to learn
encoding functions for hashing methods.

1.3 Contributions

For spectral clustering, we propose to use the adaptive Mahalanobis distance for select-
ing the neighbourhood data points with the aim to build a better KNN graph. For video
sequence classi�cation, we propose to summarise the information of each action class in
the manifold space. For the hashing-based approach, we have proposed three new hashing
methods, NOKMeans, Auto-JacoBin and AGreedy, from di�erent perspectives. The �rst two
hashing methods aim to learn the encoding functions directly, and the third one selects a
set of encoding functions from a pool generated by any of the previous hashing methods.
The corresponding background and the contributions are as follows:

• Adaptive Mahalanobis distance for spectral clustering (Fu, Martin, Mills, and

McCane, 2013).

Spectral clustering tends to fail when the underlying manifolds are very close to each
other and/or they intersect. We propose an improvement to spectral clustering algo-
rithms using adaptive neighbourhoods computed using Mahalanobis distance. The
distribution information of data points in local region is summarised by a covariance
matrix which is viewed as a Mahalanobis distance and is used to relocate data points
in the local region. By repeating the learning in the local region, we aim to improve
the quality of the similarity between data points.
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• Summarising the geometric information of video sequences (Fu, McCane, Al-

bert, and Mills, 2013).

After representing video sequences in the product of Grassmannian manifolds space,
we extract a subspace structure for each action class in the training data set. The sub-
space structure summarises the distribution information of the corresponding action
class in the manifold space.

• Labelling video sequence by its distance to the learned geometric informa-

tion (Fu et al., 2013).

With the information extracted from training data points in the manifold space, the
query video sequence is labeled by the information of its distances to the subspaces
of the corresponding video classes. The results on benchmark data sets show that the
new approach takes less computing time compared to previous work in this area, and
has similar or even higher recognition accuracy.

• Relaxing the orthogonal condition in quantisation error based hashing ap-

proaches (Fu, McCane, Mills, and Albert, 2014).

The quantisation error based hashing approaches aim to reduce the quantisation er-
ror between binary vectors and data points in Euclidean space. One condition which
is implicitly assumed is that the separating hyperplanes are mutually orthogonal. In
order to increase the representation capability of the hyperplanes when used for in-
dexing, we relax the orthogonality assumption without forsaking the alternate view
of using cluster centres to represent the indexing partitions. This is achieved by view-
ing the data points in a space determined by their distances to the hyperplanes.

• First order approximation of an ideal noise removing function

In order to preserve the geometric information of the data set, we consider an auto-
encoder model which has the noise removing e�ect. The function (forward propaga-
tion) is de�ned with the property that it projects the data points near the manifold
into the manifold wisely. We approximate this function by its �rst order approxima-
tion which has an intimate relationship with the data points in the local region.

• Auto-encoder Jacobian binary hashing (Auto-JacoBin)

For learning the encoding functions, the optimisation objective consists of two com-
ponents. The �rst component aims to preserve the geometric information of the data
set. This is done by minimising the gap between the learned auto-encoder model
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and the learned �rst order approximation of an ideal noise removing function. The
second is a constraint on the hidden features and it encourages the hidden features
evenly distributed around the vertices of a hyper-cube in order to make full use of
binary codes.

• Scoring the encoding functions based on training data set (Fu, McCane, Mills,

and Albert, 2015).

Most previous hashing methods are based on some mathematical assumptions and
learn the encoding functions by solving the corresponding optimisation problems.
Thus, selecting a set of encoding functions from a pool which is generated by a set of
hashing methods might lead to a better quality of the encoding. Given a pool of bits,
we propose to select a set of bits according to a quality measurement directly related
to the large scale approximate nearest neighbour search problem. The higher score
means the better quality of the encoding functions. An alternating greedy optimisa-
tion method is proposed to �nd a locally optimal solution.

1.4 Thesis overview

This thesis consists of eight chapters and one appendix which is used to provide the support
material for Auto-JacoBin. The rest of the thesis is structured as follows.

Chapter 2 presents a brief introduction of manifolds and manifold learning. The tech-
niques and concepts provide background for the work in later chapters.

The following �ve chapters are divided into three parts according to di�erent computer
vision problems. The �rst part is about spectral clustering for intersecting multiple mani-
folds problems. The main challenge for this kind of clustering task is caused by the fact that
the data points from di�erent classes intersect with or lie close to one another. We propose
to �nd the neighbourhood data points iteratively by Mahalanobis distance. The second part
is about video classi�cation. Each video sequence is represented as a data point in the prod-
uct of Grassmannian manifolds. In previous work, the classi�cation is done by the nearest
neighbour classi�er which takes heavy computation when the size of the training data set
is large. We propose to extract geometric information for each video class, and use this
information for labelling the query video sequences.

The third part is about hashing-based ANN problems. Chapter 5 summarises our work
in NOKMeans. The orthogonal assumption in quantisation error based hashing approaches
is relaxed which enhances the partition capability of the encoding functions. Chapter 6
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presents our work on Auto-JacoBin. Our main motivation is to investigate whether an
auto-encoder model can be used for learning the encoding functions since the auto-encoder
model is widely used for preserving information in data sets. Chapter 7 concerns an algo-
rithm called AGreedy. We propose to evaluate the set of encoding functions, i.e., assign
a score for any set of the encoding functions. In this way, the bit selection problem be-
comes an optimisation problem. According to the property of the bit selection problem, the
alternating greedy optimisation method is used to �nd a locally optimal solution.

Finally, Chapter 8 contains the discussion of the work in this thesis as well as the direc-
tions for possible future research. Appendix A provides the detail of the gradients calcula-
tion for the algorithm in Chapter 6.

In Fig. 1.1, we summarise the di�erent parts of the thesis into a graph structure in order
to have a visualisation of the thesis.

Fig. 1.1. Layout of the thesis and the relationship between di�erent parts.
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Chapter 2

Manifold learning background

2.1 Introduction

This chapter summarises the mathematical background of manifolds and their applications
in manifold learning. Manifolds provide mathematical models and tools for us to explore
geometric information of high dimensional data sets. For real-world high dimensional data
sets, it is often believed that the data points are distributed on some low dimensional man-
ifold. In practice, it is not easy to explore the explicit manifold structures inside the data
set since the data points inevitably have noise, the data points are not well sampled or the
number of data points is not enough to learn the manifold structure. Thus, the main task of
manifold learning is to explore the implicit manifold structure of the data set. This kind of
information helps us to understand high dimensional data sets, and can be used for solving
di�erent computer vision or machine learning problems.

In the following sections, we present some relevant concepts related to manifolds in or-
der to have an intuition of the geometrical structures, and then we summarise some tech-
niques, which illustrate how the geometric information is used in practice, in manifold
learning.

2.2 Manifolds

In this section, some relevant concepts related to manifolds are summarised. The intuition
behind these concepts is important to understand the manifold when it is embedded in
some high dimensional space. We take the Grassmannian manifold as an example, and
its related computations are presented to facilitate the illustrations in later chapters. In
the next section, we will see that many manifold learning algorithms are motivated by the
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concepts from smooth manifolds.

2.2.1 Manifold concepts

In this subsection, the basic concepts of manifolds will be discussed in an informal fashion.
This is so that the underlying intuition required to understand manifold learning can be
developed. For the complete development of this branch of mathematics see some mono-
graphs (Lee, 2010, 2012; Absil, Mahony, and Sepulchre, 2009).

DenoteM as a set of points in RD. Without any structure given to the set, it behaves
as a container, i.e., it is a collection of data points and the di�erent points are independent
from each other. Take a set with point listM = fp1; p2; p3; � � � g as an example, the only
information we can get is the membership of the set, i.e., for a given point x, we have the
membership as either x 2M or x =2M.

The topology space T ofM provides a way to enrich the structure of the point set. It
is a collection of subsets ofM and satis�es three conditions (Lee, 2010):

1. Both the empty set ; andM are in T ;

2. For any s1 2 T , s2 2 T , then s1 \ s2 2 T ;

3. For any index set I , such that fsigi2I � T , then [i2Isi 2 T .

The topological space for the set helps to organise the ‘closeness’ relationship between
members in the set. For example, if T consists of all of the subsets ofM, then for any two
points x1; x2 2M , there existU1 = fx1g 2 T ; U2 = fx2g 2 T , such that x1 2 U1; x2 2 U2,
and U1\U2 = ;. This means any two distinct points can be separated by di�erent elements
from T , whereas if T consists of only two subsets f;;Mg, there is no such separation
guarantee for distinct points.

Each element in T is called an open subset of M. In the following discussions, the
topological space of Euclidean space RD and its subsets are de�ned consistent with our
common sense. The topological space T of RD consists of all of the setAwith the property:
for any x 2 A, there exists � > 0, such that the ball B(x; �) � A. For any subset of RD, its
topological space is induced by restricting T to the corresponding subset.

With topological space de�ned on U and V , a function f between them can be investi-
gated. The function f : U ! V is said to be continuous if for any open set sv in V , f�1(sv)

is an open set in U . The f is called to be homeomorphism if it is bijective and both f and
f�1 are continuous. When U and V are open subsets of Euclidean spaces, the f is said to
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be smooth (C1) if it is continuous and di�erentiable for any order, and the f is said to be
a di�eomorphism if both f and f�1 are smooth.

With the concepts for functions, the structure ofM is explored by functions de�ned on
its subsets. A chart (U; f) ofM is a homeomorphism f : U ! V where U �M and V is
an open subset of RD. An smooth atlas ofM is a collection of charts A = f(u�; ��)g�2I ,
such that [�2Iu� =M and the di�erent charts are compatible with each other, i.e., for any
two (u�; ��) and (u�; ��), �� � ��1

� and �� � ��1
� are smooth.

With the de�nition of chart and atlas, local regions can be explored by some speci�c
chart and the atlas enables that all of the regions can be explored. A smooth D-manifold
M is a set with a maximal smooth atlas A = fu�; ��g�2I , i.e., for any smooth atlas B,
if A � B, then A = B, and for 8(u�; ��) 2 A, �� maps u� into a D dimensional open
subset in RD. With the smooth atlas structureA on the manifoldM, the function f , which
mapsM into a Euclidean space, is called to be smooth if for any p 2 M, there exists an
chart (U; �) such that p 2 U and f � ��1 is a smooth function (Lee, 2012). For functions,
which map between two manifolds, the smoothness is de�ned similarly by the smooth atlas
structures.

The de�nition of a smooth manifold helps us to understand the data set from local
perspectives. A manifold is a set of points whose local structure is like that of RD. As a
case in point, the unit sphere in R3 is a smooth 2-manifold. From the de�nition of smooth
2-manifold, we can see that the local patch from the sphere has similar properties as R2.

In multivariable calculus, the gradients and tangent plane can be de�ned analytically
and can be visualised in Euclidean space. For manifolds, tangent vector and tangent space
have their corresponding generalisations. The tangent vector can be de�ned implicitly by
utilising functions on the manifold (Absil et al., 2009). Denote C1p (M) as the set of all the
smooth functions which map the neighborhood of p into R, and f : R ! M is a smooth
map. For all g 2 C1p (M), g � f is a smooth map between some open subsets of R, thus we
have the corresponding gradient. A tangent vector � for manifoldM at p is de�ned as a
map from C1p (M) to R, where the map is de�ned through an implicit curve f : R!M,
and

�(g) = lim
�!0

g � f(t+ �)� g � f(t)

�
: (2.1)

The tangent space of M at p is the set of all tangent vectors at p, and it is a vector
space with the same dimension as the manifold. Whereas the de�nition of tangent vec-
tor is implicit and abstract since it is a map on C1p (M), the tangent space enables further
exploration of the manifold. For example, with the inner product structure de�ned appro-
priately on tangent spaces Tp(M), lots of concepts in Euclidean space can be generalised
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to manifold space.

Fig. 2.1. Visualization of the tangent space Tp(M). The tangent space consists of all of the
tangent vectors at p. This �gure is redrawn from Absil et al. (2009).

A Riemannian metric g de�nes an inner product on all of the tangent spaces and it is a
smooth function when it is viewed as a function de�ned on f(�1p; �2p) j (�1p; �2p) 2 Tp(M) �
Tp(M); p 2 Mg and g(�1p; �

2
p) = h�1p; �2pigp (Absil et al., 2009). The manifoldM equipped

with a Riemannian metric g is called a Riemannian manifold (M; g). With the inner product
gp on tangent space Tp(M), the norm of the tangent vector �p is induced by the inner
product:

jj�pjjg = (h�p; �pigp)
1
2 : (2.2)

Since the tangent vector is a generalisation of the gradient in multivariable calculus, the
length of a smooth curve is calculated by the length of the tangent vectors along the curve.
Suppose f : [a; b] ! M is a piecewise smooth curve on a Riemannian manifold (M; g),
the length of the curve is de�ned as

L(f) =

Z b

a

jj _f(t)jjgdt; (2.3)

where _f(t) is the corresponding tangent vector induced by f at t.
With the de�nition of the length of a curve in the manifold, geodesic distance between

two data points p1and p2 in the manifold is de�ned as the ‘shortest’ distance among all of
the lengths of the curves which start from p1 and end at p2 (Absil et al., 2009), i.e.,

Dg(p1; p2) = inf
f2F

L(f); (2.4)

where F = ff j f : [a; b]!M is a piecewise smooth curve, and f(a) = p1; f(b) = p2g.
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Fig. 2.2. Visualisation of the geodesic distance. The geodesic distance between two data
points p1 and p2 is the minimum length of the curves between them.

The tangent space has an intimate relationship with the manifold in the local region.
The exponential map, exp, and the logarithmic map, log, make connections between data
points on the manifold and data points in the tangent space. Considering the tangent space
Tp(M) of the Riemannian manifold (M; g), for any x 2 Tp(M), there exists a unique
(geodesic) curve such that f(0) = p, _f(0) = x and �f(t) = 0 (Absil et al., 2009). Denote
p2 = f(1), the exponential map exp and the logarithmic log are de�ned as

exp(x) = p2; (2.5)

and
log(p2) = x: (2.6)

Fig. 2.3. Visualisations of the exponential map exp and the logarithmic map log. The expo-
nential map exp maps each tangent vector to the point in the nonlinear manifold. Both of
these two points have the same distance to the origin of the tangent space. The logarithmic
map log, which is de�ned around the origin, is the inverse function of the exponential map.
This �gure is redrawn from Lee (2012).
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Above, a number of concepts related to manifolds have been summarised. From a set of
data points, with structures equipped gradually, the set becomes a manifold or Riemannian
manifold, which enables us to explore the geometrical properties of the data set including
the distance computation between two manifold data points and the local approximation
of the manifold space. The main purpose of this section is to present the key concepts and
intuitions behind manifolds.

2.2.2 Example: Grassmannian manifold

Grassmannian manifold has wide applications in computer vision. It has been used to rep-
resent video sequences (Turaga, Veeraraghavan, Srivastava, and Chellappa, 2011), a set of
images with di�erent poses or di�erent illuminations (Harandi, Sanderson, Shirazi, and
Lovell, 2011). In this section, take the Grassmannian manifold Gr(d;D) as an example,
the key concepts, such as the tangent space, geodesic curve, exponential map exp and the
logarithmic map log, are summarised for this speci�c manifold space.

The Grassmannian manifold Gr(d;D) consists of all the d-dimensional subspaces in
RD. Denote X 0 as the transpose of a matrix X . Since any matrix X 2 RD�d with the
property X 0X = Id determines a unique d-dimensional subspace, Gr(d;D) is de�ned as

Gr(d;D) = f[X]jX 2 RD�d; X 0X = Idg; (2.7)

where [X] represents a d-dimensional subspace which is generated by the columns of X .
Since the unit orthogonal basis is not unique for a d-dimensional subspace, the point in
Gr(d;D) might have di�erent representations, i.e., suppose [X]; [Y ] 2 Gr(d;D), [X] and
[Y ] are equivalent means that there exists A 2 Rd�d such that X = Y A.

Although the de�nition of the Grassmannian manifold is di�erent of any subset of the
Euclidean space, it is proved that Gr(d;D) is equivalent to a quotient manifold RD�d

� =�
(Absil et al., 2009), where RD�d

� is an open subset of RDd and � is some equivalence re-
lationship which is used to induce the quotient manifold. Thus, Gr(d;D) has a natural
manifold structure that is induced from Euclidean space.

With the manifold structure induced from RDd, the related manifold concepts includ-
ing tangent space, geodesic curve, exponential map exp and the logarithmic map log have
analytic expressions, which enables Gr(d;D) to be used in practice. For example, if video
sequences are viewed as points in a Grassmannian manifold, the geodesic distance can be
used to measure the distance between two video sequences.

Suppose [X] 2 Gr(d;D), the tangent space at [X] is:

T[X] Gr(d;D) = fX?AjA 2 R(D�d)�dg; (2.8)
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whereX? 2 R(D�d)�d is the orthogonal complement ofX . The Riemannian metric (canon-
ical metric) on Gr(d;D) is induced from the vector inner product:

hY1; Y2ig =hVec(Y1);Vec(Y2)i

= tr(Y1Y
0

2):
(2.9)

for 8Y1; Y2 2 T[X] Gr(d;D).
Given a tangent vector Y 2 T[X] Gr(d;D), there is a unique geodesic curve f such that

f(0) = [X], and _f(0) = Y . Furthermore, the geodesic curve has analytic expression:

f(t) = [XV cos(�t) + U sin(�t)]; (2.10)

where U 2 R(D�d)�d;� 2 Rd�d; V 2 Rd�d are obtained from the singular value decompo-
sition (SVD) decomposition of Y = U�V 0.

From the relationship between tangent vector and geodesic curve, the exponential map
is

exp[X](Y ) = f(1) = [XV cos(�) + U sin(�)]: (2.11)

For all [X2] 2 Gr(d;D), the logarithmic map log[X]([X2]) is calculated by

log[X]([X2]) = U1�V
0

1 ; (2.12)

where U1 2 RD�d; V1 2 Rd�d and � = arctan(�1) are obtained from the SVD decomposi-
tion of X?X 0?X2(X 0X2)�1 = U1�1V

0
1 .

From Equation (2.9) and Equation (2.12), we have a natural way to de�ne the geodesic
distance, which is induced by the canonical metric, between [X] and [X2]:

d([X]; [X2]) = jj log[X]([X2])jjF : (2.13)

2.3 Manifold learning methods

Manifold learning has become an active research topic since the seminal works of LLE

(Roweis and Saul, 2000) and Isomap (Tenenbaum et al., 2000). In this section, di�erent man-
ifold learning techniques have been summarised in order to have a better understanding of
how the geometry of the data set is explored. According to whether it extracts information
only from a local region of the data set, we summarise the techniques in manifold learning
into two categories. The category of preserving local similarities focus on exploring infor-
mation between data points in their neighbourhood, and the category of preserving global
similarities focus on preserving information which is extracted from the global view of the
manifold space.
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2.3.1 Preserving local geometric information

For preserving local similarities, the local region of data point x is often obtained by:

• The K nearest neighbours, i.e., the K data points x1; x2; � � � ; xK such that they have
the smallest distances to x.

• An � ball round x, i.e., all of the data points xi and jjx � xijj2 < � where � is a
prede�ned constant.

Di�erent manifold learning techniques explore the local geometric information from dif-
ferent perspectives. Then this local geometric information is used to learn a set of low
dimensional points representing the data which preserve the geometric information of the
original data set. In this category, we summarise four manifold learning techniques: LLE,
LE, LSTA and HLLE.

LLE

In Locally Linear Embedding (LLE) (Roweis and Saul, 2000), the geometric information of
data points in the local region is characterised by the reconstruction property between
data points. For data point xi, denote xi1 ; xi2 ; � � � ; xiK as its local neighbours. Assuming
the data points are distributed around some implicit manifold, we expect some linear patch
structure among these K + 1 data points. Thus, the xi can be roughly reconstructed by its
K neighbourhood points, and the weights are obtained by solving following optimisation
problem:

arg min
wi

jjxi �
KX
j=1

wiijxij jj2

s:t:;wii1 + wii2 + � � �+ wiiK = 1:

(2.14)

where the constraint
PK

j=1wiij = 1 ensures that the reconstruction weights are not a�ected
by translation of the data set.

Denote W 2 RN�N as the learned weight matrix, where wij is its element in the ith

row and jth column. The ith row of W is the reconstruction weight for xi (The weights for
the data points which are not used for reconstructing xi are set to 0).

With the information summarised in W , LLE aims to learn a set of data points y1; y2;

� � � ; yN in a low dimensional space (Rd), such that the reconstruction relationship (W ) is
preserved among these new data points. Denote

J(Y ) =
NX
i=1

jjyi �
NX
j=1

wijyjjj2; (2.15)
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is the reconstruction error for Y = [y1; y2; � � � ; yN ] 2 Rd�N .
From Equation (2.15), we can see that any translation to Y will not a�ect the �nal cost.

Besides, the cost, J(Y ), equals to 0 when all yi’s are set to 0, so we need some normalisation.
Thus two constraints

NX
i=1

yi = 0; (2.16)

and
1

N

NX
i=1

yiy
0
i = I; (2.17)

are introduced.
The �nal optimisation problem has an analytic solution. Denote M = (I �W )0(I �

W ), v1; v2; � � � ; vd 2 RN are its eigenvectors corresponding to the second smallest to the
(d + 1)th smallest eigenvalue. The column vectors of V = [v1; v2; � � � ; vd]0 2 Rd�N are the
corresponding vectors y1; y2; � � � ; yN .

LE

In Laplacian Eigenmaps (LE) (Belkin and Niyogi, 2003), the similarity information between
data points in the local region is represented by a similarity matrix W 2 RN�N . For two
data points xi and xj in the same local region, the similarity between them can be calculated
by the heat kernel, i.e.,

wij = exp(�jjxi � xjjj
2

t
); (2.18)

where t is a prede�ned constant, otherwise, the similarity is 0. Alternatively, the similarity
can be assigned 1 or 0 according to whether they belong to the same local region or not.

The similarity matrix preserves the relative distance information of the original data set.
For example, higher similarity means that the corresponding data points are closer. This
information is used to learn a set of low dimensional points y1; y2; � � � ; yN 2 Rd. Belkin
and Niyogi (2003) proposed to minimise the cost:

J(Y ) =
NX
i=1

NX
j=1

jjyi � yjjj2wij: (2.19)

The intuition behind the cost function is that if xi and xj are similar, then assign large
weight for the corresponding distance of the points in the low dimensional space. This
is equivalent to the e�ect that, if jjxi � xjjj2 > jjxi � xkjj2, we expect to have the same
relationship for low dimensional embeddings, i.e., jjyi � yjjj2 > jjyi � ykjj2.
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Denote D 2 RN�N as a diagonal matrix where Dii is the sum of the ith row of W , and
L is calculated by L = D �W , it is easy to verify that

J(Y ) = Y 0LY: (2.20)

In order to avoid the degenerate solution and an arbitrary scale factor, two constraints
are introduced:

Y 0DY = I; (2.21)

Y 0D1 = 0: (2.22)

The optimisation problem then has an analytic solution. For the generalised eigenvector
problem

Lv = �v; (2.23)

denote v1; v2; � � � ; vd as the eigenvectors corresponding to the smallest non-zero d eigen-
values. The column vectors of V = [v1; v2; � � � ; vd]0 2 Rd�N are the corresponding vectors
of y1; y2; � � � ; yN .

LTSA

In Local Tangent Space Alignment (LTSA) (Zhang and Zha, 2004), each local region is
approximated by a linear patch, and then these patches are aligned with each other in
the low dimensional space. Suppose y1; y2; � � � ; yN 2 Rd, and a map f exists such that
xi = f(yi) + "i 2 RD here xi is viewed as an sample with noise "i.

With the assumption that data points in the local region have low intrinsic dimension,
i.e., it can be approximated by a d-dimensional a�ne subspace, the data points in the local
region are represented by a new coordinate corresponding to the local linear patch. The
corresponding optimisation problem is

min
KX
j=1

jjxij � (x+Q�j)jj22; (2.24)

where the columns of Q 2 RD�d are a set of basis set of the corresponding subspace, � =

[�1; �2; � � � ; �K ] is the local coordinates of the data points in the local region. The optimal so-
lution for Equation (2.24) is obtained by assigning x as the mean ofXi = [xi1 ; xi2 ; � � � ; xiK ],
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Q as Qi = [v1; v2; � � � ; vd] where v1; v2; � � � ; vd are the leading d left singular vectors of
Xi(1� 110=K), and � as �i = Q0iXi(1� 110=K).

Suppose the local coordinates are aligned in the low dimensional space, denote Y =

[y1; y2; � � � ; yN ] as the embedding data points, Yi = [yi1 ; yi2 ; � � � ; yiK ] as the corresponding
local region of Xi and Yi as the mean of Yi. Since �i is a d dimensional approximation of
Xi, we expect that there is an a�ne transform between Yi and �i, i.e.,

yij = Yi + Li�j + �j: (2.25)

DenoteEi = [�1; �2; � � � ; �K ] as the error matrix of the reconstruction which should be min-
imised. Given Yi and Xi, the optimal solution for Li, which gives minimal reconstruction
error, is Yi(1� 110=K)�+

i .
Considering the overall reconstruction error:

NX
i=1

jjEijj2F =
NX
i=1

jjYi(I � 110=K)� Ll�ijj2F

=
NX
i=1

jjYi(I � 110=K)(I ��+
i �i)jj2F

=
NX
i=1

jjY SiWijj2F

= jjY SW jj2F ;

(2.26)

where Si is the selection matrix such that Y Si = Yi, Wi = (I � 110=K)(I � �+
i �i),

S = [S1; S2; � � � ; SN ], W = diag(W1; ;W2; � � � ;WN) and the jj � jjF is the Frobenius norm
of a matrix.

With the constraint that Y Y 0 = I , the optimal solution is obtained by Y = [v1; v2; � � � ;
vd]
0 2 Rd�N , where v1; v2; � � � ; vd are its eigenvectors corresponding to the second smallest

to the (d+ 1)th smallest eigenvalues of SWW 0S 0.

HLLE

In Hessian-based Locally Linear Embedding (HLLE) (Donoho and Grimes, 2003), the map-
ping f between manifoldM and low dimensional embedding is assumed to be isometric,
i.e., the geodesic distance between two data points inM is preserved after the mapping.
Considering any coordinate component function f : M ! R, given m 2 M, suppose
g : U ! R is induced by f , where U � TmM is an open set containing 0, and for any m0

from the neighbourhood of m, it can be uniquely approximated by a data point x 2 TmM ,
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thus g(x) is de�ned as f(m0). The curviness of f at m is de�ned by

H tan
f (m) =

�
@2g(x)

@ui@uj

����
x=0

�
; (2.27)

and the overall curviness is measured by

H(f) =

Z
jjH tan

f (m)jj2Fdm: (2.28)

For estimating the Hessian matrix, Donoho and Grimes (2003) proved that Equation
(2.28) is approximated by solving a least-square problem. Denote Xi = [xi1 ; xi2 ; � � � ; xiK ]

as the K nearest neighbourhood data point of xi and Yi = [fi1 ; fi2 ; � � � ; fiK ]. The entries
in
�
@2g(xi)
@ui@uj

���
x=0

�
are estimated by least-square estimation, i.e., the SVD is used to obtain a

basis for the tangent space Txi
(M), and the corresponding coordinates U 2 RK�d of the

neighbourhood data points. Denote Ai 2 RK�(d+1), Bi 2 RK�d(d+1)=2 such that:

[Ai; Bi] = [1; U:;1; U:;2; � � � ; U:;d; U:;1 � U:;1; U:;1 � U:;2; � � � ; U:;d � U:;d]; (2.29)

where the U:;i � U:;j is the element-wise product of the ith and jth columns of U . Denote
Hi as the remainder of Bi after the projection of Ai is removed, this can be done by Gram-
Schmidt orthonormalisation on [Ai; Bi], and the �nal d(d+ 1)=2 columns is Hi. Thus, the
jjH tan

f (xi)jj2F is approximated by

jjH tan
f (xi)jj2F = Y 0iHiH

0
iY
0
i ; (2.30)

and H(f) is approximated by its discrete version:

H(f) =
NX
i+1

Y 0iHiH
0
iY
0
i

=
NX
i+1

Y SiHiH
0
iS
0
iY

= Y SHS 0Y 0;

(2.31)

where Si is the selection matrix such that Y Si = Yi, S = [S1; S2; � � � ; SN ], and H =

diag(H1H
0
1; H2; H

0
2; � � � ; HNH

0
N).

For the �nal low dimensional embedding, with the constraint that Y Y 0 = I , the op-
timal solution is obtained by Y = [v1; v2; � � � ; vd]0 2 Rd�N , where v1; v2; � � � ; vd are its
eigenvectors corresponding to the second smallest to the (d+ 1)th smallest eigenvalues of
SHS 0.
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2.3.2 Preserving global geometric information

For preserving global geometric information, the optimisation focuses on the information
obtained in a larger region rather than based on the information from the local region.
Three manifold learning techniques are summarised as examples in this category. Tenen-
baum et al. (2000) proposed Isomap to approximate the geodesic distances between any
two data points, and then this information is preserved in learning the low dimensional
embedding data points. Weinberger, Sha, and Saul (2004) proposed Maximum Variance
Unfolding (MVU) to maximise overall distances between the embedding data points with
the constraint that the distances of data points in the local region are preserved. Lin, He,
Zhang, and Ji (2013) proposed to use a parallel �eld structure to learn the low dimensional
embedding.

Isomap

In Isomap (Tenenbaum et al., 2000), the geodesic distance between any two data points from
the data set is estimated, and then Multidimensional Scaling (MDS) (Cox and Cox, 1994) is
used to learn a low dimensional embedding.

For any two data points x1 and x2, the geodesic distance between them is the smallest
curve length between the two data points along the manifold space. Tenenbaum et al. (2000)
proposed to approximate the implicit manifold by a KNN graph of the data set. Each data
point from the data set is viewed as a node in the graph, and then this data point is con-
nected to its K nearest neighbourhood data points. The weights between connected data
points are assigned by the corresponding Euclidean distances. With appropriate manifold
assumptions, the geodesic distances of the data points in the same local neighbourhood
are approximated with the corresponding Euclidean distances. For data points that are not
in the same local neighbourhood, the geodesic distances are approximated by the short-
est path searching through the KNN graph. In this way, the distance matrix D 2 RN�N

has better semantic information than the distance calculated by the Euclidean distances
directly.

With the distance matrix D, a low dimensional embedding is obtained by the classical
MDS method which aims to �nd a set of points such that the Euclidean distances between
them are the same as D. Suppose y1; y2; � � � ; yN 2 Rd are the corresponding low dimen-
sional embedding. Denote H = I � 1

N
110, thus �(D) = 1

2
HDH 0 corresponds to the inner

product of the data set after centring. The optimal solution is obtained by calculating the
eigenvectors v1; v2; � � � ; vd which correspond to the largest d eigenvalues of �(D). The
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column vectors of V = [v1; v2; � � � ; vd]0 2 Rd�N are y1; y2; � � � ; yN .

MVU

In order to unfold the manifold in low dimensional space, Weinberger et al. (2004) proposed
Maximum Variance Unfolding (MVU) to maximise the distribution of the embedding data
points, i.e. the optimisation objective is to maximise

NX
i=1

NX
j=1

jjyi � yjjj2: (2.32)

Imagine that the data points are sampled from a piece of paper which is folded in 3D space.
Now, we are doing some operations on this paper such that the data points from the paper
are as far apart as possible. After some number of operations, the paper will be �attened.
Bengio, Paiement, Vincent, Delalleau, Roux, and Ouimet (2004) proved that kernel princi-
pal component analysis (KPCA) has an intimate relationship with manifold learning tech-
niques including Isopmap, LLE and LE. For example, di�erent manifold learning methods
are viewed as special Kernel PCA if the kernel function is de�ned appropriately. This moti-
vates MVU to model the relationship of data points in the kernel space, and the optimisation
objective is to �nd the speci�c kernel matrix with some appropriate constraints.

Suppose � maps each data point x into a kernel space, the �rst constraint of the points
in the kernel space is that they should be centred, i.e.,

PN
i=1 �(xi) = 0. Considering the

kernel matrix K 2 RN�N , where kij is the inner product between �(xi) and �(xj). Thus
the centring condition is equivalent to:

0 = j
NX
i=1

�(xi)j2 =
NX
i=1

NX
j=1

�(xi)
0�(xj) =

NX
i=1

NX
j=1

kij: (2.33)

For data points in the same local neighbourhood, their distance should be preserved, i.e.,

jxi � xjj2 = j�(xi)� �(xj)j2: (2.34)

Denote gij = x0ixj , Equation (2.34) is equivalent to:

gii + gjj � 2gij = kii + kjj � 2kij: (2.35)

The optimisation aims to maximise the overall distances between �(x1); �(x2); � � � ,
�(xD). Since

1

2N
=

NX
i=1

NX
j=1

j�(xi)� �(xj)j2 = Tr(K); (2.36)
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the �nal optimisation problem is to �nd a kernel matrix which is positive semide�nite, thus
it is a semide�nite programming problem with two constraints.

With the solution K obtained by semide�nite programming, the d dimensional em-
bedding is obtained by calculating the eigenvectors v1; v2; � � � ; vd which correspond to the
largest d eigenvalues of K . The column vectors of V = [v1; v2; � � � ; vd]0 2 Rd�N are
y1; y2; � � � ; yN .

PFE

In parallel �eld embedding (PFE) (Lin et al., 2013), a parallel �eld structure is learned from
the data set, and then this information is used to learn the low dimensional embedding. A
vector �eld � on the manifoldM is a smooth map such that �(x) 2 Tx(M), for all x 2M.
Intuitively, it selects one tangent vector in each tangent space Tx(M). A parallel vector
�eld is a generalisation of parallel vectors in manifold space. It is formally de�ned as a
vector �eld satisfying 5� = 0, where 5 is the covariant derivative on the manifold (Lin
et al., 2013).

The optimisation problem for learning the vector �eld � is:

min J(V ) =

Z
M

jj 5 V jj2Fdx

s:t:;

Z
M

jjV jj2 = 1:

(2.37)

Denote Ti 2 RD�d as the matrix representing a basis of Txi
(M), thus each tangent vec-

tor �(xi) 2 Txi
(M) can be represented as Tivi. the discrete version of Equation (2.37) is

approximated by
NX
i=1

NX
j=1

wijjjPiTjvj � Tivijj; (2.38)

where the weight is de�ned as wij = 1
jjxi�xj jj2 if xi and xj are in the same local neigh-

bourhood, and wij = 0 otherwise, Pi = TiT
0
i is the orthogonal projection from RD to the

tangent space Txi
(M). With the discrete version of Equation (2.37), the discrete version of

V , i.e., its value at the position of each data point, is obtained by solving the corresponding
eigenvector problem.

Suppose f is a map fromM to an open subset of Rd satisfying f(xi) = yi. The equa-
tion5f = V , where5f is the gradient �eld of f , ensures that f is a linear function which
changes linearly along the geodesic curve on the manifold. Intuitively, f behaves as un-
folding the manifold into Rd. The optimisation problem for learning this linear function f
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is:

J(f) =

Z
M
jj 5 f � V jj2dx: (2.39)

The discrete version of Equation (2.39) is approximated by

J(Y ) =
NX
i=1

NX
j=1

wijjj(Pi(xi � xi))0Vxi
� yj + yijj2: (2.40)

Thus, the �nal solution is solved by setting @J(Y )
@Y

= 0.
In this section, we have summarised some examples of how geometric information from

a data set is mined and then used for learning low dimensional embeddings. The sum-
marised techniques have various applications in related �elds. For example, LE has been
developed into a linear manifold learning method (He and Niyogi, 2004) and a regulariser
for regression problems (Cai, He, Zhang, and Han, 2007). Our focus is how the geometric
information is explored and used for learning the low dimensional embedding. Thus, we
have not summarised other techniques in manifold learning including the uni�ed viewpoint
of di�erent manifold learning techniques (Bengio et al., 2004; Lawrence, 2004), learning the
low dimensional embedding through probability distribution (Hinton and Roweis, 2002;
Van Der Maaten and Hinton, 2008) and label information (Yan, Xu, Zhang, Zhang, Yang,
and Lin, 2007).

2.4 Summary

This chapter provides the theoretic background for the work in this thesis, and the sum-
marised manifold learning techniques also shed light on related works in later chapters.
For example, our work in video classi�cation heavily relies on the Grassmannian manifold
and its related computations; the tangent space is used to approximate the distribution of
data points in local regions and this kind of information is used to learn the encoding func-
tions for ANN search tasks; the techniques in manifold learning provide examples as well
as motivate us to mine geometric information for appropriate computer vision problems.
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Part I

Exploring geometric structures for
clustering problems
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Chapter 3

Improved Spectral Clustering using
Adaptive Mahalanobis Distance

Note: Some portions of this chapter are taken from Fu et al. (2013).

In this chapter, we address the clustering problem when data points belong to di�erent
manifolds that are close to or intersect with each other. Traditional spectral clustering
algorithms usually fail to separate such manifolds. We propose to improve the similarity
matrix construction step in spectral clustering by learning a local Mahalanobis distance.
We show the e�ectiveness of the method on some arti�cial data sets, and also incorporate
this modi�cation into recent related algorithms, and compare these algorithms on some
real data sets.

3.1 Introduction

In the past few years, a lot of work has been done to extend clustering algorithms to ever
more di�cult problems. Speci�cally, algorithms have been designed to cluster data which
are sampled from multiple manifolds. These manifolds may be very close to each other and
may even intersect. For this kind of clustering problem, we need to construct an elaborate
similarity matrix W to group the data using spectral clustering. Chen and Lerman (2009)
have constructed a similarity matrix based on the polar sine, which is a high dimensional
generalisation of the sine function. For each data point, the polar sine is estimated based
on data points randomly chosen from the data set. Thus, it is a global algorithm and has
good performance when the data points are sampled from linear manifolds.

The similarity matrix W can also be estimated based on information extracted from lo-
cal regions. Wang, Jiang, Wu, and Zhou (2011) incorporated tangent space information into
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the similarity matrix. They used the mixture of probabilistic principal component analysers
(MPPCA) (Tipping and Bishop, 1999) model to �t the data set. In this model each data point
has a corresponding tangent space which is learned from MPPCA. With this information,
the similarity matrix is constructed from the distance information and the angle informa-
tion of corresponding tangent spaces. Gong, Zhao, and Medioni (2012) estimated the local
tangent space using a weighted low-rank matrix factorisation. The main assumption is that,
when calculating the tangent space at x, the more distant points from the neighbourhood
contribute more to the error than nearby ones do. Thus they introduce a penalty for neigh-
bourhood points according to their distances to x. With the tangent space information for
each data point, they construct a similarity matrix W using both distance information and
angle information of the local tangent spaces. Finally, Arias-Castro, Lerman, and Zhang
(2013) proposed three algorithms which address the manifold intersection problem. The
central idea behind these algorithms is to incorporate local covariance information which
is calculated by each x and its neighbourhood points to construct a similarity matrix.

In this work, we propose an algorithm designed to improve the selection of neighbour-
hoods in the case of data sampled from multiple neighbourhoods. By improving neighbour-
hood selection, we improve the similarity matrix used by spectral clustering algorithms.
Like previous works (Gong et al., 2012; Wang et al., 2011; Arias-Castro et al., 2013), we
are trying to construct a better similarity matrix for spectral clustering. Unlike previous
work, we do not explicitly estimate local tangent spaces, nor do we use a single covariance
measurement to reject certain edges. Instead, we select edges by employing an iterative
Mahalanobis distance calculation. Since we are concerned only with neighbourhood selec-
tion, the modi�ed neighbourhood selection method can be applied as a pre-processing step
for various spectral clustering algorithms (Gong et al., 2012; Wang et al., 2011; Ng et al.,
2002).

In Section 3.2, we introduce the necessary background for the modi�ed neighbourhood
selection method, including details on the Mahalanobis distance and spectral clustering.
In Section 3.3, we describe how to select neighbourhoods using an iterative computation
of Mahalanobis distance. We provide examples and discuss computational complexity. In
Section 3.4, we incorporate the modi�ed neighbourhood selection method into other al-
gorithms and compare the resulting performance on some real data. In Section 3.5, we
summarise the work in this chapter.

27



3.2 Background

3.2.1 Mahalanobis distance

The modi�ed neighbourhood selection method uses the Mahalanobis distance to select
neighbourhoods. To de�ne the Mahalanobis distance, we suppose that x; y 2 RD and
that � 2 RD�D is a symmetric positive de�nite covariance matrix. The Mahalanobis dis-
tance is de�ned as d�(x; y) =

�
(x� y)0��1 (x� y)

�� 1
2 . Under the Mahalanobis distance,

the space RD can be viewed as normalised by �. In Fig. 3.1, we show a unit sphere in the
Mahalanobis distance using two di�erent covariance matrices.

Fig. 3.1. Unit balls under di�erent Mahalanobis distances. On the left we use � = I , and
on the right we use a diagonal matrix with entries (3; 1; 1) for �.

The Mahalanobis distance has been widely used for solving machine learning problems.
For example, Goldberg, Zhu, Singh, Xu, and Nowak (2009) proposed the Multi-Manifold
Semi-Supervised learning algorithm. Their main idea was to reduce the clustering size by
partitioning the unlabelled data points into small regions. Next, for the size-reduced data
set, the local covariance for each data point was calculated. The similarity matrix was then
constructed by this Mahalanobis distance information and the Hellinger distance between
them. Kushnir, Galun, and Brandt (2006) also proposed to use Mahalanobis distance calcu-
lated by covariance matrices around the local region, to �nd the structure of the data set. In
this work, we propose to learn the Mahalanobis distance iteratively. The hope is that such
an approach will allow a better determination of the neighbourhood of each data point.

Another closely related �eld is distance metric learning (Yang and Jin, 2006) which
learns the Mahalanobis distance for the data set. Distance metric learning can be divided
into two branches. One is supervised distance metric learning which means we have label
information of the data points. With this kind of information, we can �nd the optimal Ma-
halanobis matrix for the distance measurement (Xing, Jordan, Russell, and Ng, 2002; Wein-
berger, Blitzer, and Saul, 2005). The other is unsupervised distance metric learning which
is closely related to manifold learning or dimensionality reduction (Yang and Jin, 2006). It
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aims to �nd a low dimensional structure which is usually from one latent manifold. No-
tice that our modi�cation is to learn the local Mahalanobis distance for the unsupervised
clustering problem, and the data points are assumed to be sampled from multiple manifolds
which are close to or intersect with each other.

3.2.2 Spectral clustering

Suppose we have a data set X = fx1; x2; : : : ; xNg � RD. The �rst step in any spec-
tral clustering algorithm is the construction of a weighted similarity graph. In this graph,
vertices correspond to data points xi and edges give the similarity between two points xi
and xj . For example, we might form the weighted similarity graph using �-balls to spec-
ify neighbourhoods: for each data point xi, we connect it to point xj if the Euclidean
distance d(xi; xj) � �. Another common approach for generating weighted similarity
graphs is to connect each data point to its K nearest neighbours (KNN graph). The simi-
larity between the neighbourhood data points is assigned by Gaussian similarity function
w(xi; xj) = exp(� jjxi�xj jj2

2�2 ).
After assigning an appropriate weight to each edge, we get the similarity matrix W =

(wij) for the graph. Note thatwij = 0 if an edge does not exist. Spectral clustering (Ng et al.,
2002) is done by calculating the normalised Laplacian L = I �D�1=2WD�1=2, where D is
a diagonal matrix with Dii = �N

j=1wij . Next, we compute the smallest k eigenvalues of the
eigenvalue problem Lu = �u, where u1; : : : ; uk are the corresponding eigenvectors. If we
form a matrix U = (u1; u2; : : : ; uk) 2 RN�k, T = (y01; y

0
2; : : : ; y

0
N)0 2 RN�k is obtained by

normalising each row of U , then yi is viewed as a representation of xi. Finally, we cluster
fy1; y2; : : : ; yNg into k clusters using K-means. An overview of the process is given in
Algorithm 1.

The similarity matrix W plays a pivotal role in spectral clustering. The values in the
similarity matrix are used to re�ect the relationship between data points, i.e., high similarity
between data points means they are close to each other and from the same class. In the
extreme case, if each data point only connects data points from the same class, then T only
has k distinct rows and these distinct rows are orthogonal with each other (Ng et al., 2002).
Thus, the spectral clustering algorithm can cluster the data set successfully. In real-word
data sets, the similarity matrix might not be ideal, but it has been shown that if the similarity
matrix is close enough to the ideal case, the spectral clustering algorithm can cluster the
data set successfully.
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Algorithm 1 Spectral Clustering Algorithm (Ng et al., 2002)
Input: Data set X 2 RD�N , the number of clusters k.
Output: A set of k clusters.

1: Construct a similarity graph, denote the corresponding adjacency matrix as W .
2: Calculate the normalized Laplacian L = I � D�1=2WD�1=2, where D is a diagonal

matrix with Dii = �n
j=1wij

3: Calculate the smallest k eigenvalues of the eigenvalue problemLu = �u, u1; u2; � � � ; uk
are the corresponding eigenvectors.

4: Form U = (u1; u2; � � � ; uk) = (y01; y
0
2; � � � ; y0N)0 2 RN�k and normalize each row of U ,

denote the new matrix as T = (y01; y
0
2; : : : ; y

0
N)0 2 RN�k

5: Cluster fy1; y2; � � � ; yNg into k clusters by K-means algorithm.

3.3 Algorithm

3.3.1 Motivation

From the discussion of spectral clustering, we can see that the clustering results are asso-
ciated with the quality of the similarity matrix. When data points from di�erent classes
are close to each other, misconnections arise, i.e., we might assign large similarity weights
between data points from di�erent classes. This is the main cause of failure if we use spec-
tral clustering to divide the data set. Thus our focus is to explore appropriate geometric
information for learning the similarity matrix W .

We aim to extract some geometric information for deciding the neighbourhood of the
data points. If there are fewer misconnections in the similarity graph, the performance of
spectral clustering will improve. Clustering is an unsupervised learning problem, i.e., we do
not have any prior information of the data distribution or class labels, so we use isotropic
ball distance to �nd the nearest neighbourhood points. The distribution information of data
points in a local region is used to learn the Mahalanobis distance information. Notice that
the learned Mahalanobis distance can be used to �nd the nearest neighbour points again.
We repeat the above procedure hoping to reduce the number of wrong connections.

An example is shown in Fig. 3.2. Here the data points are chosen from two intersecting
lines with some random noise. For the blue point xi, we select its 20 nearest neighbourhood
points which are shown in the top-left position, we notice that there are at least 6 miscon-
nections. Calculate the covariance of these (20 + 1) points, and then use this covariance
as the Mahalanobis distance to �nd its 20 nearest neighbourhood points. For this example,
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Fig. 3.2. Neighbourhood selection. Here we consider a data set with two intersecting lines
and a neighbourhood centre near the intersection point. From the top left to the bottom
right, we show snapshots of the neighbourhood of the blue data point in each iteration.
The neighbourhood centre is shown enclosed within a circle surrounding the neighbour-
hood. Non-Neighbours are shown in grey. As the algorithm converges, the neighbourhood
improves so that the intersecting line is ignored.
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we see that after 6 iterations, the blue point has ‘correct’ connections.

3.3.2 Algorithm

The neighbourhood learning algorithm is summarised in Algorithm 2. This algorithm aims
to select neighbourhoods respecting to the manifold structures, regardless of nearby mani-
folds or manifold intersections, and it is based on iteratively recomputing the Mahalanobis
distance for a given neighbourhood centre. For ith data point xi, the main task is to identify
its K nearest neighbours. In the absence of prior information, we assume an isotropic Ma-
halanobis distance (� = I) (Line 2) to �nd the closest K neighbours (Line 4). Using these
neighbours, we compute the covariance and re-compute the Mahalanobis distance (Line 5).
We return to Line 3 and select a new set of K neighbours based on the new Mahalanobis
distance and repeat unless there is no change of the covariance or neighbourhood of the xi
(Line 6-10 ).

In practice, we do not wait for convergence, but terminate after a �xed number of it-
erations Imax. After the neighbourhood selection process, we apply a spectral clustering
algorithm. We denote the resulting algorithm as Modi�ed-SC.

Algorithm 2 Identify neighbourhood using Mahalanobis Distance
Input: Data set X with N elements; neighbourhood size K ; maximum number of
iterations Imax.
Output: Neighbourhood for each data point.

1: for i = 1 to N do

2: Let � = I .
3: for j = 1 to Imax do

4: Use distance (xj � xi)0��1(xj � xi) to �nd K nearest neighbours of xi.
5: Calculate the covariance Cov of fxi1; xi2; : : : ; xiKg.
6: if Cov = � then

7: Go to Line 14.
8: else

9: Set � = Cov, and return to Line 5.
10: end if

11: end for

12: Record the points fxi1; xi2; � � � ; xiKg as xi’s neighbourhood.
13: end for
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3.3.3 Computational complexity

Taking N to be the total number of points in the data set and K is the size of neighbour-
hood, spectral clustering takes O(KN2) to �nd nearest neighbourhood points and solv-
ing a generalised eigenvalue problem takes O(N3). Our modi�cation involves identifying
neighbourhood iteratively at most Imax times. The time required to identify neighbour-
hood is O(KN2Imax). Since solving the generalised eigenvalue problem dominates the
main computation, the modi�ed algorithm has roughly the same complexity as the tradi-
tional spectral clustering algorithm. Besides, we should note that the time for identifying
the neighbourhood in the proposed method can be further reduced by fast approximate
nearest neighbour search methods (Bentley, 1975; Indyk and Motwani, 1998).

3.4 Experiments

3.4.1 Arti�cial examples

We examine some arti�cial examples which cannot be partitioned using traditional spectral
clustering algorithms. The �rst example is two intersecting lines. For this example, we gen-
erated 400 points uniformly sampled from two lines. We used K = 10 nearest neighbours
and identi�ed k = 2 clusters. The results of a traditional spectral clustering algorithm
(Ng et al., 2002) compared with the same spectral clustering algorithm modi�ed using our
neighbourhood selection is shown in Fig. 3.3.
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Fig. 3.3. Clustering for two intersecting lines. On the left we show the result of a traditional
spectral clustering algorithm, and on the right the result of the same algorithm modi�ed
by �rst applying Algorithm 2.

In our next example, we use two intersecting planes. For this example, we generated
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200 points sampled from a Gaussian distribution from each plane. We again used K = 10

nearest neighbours and identi�ed k = 2 clusters. Clustering by our method yielded only
two misclassi�ed points. A comparison with the traditional method is shown in Fig. 3.4.
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Fig. 3.4. Clustering for two intersecting planes. One plane is in the plane of the page,
the other is orthogonal to the page and horizontal. On the left we show the results of a
traditional spectral clustering algorithm, and on the right the result of the same algorithm
modi�ed by our neighbourhood selection scheme. There are two misclassi�ed points using
our approach, shown in green with triangular shape.

The previous two examples show that for manifold intersections, the performance of
spectral clustering can be improved using our iterative algorithm for learning the Maha-
lanobis distance. We note that when the data lies on a manifold without error, the method
will work for a large range of K . However, if there is noise, the value of K should be large
enough to eliminate the noise. For example, in Fig. 3.5, we show that for two intersecting
lines with noise, the data can still be partitioned successfully if we choose K = 20.

Fig. 3.5. Clustering for two intersecting lines with noise. The Modi�ed-SC algorithm is
able to cluster noisy data using larger neighbourhoods. Errors are shown in green with
triangular shape.
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http://www. vision.jhu.edu/data/
http://www. vision.jhu.edu/data/


http://www.vision.jhu.edu/code.htm
http://www.math.sjsu.edu/~gchen/scc.html
http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/publication.htm












































































































































http://www.di.ens.fr/~mschmidt/Software/minFunc.html
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