Characterising relational view updates using relative information capacity

Nigel Stanger
Department of Information Science, University of Otago
Dunedin, New Zealand
nigel.stanger@otago.ac.nz

ABSTRACT

In 2013, Chris Date published a book about the view update problem in the context of the Relational Model. He presented several detailed examples of different varieties of view updates and characterised their behaviour, in the process deriving a set of principles for updating views based on the notion of information equivalence of view schemas. In this paper we discuss work in progress that examines how Date’s operational definition of information equivalence can be formally characterised using Hull’s concept of relative information capacity. As a proof of concept, we use an extension of Miller’s schema intension graph formalism to model the information equivalence of Date’s restriction view example.

1. INTRODUCTION

The view update problem is a long-standing problem of great practical significance in the database field. Date [10] likens it to significant unsolved problems in other fields such as the Riemann Hypothesis in mathematics or “P = NP?” in computational complexity theory. In his 2013 book [10] Date developed a set of principles for updating relational views, based on the notion of information equivalence. However, that notion was defined more operationally than formally.

View updating is a special case of schema translation: we have one schema comprising a set of views, another schema comprising a set of base relations, and we need to translate updates from one to the other. It therefore makes sense that formalisms developed to characterise schema translations are also applicable to view updates. We propose to use Hull’s notion of relative information capacity [13] as a means to formally characterise the information equivalence of the schemas that make up a given view configuration.

In particular, we develop an extension of Miller’s schema intension graph (SIG) formalism, which was originally designed to facilitate the comparison of relative information capacity across schemas. We first extend the SIG formalism with relevant relational concepts such as relation types, tuple types, and key constraints. We then show a proof of concept of how this extended formalism can be used to model the information equivalence of a view configuration, by applying it to Date’s example of disjoint restriction views [10]. Our results are consistent with Date’s operational characterisation of information equivalence for this example.

In Section 2, we briefly review the view update problem and relevant research, and in Section 3 we introduce some core concepts that are used throughout the remainder of the paper. In Section 4 we discuss relative information capacity and the SIG formalism, then explain in Section 5 how to extend the SIG formalism to more precisely model a relational schema. In Section 6 we analyse Date’s restriction view example [10] in detail, and characterise the information equivalence of its various sub-schemas. We discuss conclusions and future work in Section 7.

2. THE VIEW UPDATE PROBLEM

The view update problem was first discussed in the relational context by Codd in 1974 [6]. When an update operation is applied to a view, it needs to be translated into corresponding updates on the base relations from which the view is derived [14]. Sometimes there are multiple translations that can produce the desired view update, but produce different—possibly incompatible—changes in the base relations. Worse, there may be translations that have side effects (e.g., for some views based on joins), which produce a different result in the view than if the updates were applied directly to an equivalent base relation [14]. The problem then is how to choose the most appropriate translation. As yet there has been no solution that completely and automatically resolves this ambiguity.

There has been considerable research into this problem over the last four decades, and numerous different approaches have been suggested in the context of relational, non-relational (e.g., [21, 29, 31, 33]), and deductive databases (e.g., [2, 3, 7, 24]). We shall now briefly review some key developments in the relational context. We leave consideration of non-relational and deductive contexts for future work.

Banchilhon and Spyropoulos proposed the concept of constant complement [1] in 1981. The complement of a view describes all the information from the original database that does not appear in the view, so composing a view with its complement provides enough information to reconstruct the original database. Keeping the complement invariant under view update facilitates translation construction. This is a useful approach that has been developed further by other authors [12, 19], but it has been shown that there...
are reasonable translations that cannot be carried out under constant complement [16]. Computing the complement of a view is also difficult, and several authors have worked on more efficient algorithms [8, 18, 20]. Finally, this approach is purely structural in nature and does not consider the semantics of the schema, which is necessary to properly resolve translation ambiguity [15].

Gottlob et al. generalised the idea of constant complement into the class of consistent views [11]. They define consistent views as having the property that “if the effect of a view update on a view state is determined, then the effect of the corresponding database update is unambiguously determined” [11]. However, there are still reasonable views that are not consistent under this definition, and this approach again does not consider schema semantics.

Keller noted that semantic information is essential in order to choose an appropriate translation [15], and suggested that the database administrator (DBA) could provide this at view definition time [14]. Musunaga argued, however, that this would be insufficient to completely resolve ambiguity, and suggested collecting further semantic information from end users at update time [23]. Shu [32] discussed an interesting approach to this kind of information gathering, by treating the problem of generating suitable view translations as a constraint satisfaction problem. This enabled constraints to be added incrementally at view update time. However, while collecting such information from the DBA seems reasonable, collecting it from the end user at update time could be seen as too burdensome, and could impact the usability of query interfaces. It is also unclear which information needs to be captured, and how best to capture it.

Kotidis et al. [17] discussed a different approach to avoiding side effects in view translations. They proposed creating a materialised copy of the view that could be updated directly, rather than mapping updates from the (virtual) view onto its underlying base tables. Clearly this enables the view to be updated without translation side effects, but does imply that the physical manifestation (extension) of the view may no longer match its defining query (intension).

Finally, Date has published several books on the theoretical foundations of the Relational Model over the last decade, including one specifically targeting the view update problem [10] (indeed, the book is ambitiously subtitled “Solving the View Update Problem”). He developed a comprehensive set of rules for updating views in a relational context, supported by an array of worked examples. Date advocated explicitly stating all relevant constraints at view creation time, similar to the information gathering approaches discussed above [14, 23, 32]. He argued that if a complete set of constraints was available, then ambiguity would be diminished or eliminated, and it would then be possible to automatically generate a set of appropriate compensatory rules to automatically manage the view update process. (Compensatory rules are similar in principle to database triggers, except that they are intended to be declarative so that their definitions can make explicitly visible to end users.)

Date’s work is interesting and compelling, and raises several questions worthy of further investigation. However, there are still situations where the correct view translation may be ambiguous, e.g., views based on certain types of join, as previously noted [14]. Somewhat disappointingly, given his stated goal of “solving” the view update problem, Date took a pragmatic approach in such cases. While his justification was well argued and logical, even he acknowledged that it involved “a certain degree of pragma” [10].

Date characterises the ability to define an appropriate and effective view translation using the notion of information equivalence. Two schemas S_1 and S_2 are said to be information equivalent “if and only if the constraints that apply to $[S_1]$ and $[S_2]$ are such that every proposition that can be represented by $[S_1]$ can be represented by $[S_2]$ and vice versa” [10]. Date’s information equivalence is a formal concept, but its definition and characterisation in [10] are more operational in nature. This is what we explore in this paper.

3. RELATIONS AND TYPES

We generally follow Date’s [9] notation and terminology regarding the Relational Model. We do not use Date’s Tutorial D notation, however, preferring instead a more classical algebraic style.

In this paper, A represents an attribute (comprising a name:type pair), R represents a relation variable (relvar), and v represents a value of an attribute, tuple, relation, etc. Attribute values may be disambiguated where necessary by prefixing the value with the attribute name, i.e., name: value.

Date defines a type T_i as “essentially a named, finite set of values” [9], representing every possible value of some specific kind, e.g., every possible ASCII string of length 5, every possible city name, or every possible relation value with a particular heading. That is:

$$T_i = \{v_1, v_2, \ldots, v_m\}, 0 < m < k$$

where k is some finite upper bound. Thus, the type of attribute A_i (denoted T_{A_i}) is by definition the set of all possible values of A_i.

Consider a relvar R with heading $[A_1, A_2, \ldots, A_n]$. Following from equation 1, the relation type of R, which we denote here as T_R, is the set of all possible relation values with R’s heading. Similarly, the tuple type of R’s tuples, which we denote here as $T_{(R)}$, is the set of all possible tuple values with R’s heading, which equates to the Cartesian product of R’s attribute types, i.e.:

$$T_{(R)} = T_{A_1} \times T_{A_2} \times \cdots \times T_{A_n}.$$ (2)

(This construction can be applied to any tuple type, including projections of other tuple types.)

By definition any given value of a relvar R must comprise a set (possibly empty) of tuples $[t_1, t_2, \ldots, t_m] \subseteq T_{(R)}$. T_R therefore comprises every possible k-combination of the elements of $T_{(R)}$, for $0 \leq k \leq |T_{(R)}|$.

For example, Date’s usual suppliers-and-parts schema [10] includes a relvar S with heading $[Sno, Sname, Status, City]$, which contains details of suppliers. From equation 2, the tuples of S have type $T_{(S)} = T_{Sno} \times T_{Sname} \times T_{Status} \times T_{City}$. This notion of type as a set of possible values is synonymous with Codd’s original definition of domains in the Relational Model [4, 9], and also with the notion of domains as “sets of values” in schema intension graphs [27, 28]. The implications of the latter point will be explored further in Section 5, after we have introduced relative information capacity and schema intension graphs in Section 4.

3.1 Nulls

We also follow Date’s prohibition of nulls. Philosophical objections aside, however, this makes little practical difference to our approach, as we are dealing exclusively with types rather than attributes anyway. While an attribute could be null, it makes little sense to say that a type could be “null”. It could be claimed that a type “includes” nulls, but it is unclear what this would even mean in practice, and runs the risk of treating nulls like “normal” values rather than the special markers that they are. In any case, this would effectively be no different from the situation without nulls, so we omit further consideration of nulls in the interest of clarity.

4. RELATIVE INFORMATION CAPACITY

A schema conveys information about the phenomenon it models. Hull [13] defined the concept of relative information capacity to describe the information content of different schemas. The relative information capacity of a schema determines the set of all valid
instances of that schema [13, 25, 26]. Relative information capacity, as its name implies, is not a quantitative measure; rather it is an indicator of the relative information content of different schemas.

Relative information capacity provides a means to identify the differences between schema instances, and can therefore be used as an aid to schema integration and translation [25]. As noted earlier, view updating is a special case of this, so it follows that information capacity can also be used to characterise the information content of views compared to the base relvar(s) from which they are derived.

Miller et al. [26] defined relative information capacity in terms of two types of mapping. An information (capacity) preserving mapping from schema S_1 to schema S_2 maps every element of S_1 to an element of S_2, but only some elements of S_2 to elements of S_1. S_2 has an information capacity greater than S_1, and is said to dominate S_1, denoted $S_1 \preceq S_2$. An equivalence preserving mapping from S_1 to S_3 maps every element of S_1 to an element of S_3 and vice versa (i.e., both the mapping and its inverse are information preserving). The information capacity of S_1 is identical to S_3, and the schemas are said to be equivalent, denoted $S_1 \equiv S_3$.

(Note that Miller et al. [27] use stricter definitions of equivalence and dominance than those used here; strictly speaking, the discussion in this section should refer to absolute dominance and equivalence, whereas the following discussion on SIG transformations should refer to internal dominance and equivalence [27]. The distinction, however, is not crucial to the discussion in this paper.)

Relative information capacity can only be used comparatively. To this end, Miller et al. [28] defined the schema intension graph formalism as a tool for comparing the information capacity of schemas. A schema intension graph (SIG) describes the associations between domains in a schema, and provides a way to “reason about constraints on collections of entities in an instance of the entity set, rather than about the internal structure of a single entity” [28]. In particular, SIGs provide a useful abstract formalism within which to perform schema transformations, as transforming the SIG for a schema is effectively the same as transforming the schema itself.

4.1 Constructing SIGs

A SIG is a graph $G = (N, E)$ [27]. The nodes $n_i \in N$ represent typed domains (i.e., sets of values). Nodes may be simple (atomic) or constructed (composite). Simple nodes are denoted by the name of the domain that they represent. Constructed nodes represent a collection of domains and are built using the \times (Cartesian product) and $+$ (union) operators.

The edges $e_i \in E$ represent binary relations (in the mathematical sense) between domains. Edges are denoted by lines with an optional label, and may be composed to form a path between two nodes (the notation $e_2 \circ e_1$ means “edge e_1 followed by edge e_2”). Some edges may be designated as selection edges, labelled σ, or projection edges, labelled π. These correspond to the relational algebra operators of the same names [5].

Edges may also be annotated with up to four properties denoting simple constraints on the binary relation represented by the edge: totality, surjectivity, functionality and injectivity. These properties are defined as follows [27]:

Let A and B be two sets. A binary relation $r : A \rightarrow B$ is total (denoted $e : A \rightarrow B$) if it is defined for all elements of A; surjective ($e : A \rightarrow B$) if it is defined for all elements of B; functional ($e : A \rightarrow B$) if an element of A determines at most one element of B; and injective ($e : A \rightarrow B$) if an element of B determines at most one element of A.

A bijection is a binary relation that has all four properties [28].

The use of the term “binary relation” here, while mathematically correct, is potentially confusing in any discussion that also involves the Relational Model. From now on, we shall therefore refer to the binary relations represented by SIG edges as “associations”.

A selection edge $e : A \rightarrow B$ indicates that the elements of B comprise a subset or specialisation of the elements of A. If $B = A$, we have what we term a trivial selection. Every element of B must appear in A, and vice versa, and every element of A is associated with exactly one element of B, and vice versa. Trivial selection edges are therefore bijective, i.e., $A \rightleftharpoons B$. If $B \subset A$, we have what we term a non-trivial selection. Every element of B must appear in A, but not vice versa. The mapping remains one-to-one, as before. From the perspective of the superset A, non-trivial selection edges are therefore surjective, functional, and injective, i.e., $A \rightarrow B$.

A projection edge $e : A \rightarrow B$ indicates that the elements of B are a projection of A, where A is a constructed node of the form $C \times D \times \cdots$ (i.e., a tuple type). A bijective projection edge $A \rightleftharpoons B$ indicates that B is unique with respect to A. For non-unique projections, every element of A must match an element in B, and vice versa. Every element of A is also associated with at most one element of B, but not vice versa. Non-unique projection edges are therefore total, surjective, and functional, i.e., $A \twoheadrightarrow B$.

4.2 Comparing SIGs

It is possible to determine the relationship between the relative information capacities of two schemas by comparing SIGs for the two schemas. Consider two schemas S_1 and S_2, with corresponding SIGs G_{S_1} and G_{S_2}. Intuitively, if G_{S_1} and G_{S_2} are isomorphic, then S_1 and S_2 are equivalent [28]. G_{S_1} and G_{S_2} are considered isomorphic if they have identical structure and semantics, i.e., the same nodes, edges, node types, constraints, and annotations. Miller et al. [28] identify three possible results from comparing two SIGs G_{S_1} and G_{S_2}:

1. G_{S_1} and G_{S_2} are either immediately isomorphic, or one can be manipulated by a series of equivalence preserving transformations (described below) until it is isomorphic to the other. The two schemas are equivalent, i.e., $S_1 \equiv S_2$.

2. G_{S_1} and G_{S_2} are not immediately isomorphic, but one can be manipulated by a series of information capacity augmenting transformations (described below) until it is isomorphic to the other. The transformed schema is dominated by the other, e.g., if we transform G_{S_2}, then $S_1 \preceq S_2$.

3. G_{S_1} and G_{S_2} are not immediately isomorphic and cannot be transformed to be isomorphic. The information capacities of S_1 and S_2 cannot be compared.

Miller et al. [27] describe the following equivalence preserving and information capacity augmenting transformations on SIGs:

Annotation transformations allow the removal of annotations or projection and selection constraints from edges (e.g., $n_1 \leftarrow\rightarrow n_2 \Rightarrow n_1 \rightarrow n_2$, or $n_3 \leftarrow\rightarrow n_4 \Rightarrow n_3 \rightarrow n_4$). If an annotation transformation on G_{S_1} makes it isomorphic to G_{S_2}, then the information capacity of S_2 dominates that of S_1 (i.e., $S_1 \preceq S_2$).

Composition transformations allow edges to be moved and copied around the graph. Consider an edge $e : n_1 \rightarrow n_2$, as shown in Figure 1(a). If there is a path $P = e_m \circ \cdots \circ e_k$ of functional edges from some other node n_s to n_k, e may be copied to a new edge $e' : n_1 \rightarrow n_k$, as shown in Figure 1(b).
The original \(e \) can then be deleted if desired, effectively moving \(e \) to \(e' \) as shown in Figure 1(c).

The annotation of \(e' \) is determined by composing \(P \) with \(e \), i.e., \(e \circ P \). If an edge with a particular annotation (such as surjectivity) is composed with an edge without that annotation, the resulting edge also does not have the annotation. For example, the composition of the edges \(\rightarrow \) and \(\rightarrow \) would be an edge with no annotations (\(\rightarrow \)), whereas the composition of \(\rightarrow \) and \(\rightarrow \) would be \(\rightarrow \).

If a composition transformation on \(G_{S_1} \) makes it isomorphic to \(G_{S_2} \), then \(S_1 \leq S_2 \).

These SIG transformations and their effects are summarised in Table 1.

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Type</th>
<th>Effect on information capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete annotation or (\pi/\sigma) constraint</td>
<td>annotation</td>
<td>augmented</td>
</tr>
<tr>
<td>Move or copy edge</td>
<td>composition</td>
<td>augmented</td>
</tr>
<tr>
<td>Create or delete duplicate node</td>
<td>selection</td>
<td>no change</td>
</tr>
<tr>
<td>Create trivial selection edge</td>
<td>selection</td>
<td>no change</td>
</tr>
<tr>
<td>Delete trivial selection edge</td>
<td>selection</td>
<td>augmented</td>
</tr>
</tbody>
</table>

Table 1: Summary of SIG transformations.

5. EXTENDING SIGS TO MODEL RELATIONAL CONCEPTS

The direct correspondence between relational types and SIG domains noted in Section 3 enables us to use SIGs to represent the structure and constraints of relational schemas. Equating tuple types to the Cartesian product of their attributes (equation 2) means that these can also be mapped directly to a constructed SIG node.

Let us again consider the relvar \(S(\text{Sno}, \text{Sname}, \text{Status}, \text{City}) \) from Date’s suppliers-and-parts schema [10]. In addition to type constraints on the attributes, tuples, and the relvar as a whole, \(S \) is subject to a (primary) key constraint on \(\text{Sno} \). Taken together with the collection of types \(T_{\text{Sno}}, T_{\text{Sname}}, T_{\text{Status}}, T_{\text{City}}, T_{\{S\}}, \) and \(T_S \), and assuming that \(S \) is the only relvar in the schema, we can construct the SIG shown in Figure 2 as explained below.

As discussed in Section 3, any given value of \(S \) must comprise a subset of \(T_{\{S\}} \), so the association between \(T_S \) and \(T_{\{S\}} \) is total. Similarly, every tuple in \(T_{\{S\}} \) must appear in at least one value of \(S \), so the association is also surjective. The association is neither functional nor injective, however, as a value of \(S \) in general may contain multiple tuples, and each tuple in \(T_{\{S\}} \) can appear in multiple values of \(S \). This gives us \(T_S \leftrightarrow T_{\{S\}} \).

The key constraint on \(\text{Sno} \) implies that the functional dependency \(\{\text{Sno}\} \rightarrow \{\text{Sname}, \text{Status}, \text{City}\} \) holds in \(S \). From equation 2, we can infer the type of \(\{\text{Sname}, \text{Status}, \text{City}\} \) as \(T_{\text{Sname}} \times T_{\text{Status}} \times T_{\text{City}} \). The association is functional and not injective by definition. Every supplier number (when used in a value of \(S \)) must be associated with an element of \(T_{\text{Sname}} \times T_{\text{Status}} \times T_{\text{City}} \), and vice versa. This implies that the association is both total and surjective. Indeed, this holds for every edge that represents a key constraint [28]. We introduce the edge label \(\pi \) to denote an edge representing a key constraint, which gives us \(T_{\text{Sno}} \leftrightarrow T_{\text{Sname}} \times T_{\text{Status}} \times T_{\text{City}} \) in Figure 2.

Both \(T_{\text{Sno}} \) and \(T_{\text{Sname}} \times T_{\text{Status}} \times T_{\text{City}} \) are projections of \(T_{\{S\}} \), so we can add a non-unique projection edge \(T_{\{S\}} \leftrightarrow T_{\text{Sname}} \times T_{\text{Status}} \times T_{\text{City}} \) and a unique projection edge \(T_{\{S\}} \leftrightarrow T_{\text{Sno}} \). Similarly, \(T_{\text{Sname}}, \) \(T_{\text{Status}} \), and \(T_{\text{City}} \) are all projections of \(T_{\text{Sname}} \times T_{\text{Status}} \times T_{\text{City}} \), so
we can add further non-unique projection edges to these nodes, as shown in Figure 2. Looking at Figure 2, it could be argued that the \(T _n \) type notation is redundant and unnecessarily complicates the diagram. Why not just use \(e.g., S \) instead of \(T__n \), \(S _n \) instead of \(T__n \), and \(S _n \times S _n \times S _n \) instead of \(T__n (S) \)? It is important to remember, however, that SIGs like that shown in Figure 2 refer to multiple elements of quite different kinds, including relations, tuples, and various combinations of attributes. Discarding the type notation might be reasonable in informal situations, but could lead to confusion between the different kinds of elements represented. The explicit type notation protects the semantics of the various elements of the schema and makes it clear what is being represented.

6. CHARACTERISING VIEW UPDATES

In this section we show how the extended SIG formalism can be used to model the information equivalence of relational view updates, using Date’s restriction view example as a proof of concept [10]. Views and the base relvars they are derived from normally exist within the same “base” database schema (although this is not strictly required), which we shall refer to as \(S _n \). However, an end user may be granted access only to the views, and thus not be aware of the existence of the base relvar(s), or vice versa. This effectively partitions the schema into logical sub-schemas \(S _1, S _2, \ldots, S _n \). There are explicit and implicit constraints in \(S _n \) that should also apply to the sub-schemas [10]. Ignoring these constraints in a sub-schema \(S _k \) will affect its information capacity, and could negatively impact the information equivalence of view updates involving \(S _k \). In the next section we will show how such constraints can be propagated into sub-schemas by rewriting them in terms of the sub-schema alone, which enables us to explicitly incorporate into the sub-schema semantic information implicit in \(S _n \) that would otherwise be lost. We will then discuss the construction of SIGs for Date’s restriction view example (Section 6.2), and show how to transform and compare these (Section 6.3).

6.1 Constraint derivation and propagation

Date’s motivating example in Chapter 4 of [10] explores what is arguably the simplest case of view updating: disjoint restriction views. The example includes a base relvar \(S \) and two views \(LS \) and \(NLS \) derived\(^2\) from \(S \):

\[
LS = \sigma_{\text{City} = \text{‘London’}} S
\]

\[
NLS = \sigma_{\text{City} = \text{‘London’}} S
\]

Informally, \(LS \) and \(NLS \) contain details of London and non-London suppliers, respectively. They represent disjoint restrictions of \(S \) with the same heading, and have the following tuple types:

\[
T_{(LS)} = T_{_n} \times T_{_n} \times T_{_n} \times \{\text{City} = \text{‘London’}\}
\]

\[
T_{(NLS)} = T_{_n} \times T_{_n} \times T_{_n} \times (T _n \setminus \{\text{City} = \text{‘London’}\})
\]

The base schema for this example is \(S _n = \{S, LS, NLS\} \). This is subject to type constraints as specified by the various types noted previously, and the following additional constraints:

\[S _n \]

1. \(S _n \) Sno is a key for each of \(S, LS, \) and \(NLS, \) therefore the functional dependency \(\{S_n\} \rightarrow \{\text{Sname}, \text{Status}, \text{City}\} \) also holds in each of (a) \(S \); (b) \(LS \); and (c) \(NLS \).

\[C_2 \]

\[\pi_{\{\text{Sno}\}} LS \subseteq \pi_{\{\text{Sno}\}} S \] [foreign key from \(LS \) to \(S \)]

\[C_3 \]

\[\pi_{\{\text{Sno}\}} NLS \subseteq \pi_{\{\text{Sno}\}} S \] [foreign key from \(NLS \) to \(S \)]

\[C_4 \]

\[S = LS \cup NLS \] [from (3) and (4) above]

\[C_5 \]

\[\sigma_{\text{City} = \text{‘London’}} LS = \emptyset \] [from (3) above]

\[C_6 \]

\[\sigma_{\text{City} = \text{‘London’}} NLS = \emptyset \] [from (4) above]

\[C_7 \]

\[LS \cap NLS = \emptyset \] [from \(C_5 \) and \(C_6 \)]

\[C_8 \]

(a) \(T__n = T_{LS} \cup T_{NLS}; \) (b) \(T_{(LS)} = T_{(LS)} \cup T_{(NLS)} \) [from \(C_4 \)]

\[C_9 \]

(a) \(T_{LS} \subseteq T__n; \) (b) \(T_{(LS)} \subseteq T_{(S)} \) [from (3) above]

\[C_{10} \]

(a) \(T_{NLS} \subseteq T__n; \) (b) \(T_{(NLS)} \subseteq T_{(S)} \) [from (4) above]

\[C_{11} \]

\[\{\text{City} = \text{‘London’}\} \subseteq T_{_n} \]

\[C_{12} \]

\[(T_{_n} \setminus \{\text{City} = \text{‘London’}\}) \subseteq T_{_n} \]

\[C_{13} \]

\[T_{_n} \times T_{_n} \times (T_{_n} \setminus \{\text{City} = \text{‘London’}\}) \subseteq T_{_n} \times T_{_n} \times T_{_n} \]

\[C_{14} \]

\[T_{_n} \times T_{_n} \times T_{_n} \times (T_{_n} \setminus \{\text{City} = \text{‘London’}\}) \subseteq T_{_n} \times T_{_n} \times T_{_n} \]

Constraints \(C_4 - C_7 \) ensure that \(LS \) and \(NLS \) are disjoint restrictions of \(S \), while \(C_8 - C_{14} \) are additional type constraints that enforce specialisation associations implied by the subtypes and supertypes occurring in \(S _n \).

In most typical database schemas, only constraints \(C_1, C_2, \) and \(C_3 \) will be explicitly declared. Some database schemas may also explicitly declare constraints \(C_4 \) and \(C_7 \), but it is more likely that these and all the remaining constraints will be implicit in the definition of \(S _n \). It is important for the purposes of this analysis to clearly identify all such implicit constraints, so that nothing is missed when constructing corresponding SIGs.

Let us partition \(S _n \) into three sub-schemas: \(S_1 = \{S\}, S_2 = \{LS, NLS\}, \) and \(S_3 = \{LS\} \). We wish to compare the relative information capacities of \((S_1, S_2) \) and \((S_1, S_3) \), in order to characterise the view update compatibility of the schemas in each pair.

Note that in the following analysis, we omit the foreign key constraints \(C_2 \) and \(C_3 \), as we have yet to determine the best way to represent inclusion dependencies of this nature in a SIG\(^3\), or indeed whether such dependencies are significant.

6.1.1 Schema \(S_1 \)

A user granted access only to \(S_1 \) can see only relvar \(S \). Constraint \(C_1(a) \) can be propagated directly from \(S_0 \) into \(S_1 \) as it is already expressed in terms of \(S \) only. Constraints \(C_{11} - C_{14} \) do not include any named relvars in \(S_0 \), and thus can also be propagated directly from \(S_0 \) into \(S_1 \). Constraints \(C_1(b), C_1(c), \) and \(C_4 - C_{10} \) cannot be propagated directly from \(S_0 \) into \(S_1 \), but can all be rewritten in terms of \(S \) only, by substituting the definitions of \(LS \) (equation 3) and \(NLS \) (equation 4). To simplify expressions in the following discussion, we shall use \(L \) to denote \(\sigma_{\text{City} = \text{‘London’}} S \) (3) and \(N \) to denote \(\sigma_{\text{City} = \text{‘London’}} S \) (4). (This also clearly distinguishes the substitutions from the \(LS \) and \(NLS \) relvars in \(S_0, S_2, \) and \(S_3 \).) A constraint that has been rewritten so that it can be propagated from \(S_0 \) into \(S_1 \) is denoted by, e.g., \(C_4^{S_1} \). Consequently we can derive the following set of rewritten constraints for \(S_1 \):

\[C_1^{S_1} \]

\(S _n \) Sno is a key for each of \(L \) and \(N \), therefore the functional dependency \(\{S_n\} \rightarrow \{\text{Sname}, \text{Status}, \text{City}\} \) also holds in each of (a) \(L \); (b) \(N \); and (c) \(N \). [The fact that we are dealing with two disjoint subsets of \(\text{City} \) does not change this.]
Constraint	Implied edge(s)
C_{51}^S (b) | $T_{S} \leftarrow \leftarrow T_{S_{name}} \times T_{Status} \times \{ \text{City: ‘London’} \}$
(c) | $T_{S} \leftarrow \leftarrow T_{S_{name}} \times T_{Status} \times (T_{City} \setminus \{ \text{City: ‘London’} \})$
C_{5}^S | $T_{L} \leftarrow \leftarrow T_{[L]} \times T_{S} \leftarrow \leftarrow T_{S_{name}} \times T_{Status}$
C_{10}^S | $T_{N} \leftarrow \leftarrow T_{[N]} \times T_{S} \leftarrow \leftarrow T_{S_{name}} \times T_{Status}$
C_{11} | $T_{City} \leftarrow \leftarrow (T_{City} \setminus \{ \text{City: ‘London’} \})$
C_{12} | $T_{City} \leftarrow \leftarrow (T_{City} \setminus \{ \text{City: ‘London’} \})$
C_{13} | $T_{S_{name}} \times T_{Status} \times T_{City} \leftarrow \leftarrow T_{S_{name}} \times T_{Status} \times (T_{City} \setminus \{ \text{City: ‘London’} \})$
$T_{[L]} \leftarrow \leftarrow T_{S_{name}} \times T_{Status} \times \{ \text{City: ‘London’} \}$
$T_{S_{name}} \times T_{Status} \times \{ \text{City: ‘London’} \} \leftarrow \leftarrow T_{S_{name}}$
$T_{S_{name}} \times T_{Status} \times \{ \text{City: ‘London’} \} \leftarrow \leftarrow T_{Status}$
$T_{S_{name}} \times T_{Status} \times \{ \text{City: ‘London’} \} \leftarrow \leftarrow \{ \text{City: ‘London’} \}$
C_{14} | $T_{S_{name}} \times T_{Status} \times T_{City} \leftarrow \leftarrow T_{S_{name}} \times T_{Status} \times (T_{City} \setminus \{ \text{City: ‘London’} \})$
$T_{[N]} \leftarrow \leftarrow T_{S_{name}} \times T_{Status} \times (T_{City} \setminus \{ \text{City: ‘London’} \})$
$T_{S_{name}} \times T_{Status} \times (T_{City} \setminus \{ \text{City: ‘London’} \}) \leftarrow \leftarrow T_{S_{name}}$
$T_{S_{name}} \times T_{Status} \times (T_{City} \setminus \{ \text{City: ‘London’} \}) \leftarrow \leftarrow T_{Status}$
$T_{S_{name}} \times T_{Status} \times (T_{City} \setminus \{ \text{City: ‘London’} \}) \leftarrow \leftarrow T_{City} \setminus \{ \text{City: ‘London’} \}$

Table 2: Constraints and the SIG edges they imply for schema S_1.

C_{4}^S | $S = L \cup N$ [or even just $S = S$]
C_{5}^S | $σ_{City\neq ‘London’} L = \emptyset$
C_{6}^S | $σ_{City\neq ‘London’} N = \emptyset$
C_{7}^S | $L \cap N = \emptyset$
$C_{8}^S (a)$ | $T_S = T_L \cup T_N$; $T_{[S]} = T_{[L]} \cup T_{[N]}$
(b) | [or even just $T_S = T_S$ and $T_{[S]} = T_{[S]}$]
$C_{9}^S (a)$ | $T_{L} \subseteq T_{S};$ $T_{[L]} \subseteq T_{[S]}$ [from (3) above]
(b) | $T_{N} \subseteq T_{S};$ $T_{[N]} \subseteq T_{[S]}$ [from (4) above]

6.1.2 Schema S_2

A user granted access only to S_2 can see only relvars LS and NLS. Constraints $C_1(b)$, $C_3(c)$, and $C_5–C_7$ can be propagated directly from S_0 into S_2 as they are defined only in terms of LS and NLS. $C_{11}–C_{14}$ can be propagated directly into S_2 as they are not expressed in terms of any named relvars in S_0. $C_{1}(a), C_{4}, C_{8}, C_{9},$ and C_{10} can be rewritten in terms of LS and NLS only, giving us:

C_{4}^S | Sno is a key for $LS\cup NLS$, therefore the functional dependency $\{Sno\} \rightarrow \{Sname, Status, City\}$ also holds in (a) $LS \cup NLS$.

C_{4}^S | $LS \cup NLS = LS \cup NLS$
(a) | $T_{LS} \subseteq T_{NLS}$; $T_{NLS} \subseteq T_{LS}$;
(b) | $T_{[LS]} \subseteq T_{[NLS]} = T_{[LS]} \cup T_{[NLS]}$
C_{8}^S | $T_{LS} \subseteq T_{LS} \cup T_{NLS}$; $T_{NLS} \subseteq T_{LS} \cup T_{NLS}$
C_{9}^S | $T_{LS} \subseteq T_{LS} \cup T_{NLS}$; $T_{NLS} \subseteq T_{LS} \cup T_{NLS}$
C_{10}^S | $T_{NLS} \subseteq T_{LS} \cup T_{NLS}$; $T_{NLS} \subseteq T_{LS} \cup T_{NLS}$

6.1.3 Schema S_3

A user granted access only to S_3 can see only relvar LS. Constraints $C_1(b)$ and C_3 can be propagated directly into S_3, as they are defined in terms of LS only. $C_{11}–C_{14}$ can also be propagated directly into S_3 as previously discussed. The remaining constraints cannot be rewritten in terms of LS only, and so cannot be propagated into S_3. As we were able to propagate all constraints into S_1, this indicates a qualitative difference between S_1 and S_3. It therefore seems likely that the relative information capacities of S_1 and S_3 will also differ.

6.2 Constructing the SIGs

6.2.1 Schema S_1

The SIG for S_1 will not just be that for relvar S as shown in Figure 2, as that schema did not incorporate all the constraints implicit in S_0. The process for constructing the SIG will be similar to that for the earlier example, however. The constraints appearing in S_1 are $C_{1}(a), C_{3}^S(b), C_{3}^S(c), C_{4}^S–C_{10}^S$, and $C_{11}–C_{14}^S$. The SIG will include all of the edges that appear in Figure 2. The constraints within the schema also imply the existence of several subtype nodes (e.g., the two subtypes of T_{City} implied by C_{11} and C_{12}), along with corresponding selection and projection edges, which are listed in Table 2 above. C_{4}^S, $C_{8}^S(a)$, and $C_{8}^S(b)$ are effectively tautologies that add no new information, and can thus be safely ignored. The completed SIG for S_1 is shown in Figure 3.

6.2.2 Schema S_2

The constraints appearing in S_2 are $C_{4}^S(a), C_{1}(b), C_{1}(c), C_{4}^S, C_{8}^S(b, c), C_{8}^S(b), C_{8}^S(c), C_{4}^S–C_{10}^S$, and $C_{11}–C_{14}^S$. This is essentially the same set of constraints as S_1, but with different rewritings. This means that the SIG for S_2 can be built in the same manner as for S_1, with some nodes named differently. In particular, C_{8}^S implies that there will be nodes $T_{LS} + T_{NLS}$ and $T_{[LS]} + T_{[NLS]}$ instead of T_S and $T_{[S]}$, respectively. There will also be T_{LS} instead of T_L, etc. The complete SIG for S_2 is shown in Figure 4.
Figure 3: SIG for schema $S_1 = \{S\}$.

Figure 4: SIG for schema $S_2 = \{LS, NLS\}$.

Figure 5: SIG for schema $S_3 = \{LS\}$.
6.2.3 Schema S_3

The constraints appearing in S_3 are $C_1(b), C_5,$ and $C_{11} \rightarrow C_{14}$. The SIG will only include edges and nodes that relate either directly to LS or are independent of any relvar, such as the subtype node $T_{\text{Sname}} \times T_{\text{Status}} \times T_{\text{City}} \times \{\text{City:} \ 'London'\}$. The complete SIG for S_3 is shown in Figure 5 on the previous page.

6.3 Transforming the SIGs

Now that we have constructed SIGs for all three schemas, we can compare the relative information capacities of the schema pairs (S_1, S_2) and (S_1, S_3). We do this by attempting to transform the SIG for one of the schemas until it is isomorphic with the other.

Looking at the SIGs for S_1 and S_2, we can see almost immediately that both SIGs have the same node and edge structure; indeed the only difference is in the names of some of the nodes. However, we already know from the discussion in Sections 6.1.1 and 6.1.2 that these differently named nodes are just rewrites that represent the same domains. We therefore have an immediate isomorphism between the two SIGs and can conclude that the information capacities of S_1 and S_2 are equivalent, i.e., $S_1 \equiv S_2$.

The comparison between S_1 and S_3 is more interesting. There are some shared structures, but the two SIGs are clearly different. Since the SIG transformations discussed in Section 4.2 only ever preserve or enhance information capacity, intuitively we should attempt to transform the “smaller” SIG for S_1 into the “larger” SIG for S_3. SIG transformations can generally be carried out in two broad phases (using the $S_1 \rightarrow S_3$ transformation as an example):

Duplicate nodes

In S_3 (producing S'_3) that correspond to supertypes in S_1, in order to create nodes corresponding to the extra nodes that S_1 has over S_3. The goal is to produce a node structure similar to S_1. The duplicated nodes are connected to their original nodes by trivial selection edges. These transformations (if applicable) do not alter the information capacity of S'_3 (i.e., $S_3 \equiv S'_3$).

Copy and move edges

Around the SIG to produce an edge structure similar to S_1. The annotations of each moved or copied edge are determined by the path it is composed with, as discussed in Section 4.2. These transformations (if applicable) increase the information capacity of S'_3 (i.e., $S_1 \leq S'_3$).

These two phases generally occur in order, but may be interspersed throughout with the following:

Delete duplicate nodes

In S'_3 that are no longer needed, especially those that do not exist in S_1. These transformations (if applicable) do not alter the information capacity of S'_3 (≡).

Remove totality annotations from trivial selection edges in S'_3 to change them into non-trivial selection edges. This decouples duplicate nodes into subtypes and supertypes, ensuring that they represent different domains. These transformations (if applicable) increase the information capacity of S'_3 (≥).

For example, we might duplicate some nodes, remove some totality annotations, move or copy some edges, delete some no longer needed nodes, move or copy some more edges, then remove some more totality annotations.

Applying this process to S_3, we first duplicate node T_{LS} to T_3 and node $T_{\{\text{LS}\}}$ to $T_{\{\text{LS}\}_1}$. To obtain a node structure similar to that of S_1, we also need to further duplicate T_3 to $T_{\{\text{LS}\}}$ and $T_{\{\text{LS}\}_1}$ to $T_{\{\text{LS}\}_1}$. The result of these duplications is shown in Figure 6. The transformed SIG now has the same node structure as that for S_1.

The next phase is to copy and move edges. To produce the edge $T_3 \leftrightarrow T_{\{\text{LS}\}_1}$, we can first copy $T_{\{\text{LS}\}} \leftrightarrow T_{\{\text{LS}\}_1}$ across the path $T_{\{\text{LS}\}} \leftrightarrow T_{\{\text{LS}\}_1}$ (giving $T_{\{\text{LS}\}} \leftrightarrow T_{\{\text{LS}\}_1}$). Then move it across $T_3 \leftrightarrow T_{\{\text{LS}\}_1}$. We can carry out a similar series of transformations to copy and move $T_3 \leftrightarrow T_{\{\text{LS}\}_1}$ to $T_{\{\text{LS}\}_2}$ (see Figure 7).

We next copy and move the unique projection edge $T_{\{\text{LS}\}} \leftrightarrow T_{\text{Sname}}$ to produce the edges $T_{\{\text{LS}\}} \leftrightarrow T_{\text{Sname}}$ and $T_{\{\text{LS}\}_1} \leftrightarrow T_{\text{Sname}}$. Similarly, we copy and move $T_{\{\text{LS}\}} \leftrightarrow T_{\text{Sname}} \times T_{\text{City}}$ (giving $T_{\{\text{LS}\}} \leftrightarrow T_{\text{Sname}} \times T_{\text{City}}$) to produce $T_{\{\text{LS}\}} \leftrightarrow T_{\text{Sname}} \times T_{\text{City}}$ and $T_{\{\text{LS}\}_1} \leftrightarrow T_{\text{Sname}} \times T_{\text{City}}$. Note that the first edge in the latter pair of transformations loses its totality annotation, and the second edge its surjectivity annotation, as a result of composition with the pre-existing non-bijective selection edges between the constructed tuple types running vertically down the centre of the SIG.

Finally, we carry out similar copy and move transformations to copy the key edge $T_{\text{Sname}} \rightarrow T_{\text{Sname}} \times T_{\text{City}} \rightarrow T_{\text{Sname}} \rightarrow T_{\text{Sname}} \times T_{\text{City}} \rightarrow T_{\text{Sname}} \rightarrow T_{\text{Sname}} \times T_{\text{City}}$. Both new edges lose their totality annotations for the same reason as the projection edges above. The final result of all these edge transformations is shown in Figure 7.

If we compare Figure 5 with Figure 7, we can see that the transformed SIG for S'_3 now has the same topology as the SIG for S_1. We still need to remove the totality annotations from the newly created trivial selection edges between the relation and tuple types on the left, but even when this is done, we do not achieve the desired isomorphism, as the edges $T_{\{\text{LS}\}} \rightarrow T_{\text{Sname}} \times T_{\text{City}} \rightarrow T_{\{\text{LS}\}_1} \rightarrow T_{\text{Sname}} \times T_{\text{City}} \rightarrow T_{\{\text{LS}\}_1}$ all have different annotations from the corresponding edges in the SIG for S_1. This clearly shows that the information capacities of S_1 and S_3 are incomparable, and that view updates based on this pair of schemas will be problematic.

If we were to create a fourth sub-schema $S_4 = \{\text{NLS}\}$ and compare this with S_1, the result would be similar to that for S_3.

7. CONCLUSION & FUTURE WORK

In this paper we have shown how to use the concept of relative information capacity and an extension of the schema intension graph (SIG) formalism to more formally model Date’s notion of information equivalence with respect to relational view updates. Our analysis of Date’s restriction view example [10] using these techniques is consistent with his findings, so the approach shows promise. The information capacities of $S_1 = \{\text{S}\}$ and $S_2 = \{\text{LS, NLS}\}$ are equivalent, so it should be possible to effectively propagate view updates between S_1 and S_2, regardless of the configuration of views and base relvars. Conversely, the information capacity of $S_3 = \{\text{LS}\}$ is not comparable with that of S_1, implying that there are updates that cannot be propagated between S_1 and S_3.

Our analysis reinforces the importance of explicitly identifying all constraints that can be propagated from the base schema S_1 to its sub-schemas. Omission of constraints could produce a different SIG structure that might lead to an erroneous conclusion about a schema’s information capacity relative to another.

There are several avenues for future work. First, the proof of concept discussed in this paper only deals with disjoint restriction views, which are arguably the simplest case of view updating. Further work needs to be done to characterise other types of view configuration, such as projection views, union views, and in particular, join views. This will enable us to test and refine the application of SIGs in this context.

The discussion in this paper focused only on the relational context, but relative information capacity and the SIG formalism are data
model agnostic. It would therefore be interesting to investigate the application of these techniques to view updating contexts beyond the Relational Model (e.g., deductive databases).

It is unclear at present whether the omission of inclusion dependencies such as foreign keys is significant. If they are significant, the question then is how best to represent them in the SIG formalism. Adding such constraints will clearly change the structure of a SIG, but we suspect that this will not change the relationship between the relative information capacities of different schemas.

It is interesting to note that with the equivalent schemas S_1' and S_2', we were able to propagate all of the constraints from the base schema S_0 (Section 6.1.2), whereas with the incomparable schemas S_1 and S_2, only a subset of the constraints could be propagated (Section 6.1.3). A reasonable conjecture is that the degree to which constraints can be propagated from S_0 to its sub-schemas could be a direct indicator of information equivalence among the sub-schemas, but this needs to be further investigated.

Finally, we have recently discovered further work that explores and expands upon the concepts of information capacity and meaning within data and database schemas (e.g., [22, 34, 35]). Some of these ideas may be applicable to our work, and need to be investigated in more detail.

8. REFERENCES

