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aSchool of Physical Education, Sport and Exercise Sciences, University of Otago, 56 Union St

West, Dunedin, New Zealand 9016
bFaculty of Sports and Health Science, Technische Universität München, Georg-Brauchle-Ring

60/62, 80336 Munich, Germany
cDepartment of Biomechanics, Kinesiology and Applied Computer Science, University of Vienna,

Auf der Schmelz 6A, A-1150 Vienna, Austria

Abstract

In this paper we review applications of continuous relative phase and commonly

reported methods for calculating the phase angle. Signals with known proper-

ties as well as empirical data were used to compare methods for calculating the

phase angle. Our results suggest that the most valid, robust and intuitive results

are obtained from the following steps: 1) centering the amplitude of the original

signals around zero, 2) creating analytic signals from the original signals using the

Hilbert transform, 3) calculating the phase angle using the analytic signal and 4)

calculating the continuous relative phase. The resulting continuous relative phase

values are free of frequency artifacts, a problem associated with most normaliza-

tion techniques, and the interpretation remains intuitive. We propose these meth-

ods for future research using continuous relative phase in studies and analyses of

human movement coordination.

Keywords: Phase angle, Continuous relative phase, Normalization, Gait data,

Coordination, Movement variability

Email address: peter.lamb@otago.ac.nz (Peter F. Lamb)

Preprint submitted to Clinical Biomechanics March 13, 2014



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

1. Introduction1

Within sports and health science, the biomechanical study of human move-2

ment has many purposes; these include, but are not limited to, rehabilitation, in-3

jury prevention and sports performance analysis. A common challenge for all of4

these domains is simplifying the high-dimensional information available from 2D5

video analysis, 3D motion capture systems or other modes of kinematic data col-6

lection. Dynamical systems theory approaches to movement analysis have gained7

support in recent years because it provides a theoretical framework for simplifying8

and working with complex systems (see, e.g. Kelso, 1995). Dynamical systems9

can be composed of many parts interacting and their behavior may often be de-10

scribed by a single low-dimensional term or measure. Most human movements11

involve a great number of moving parts, all coordinated together, explaining why12

so many researchers and clinicians have put such effort into modeling the human13

movement system as a dynamical system (e.g. Davids et al., 2003; Glazier &14

Davids, 2009; Stergiou, 2004). For example, in locomotion the lower extremity15

segments can be treated as a coupled system and the interaction of the segments16

acts to effectively displace the body’s position during locomotion. By treating the17

musculoskeletal system as a system evolving over time, rather than focusing on18

particular events, a much richer description of the interaction of the individual and19

their environment can be achieved (Barela et al., 2000).20

Rosen (1970) is often cited for suggesting that the behavior of a dynamical sys-21

tem can be described by plotting a variable versus its first derivative – these plots22

are commonly called phase portraits and provide qualitative utility in analyzing23

human movement (Bartlett & Bussey, 2012; Beek & Beek, 1988). According to24
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Clark et al. (1993), the phase portraits of the shank and thigh are similar to a limit25

cycle system – their coordination is cyclic and dissipative and therefore energy26

must be supplied to continue the behavior. Accordingly, their relation in phase27

space, or relative phase, can describe the dynamic coordination of these variables.28

Continuous relative phase is a measure, which describes the phase space relation29

between two segments (modeled as pendula) as it evolves throughout the move-30

ment, which makes continuous relative phase an attractive and popular collective31

variable for inter- and intra-limb coordination.32

A central goal in dynamical systems theory is to identify the attractors, or sta-33

ble states, of the system. Identifying stable states goes beyond simply identifying34

the common coordinative states for a particular movement; analysis of the vari-35

ability of continuous relative phase allows one to investigate the stability of the36

system, or its resiliency to perturbation. Kelso (1995) noted that when coordina-37

tion is perturbed beyond stability the relative phase pattern will fluctuate, indicated38

by an increase in variability, before settling on a new stable pattern. Analyses of39

the variability of continuous relative phase are insightful tools for understanding40

the dynamics of higher order coordination. Therefore, the importance of a valid,41

robust method for calculating phase angles, to be sure that the signal of interest42

is measured without contamination from frequency artifacts, should be clear and43

will be addressed in this paper.44

Both the wide ranging applications of continuous relative phase as well as45

the varying methods used in its calculation warrant an in-depth overview and dis-46

cussion of its application, calculation and interpretation. This paper provides an47

overview of the use of continuous relative phase in sport and health science before48

comparing the approaches that have been taken in the literature for its calculation.49
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We demonstrate the prominent procedures in the literature using synthetic and em-50

pirical data and outline what we suggest to be the new methodological standard51

for continuous relative phase in sports and health science.52

2. Calculating Continuous Relative Phase53

Continuous relative phase is a new signal generated representing the difference54

in phase angles of the two original signals. For the calculation of phase angles55

two different methods have commonly been used in studies of human movement.56

Firstly, continuous relative phase between two signals can be calculated based on57

phase portraits (Burgess-Limerick et al., 1993; Hamill et al., 1999) and, secondly,58

relative phase between two signals can be calculated using analytic signals gener-59

ated by the Hilbert transform (Lamoth et al., 2009; Palut & Zanone, 2005). In the60

following two subsections we describe these methods in detail.61

2.1. Phase Portraits62

Studies of human movement coordination are often grounded in dynamical63

systems theory; therefore, system components can be assigned to a phase space in64

which each state of the dynamical system is described by certain properties. Per-65

taining to continuous relative phase analyses, the phase space usually consists of66

the measured (time dependent) signal x(t) and its velocity ẋ(t), the first derivative67

of the signal. The measured signal used in phase portraits is most often a segment68

or joint angle, although others have used higher derivatives to construct the phase69

space (Wagenaar & van Emmerik, 2000). To calculate the phase angle, frequency70

effects of the phase portrait on the phase angle are reduced by normalization meth-71

ods.72
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Before introducing normalization methods we should first distinguish between73

analyzing sinusoidal signals and non-sinusoidal signals. Sinusoidal (harmonic)74

signals are signals which can mathematically be described by a sine wave, for75

example, the signal76

x(t) = Asin(ωt+ψ)+d, (1)

where ω denotes the frequency, ψ denotes a constant shift along the x-axis, A is a77

constant describing the magnitude of the amplitude, and d is a constant which78

describes a shift along the y-axis. Non-sinusoidal (non-harmonic) signals are79

those which cannot be mathematically described by only a sine wave (such as80

in equation 1). For each of these types of signals there are some commonly used81

normalization techniques.82

In order to analyze a sinusoidal signal, Fuchs et al. (1996) showed that the83

phase portrait should be normalized so that the resulting trajectory in phase space84

is circular and centered around the origin of the phase space. To achieve the cir-85

cularity they showed that the ẋ(t) axis of the signals should be normalized by86

multiplying the ẋ(t) axis by the factor 1
ω : the inverse of the signal’s frequency.87

Furthermore, in case a sinusoidal oscillator is described by equation 1 with d 6= 088

the oscillator must be shifted by −d, so that the phase portrait is centered around89

the origin of the xẋ phase space. This ensures that phase portraits of different si-90

nusoidal signals x1(t) and x2(t) are comparable and hence avoid artifacts caused91

by frequencies and/or different shifts d1 and d2. To calculate phase angles, the92

displacement of sinusoidal data does not need to be normalized because the phase93

angle φ of a sinusoidal oscillator (for simplicity we assume d = 0) does not influ-94

5



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

ence the calculation of φ95

φ = arctan

(
ẋ(t)

x(t)

)

96

= arctan

(
ω A cos(ω t+ψ)

A sin(ω t+ψ)

)

97

= arctan

(
ω cos(ω t+ψ)

sin(ω t+ψ)

)

(2)98

99

To analyze non-sinusoidal signals, different normalization methods have been100

used. The goal of normalizing the data has been to transform the phase portraits in101

such a way that both displacement of the signal and its first derivative are limited102

to the range between -1 and 1. In this paper we used the two most frequently used103

methods (similar to those reported by Kurz & Stergiou (2002)). First, normaliza-104

tion is accomplished for any input signal y(t) by the function105

f (y(ti)) =
y(ti)

max(|y(t)|)
. (3)

This technique limits the input signal of the function to either -1 or 1 depending on106

the maximum absolute value of y(t). This method is often used for velocity nor-107

malization because the zero value has qualitative meaning and, arguably, should108

be preserved. In other words, after normalization the zero value represents the109

zero value in the original signal. A second normalization technique is based on110

the function111

g(y(ti)) = 2

(
y(ti)−min(y(t))

max(y(t))−min(y(t))

)

−1. (4)

This function transforms the original values y(t) in such a way that the minimum112

value of g(y(t)) equals -1 and the maximum value of g(y(t)) equals 1. Here the113
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zero value is midway between the maximum and minimum and can, therefore,114

be arbitrary. Since angle definitions can be arbitrary, the method in equation 4115

has often been used for normalizing joint or segment angles. We summarize the116

normalization methods found in the literature as follows:117

• Method A uses equation 4 to normalize the joint angular displacement and118

equation 3 to normalize the angular velocities (Barela et al., 2000; Burgess-119

Limerick et al., 1993; Dierks & Davis, 2007; Hamill et al., 1999; Heider-120

scheit et al., 1999; Hein et al., 2012; Li et al., 1999; Miller et al., 2008, 2010;121

Stergiou et al., 2001a,b; Yen et al., 2009).122

• Method B uses equation 4 for both angular displacement and angular ve-123

locity normalization (Figueiredo et al., 2012; Haddad et al., 2010; Kwakkel124

& Wagenaar, 2002; Lamoth et al., 2002; Meyns et al., 2013; Selles et al.,125

2001; van Emmerik & Wagenaar, 1996).126

After normalization, the phase angle of the signal at time ti is calculated based127

on the normalized phase portrait (Barela et al., 2000; Li et al., 1999; Peters et al.,128

2003)129

φ(ti) = arctan

(
ẋnorm(ti)

xnorm(ti)

)

. (5)

Finally, the continuous relative phase, crp(ti), at time ti between two signals x1(t)130

and x2(t) is calculated as131

crp(ti) = φ1(ti)−φ2(ti)132

= arctan

(
ẋ1,norm(ti)x2,norm(ti)− ẋ2,norm(ti)x1,norm(ti)

x1,norm(ti)x2,norm(ti)+ ẋ1,norm(ti)ẋ2,norm(ti)

)

. (6)133

134
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2.2. The Hilbert transform135

Phase angles can also be calculated based on a measured signal x(t) and its136

Hilbert transform H(t) = H(x(t)). The Hilbert transform allows the transforma-137

tion of any real signal into a complex, analytic signal ζ (t) Gabor (1946) defined138

as139

ζ (t) = x(t)+ iH(t) (7)

where the Hilbert transform H(t) of x(t) serves as the imaginary part of the an-140

alytic signal1. Based on the complex signal the phase angle at time ti can be141

calculated by142

φ(ti) = arctan

(
H(ti)

x(ti)

)

. (8)

The continuous relative phase crp(t) between two signals x1(t) and x2(t) can143

be computed, first by transforming these signals into analytic signals using the144

Hilbert transform, then by subtracting the phase angles from each other. For ex-145

ample, the continuous relative phase for the two signals at time ti is146

crp(ti) = φ1(ti)−φ2(ti)147

= arctan

(
H1(ti)x2(ti)−H2(ti)x1(ti)

x1(ti)x2(ti)+H1(ti)H2(ti)

)

, (9)148

149

where H1(t) and H2(t) denote the Hilbert transform of each signal, respectively.150

In the next section we demonstrate with simulated data as well as kinematic151

1In general, the Hilbert transform is considered a convolution of a function (signal) in the

time domain. The Hilbert transform needs to be defined using the Cauchy principle value so that

the integral converges and thus exists. As an integral, the Hilbert transform can be solved in

the time domain. There are many methods for calculating the Hilbert transform; many software

applications, such as MATLAB, calculate the Hilbert transform in the frequency domain using the

(Fast) Fourier transform and its inverse.

8
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data, the effect of the normalization methods A and B and the Hilbert transform152

on continuous relative phase values. To aid interpretation, whenever possible, we153

use modeled data which has been reported previously in the literature.154

3. Modeled Data155

3.1. Sinusoidal oscillators156

In this section we begin with simple sinusoidal examples to demonstrate the157

effect of various normalization techniques. Therefore, we calculated the continu-158

ous relative phase for all testing cases using phase angles which were calculated159

based on: a) not normalizing the original data at all, b) normalizing velocity using160

the technique shown by Fuchs et al. (1996), and c) creating analytic signals using161

the Hilbert transform. These procedures are approximate reproductions of those162

shown in Peters et al. (2003), with the addition of the Hilbert transform method.163

3.1.1. Example 1: two sinusoidal signals with the same frequency, shifted hori-164

zontally165

Figure 1 illustrates a sinusoidal oscillator x(t) = sin(2t), t ∈ [0,2π ], and the166

same sinusoidal oscillator shifted by 18◦, the corresponding xẋ phase portraits,167

and a plot visualizing the continuous relative phase between these two oscillators168

calculated using different techniques. In this example the velocity of the two os-169

cillators was normalized with respect to the frequency, ω = 2, of the sinusoidal170

oscillator through the factor 1
2 . Note that in the right panel of Figure 1 the Hilbert171

transform is not shown because the transformed values lie in the complex plane172

rather than the phase plane in which the original and normalized values are lo-173

cated.174

9
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Figure 1: Two sinusoidal signals, one phase shifted by 18◦ (top left), the phase portraits for both

signals (right) and the corresponding continuous relative phase calculated with: no normalization,

with frequency normalization and the Hilbert transform (bottom left).

The continuous relative phase calculated based on non-normalized data (Fig. 1,175

bottom left, dashed line) shows oscillating behavior about a constant continuous176

relative phase, even though the two oscillators behave equally only phase shifted177

by 18◦. One would expect the continuous relative phase of these two oscillators178

to be constant and equal to 18◦; the oscillating behavior of the continuous rela-179

tive phase of the non-normalized data represent frequency artifacts (Fuchs et al.,180

1996; Peters et al., 2003). This is made clear by the continuous relative phase181
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values which were calculated based on frequency normalized velocities. The re-182

sulting continuous relative phase is constant and shows exactly the 18◦ difference183

between the two oscillators. Finally, we calculated continuous relative phase us-184

ing the Hilbert transform based on the raw sinusoidal data. The resulting plot185

(Fig. 1, bottom left) also shows the expected constant difference of 18◦ between186

the two oscillators.187

3.1.2. Example 2: two sinusoidal signals with different frequencies188
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Figure 2: Two sinusoidal signals with different frequencies (top left), the phase portraits for both

signals (right) and the corresponding continuous relative phase calculated with: no normalization,

with frequency normalization and Hilbert transformation (bottom left).
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Here we compare continuous relative phase calculations between two sinu-189

soidal oscillators with different frequencies. The two oscillators are represented190

by x1(t) = sin(2t) and x2(t) = sin(3t), respectively. Figure 2 shows the two os-191

cillators each within the interval t ∈ [0,2π ], their respective phase portraits, and192

a plot containing continuous relative phase values. The velocities of the two os-193

cillators were normalized each by the inverse of the respective frequency 1
ω (as in194

the previous example (Fuchs et al., 1996)).195

As already shown by Peters et al. (2003), continuous relative phase calculated196

based on non-normalized data shows a fluctuating pattern (Fig. 2, bottom left,197

dashed line); this can again be explained by frequency artifacts (Fuchs et al., 1996;198

Peters et al., 2003). After normalizing the velocities of the two oscillators, each199

with respect to its frequency, the continuous relative phase shows the expected200

pattern. The oscillators move linearly from in-phase to anti-phase and eventually201

back into in-phase during the respective time period [0,2π ]. Finally, we calculated202

continuous relative phase values using Hilbert transform based on the raw data.203

The resulting continuous relative phase values show the same linear pattern as the204

continuous relative phase values calculated based on normalized phase portraits.205

3.2. Non-sinusoidal signals206

In this section we compare the different methods for calculating continuous207

relative phase with respect to non-sinusoidal signals. The term non-sinusoidal can208

describe different kinds of data; thus we first distinguish between non-sinusoidal209

signals which are based on a mathematical description and empirical data. A210

mathematical description of a signal usually relies on a modeling process. The211

models are either the combination of basic functions like the signal in equation 10212

or can be systems of differential equations (c.f. HKB model; Haken et al., 1985;213

12
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Kelso, 1984). Empirical data representing human movement is not mathemati-214

cally described by functions, they are most often time series data, for example,215

kinematic joint angles (see section 4.1).216

We compared continuous relative phase calculations using different techniques217

for both functional and experimental non-sinusoidal data. Continuous relative218

phase values were calculated and compared to each other based on phase angles219

calculated based on a) not normalizing the original data at all, b) normalizing data220

using the normalization methods A and B, and c) creating analytic signals using221

the Hilbert transform.222

3.2.1. Example 4: two non-sinusoidal signals223

This example is based on non-sinusoidal data which are represented by the224

function225

x(t) =
cos(t−0.25π)

√

1+0.414182−2×0.41418 sin(t−0.25π)
(10)

which is similar to the non-sinusoidal signal in Peters et al. (2003). In this section,226

continuous relative phase values between a signal modeled by equation 10 for227

t ∈ [0,2π ] and the same signal shifted by 126◦ are compared. Figure 3 shows the228

two signals, their respective phase portraits, and continuous relative phase values229

calculated using the different techniques mentioned above.230

Since the signals in Figure 3 are shifted but have the same frequency, nei-231

ther signal will ever catch up to the other so that they are in-phase. In section232

3.1.1 the two shifted sine waves had a constant continuous relative phase once233

the frequency artifacts were removed. Because the signals in Figure 3 are non-234

sinusoidal they are constantly increasing and decreasing their phase shift of 126◦;235

therefore, the expected behavior of their continuous relative phase should fluctu-236

13
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Figure 3: Two non-sinusoidal signals, one phase shifted by 126◦ (top left), the phase portraits

for using different normalization methods (right) and the corresponding continuous relative phase

diagrams (bottom left).

ate around 126◦. The Hilbert transformed data show this behavior exactly, the237

non-normalized continuous relative phase values resemble those of the Hilbert238

transform most closely, although artifacts of the non-circular phase portrait are239

evident. The normalized continuous relative phase values show the greatest devi-240

ation from the Hilbert transformed values. This is because normalizing introduces241

artifacts when the original signal is non-sinusoidal (Kurz & Stergiou, 2002).242
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4. Empirical Data243

4.1. Example 5: kinematic data244

In this section the various methods for calculating phase angles are demon-245

strated using kinematic data representing hip-knee coupling during three strides246

of treadmill running.247

The ranges of motion in Figure 4, on which the continuous relative phase cal-248

culations are based, were roughly between 152◦ and 195◦ for the hip and between249

66◦ and 164◦ for the knee. Since the joint angles are located in the top right quad-250

rant of the time domain plot (Fig. 4, top left), the analytic signals created by the251

Hilbert transform may only have positive real values. Hence, the two respective252

analytic signals are located in the right half of the complex plane. Consequently,253

the phase angles of these two signals are limited to the range [−90◦,90◦] at the254

most.255

For this reason the trajectory of the signal should be transformed in such a way256

that it winds around the origin of the complex plane. Whereas Rosenblum et al.257

(2001) suggest transforming the signal by subtracting the mean value of the signal258

from the signal, we suggest centering the range of a signal’s amplitude around259

zero by260

xcentered(ti) = x(ti)−min(x(t))− (max(x(t))−min(x(t)))/2, (11)

and eventually calculating the analytic signal using the Hilbert transform based on261

xcentered(t).262

The resulting analytic signal will have the same imaginary component, which263

15
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Figure 4: In the left panels, time domain plots of hip and knee joint angles for treadmill running

(top), continuous relative phase values (middle) and the continuous relative phase values using

the centered Hilbert transform (bottom; methods from the plot above are also included for ref-

erence). In the right panels, phase portraits for hip-knee coupling in treadmill running: without

normalization (top), normalized according to Method A (middle) and Method B (bottom).
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is determined by the Hilbert transform, as that of the raw data since264

H(x(t)+ c) = H(x(t)), (12)

where c denotes a constant shift of the signal’s amplitude (see appendix Appendix265

A). This approach allows the resulting phase angle to have values in the range266

(−180◦,180◦) (Fig. 4, bottom left).267

5. Discussion268

The purpose of this paper was to review applications of continuous relative269

phase and commonly used methods for calculating the phase angle, address im-270

portant points which have been discussed in the relevant literature and, based on271

the results of our analyses, to propose a valid and robust method for calculating272

the phase angle applicable to most research questions in sports and health science.273

We have demonstrated the effect of different normalization techniques on the re-274

sulting continuous relative phase values. Several other issues pertaining to the275

interpretation of continuous relative phase are discussed in the following section.276

5.1. Phase angle vs. continuous relative phase277

Some debate has developed concerning the range used for continuous relative278

phase and the phase angle (Hamill et al., 1999; Kurz & Stergiou, 2002; Wheat279

et al., 2003). The arctan function outputs values in the range (−π
2
, π

2
), or in de-280

grees, (−180◦,180◦). In terms of relative phase, for the range [−180◦,180◦] a281

continuous relative phase value of 0◦ represents in-phase behavior and values of282

−180◦ and 180◦ represent anti-phase behavior (Scholz & Kelso, 1989). Some283

authors have chosen to use the absolute value of continuous relative phase values284
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(Hamill et al., 1999; Heiderscheit et al., 1999; van Emmerik & Wagenaar, 1996),285

since the values −180◦ and 180◦ both indicate anti-phase behavior and by do-286

ing so, the necessity for using directional statistics is alleviated (Sparto & Schor,287

2004). Conversely, others have suggested that the positive and negative values288

have qualitative meaning and should be preserved. If the phase angle of the prox-289

imal segment is subtracted from the phase angle of the distal segment, then pos-290

itive continuous relative phase values indicate that the distal segment is ahead of291

the proximal segment in phase space (Barela et al., 2000; Clark & Phillips, 1993;292

Hamill et al., 2000; Kao et al., 2003; Kiefer et al., 2011; Kurz & Stergiou, 2002;293

Yen et al., 2009), or the complex plane, and vice versa.294

This seems to have highlighted a point of misunderstanding between the terms295

phase angle and continuous relative phase. While continuous relative phase val-296

ues may be manipulated into the range [0◦,180◦] for reasons mentioned above,297

this should not be confused with defining the phase angle in the range (0◦,180◦)298

(Hamill et al., 1999; van Emmerik & Wagenaar, 1996) or even [−90◦,90◦]\{0◦}299

(Kurz & Stergiou, 2002).300

Wheat et al. (2003) showed that by defining the phase angle in a 180◦ range,301

in their case (0◦,180◦), the subsequent continuous relative phase values are non-302

intuitive. Therefore, we suggest defining the phase angle as that which is natu-303

rally produced by the arctan function. For this reason we feel the need to em-304

phasize that the phase angle and continuous relative phase cannot be used inter-305

changeably. Phase angles should always be in the ranges (−180◦,180◦) \ {0◦}306

or (0◦,360◦) \ {180◦}, while continuous relative phase may be expressed in the307

ranges [0◦,180◦] or [−180◦,180◦] or [0◦,360◦].308
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5.2. Joint vs. segment angles309

Many studies which have used continuous relative phase have used joint an-310

gles as the original signals. The use of joint angles, however, is contradictory to311

modelling the segments as pendula. Consider, for example, adjacent joint rela-312

tionships such as the coupling of the hip and knee. To calculate phase angles from313

the hip and knee joint angles, the thigh segment is included in both angles, and314

consequently influences the phase angles for each joint. Calculating phase an-315

gles in this way goes against the original interpretation under the dynamical sys-316

tems framework, notably by Kugler et al. (1980) and by Clark & Phillips (1993)317

specifically to gait. Only segment angles measured relative to an external refer-318

ence frame allow meaningful and interpretable results that can be used to describe319

phase relationships properly from a dynamical systems perspective.320

5.3. Maximum and minimum values321

Different methods for obtaining the maximum and minimum values used in322

the normalization procedures (equations 3 and 4) have also been reported. This323

pertains to whether the maximum value for each trial is used to normalize the324

respective trial or whether the maximum value among a group of trials (e.g. a sin-325

gle testing session) is used to normalize each trial (Hamill et al., 2000). Authors326

seldom report exactly how they obtain the maximum and minimum values. As327

Hamill et al. (2000) showed, when using phase space to calculate the phase angle,328

the method for determining maximum and minimum values affects the contin-329

uous relative phase calculation. One advantage of using the grouped approach330

(i.e. maximum or minimum value from a group of trials) for normalizing is that331

the trials being compared are scaled by a constant factor. However, rather than332

discussing this issue further, as we have shown thus far, the (centered) analytic333
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signal based on the Hilbert transform provides the correct phase angle and, there-334

fore, removes the need for normalization in order to fit the data into a unit phase335

space.336

5.4. Inter- and intralimb couplings and normalization337

Initially, continuous relative phase was used as a higher resolution form of338

discrete relative phase for assessing the coordination between two oscillating seg-339

ments: often representing contralateral or interlimb coordination. For interlimb340

coordination one might expect that the limb being compared could oscillate in341

a near sinusoidal manner. For these situations the methods described by Fuchs342

et al. (1996) may satisfy the assumption that the phase space spanned by the two343

oscillators is circular and that the two oscillators are simply phase shifted. Fur-344

thermore Varlet & Richardson (2011) demonstrated a method for dealing with345

changes in frequency in interlimb coordination assumed to be sinusoidal (also346

based on the Hilbert transform). However, the current paper focuses on whole-347

body movements, for which continuous relative phase is most often used to repre-348

sent intralimb coupling – or the coupling between adjacent joints. For questions349

of intralimb coordination, one can safely assume that the time-series of joint an-350

gles being compared are always non-sinusoidal (possibly with the exception of351

isokinetic exercises). To be clear, if two joints both oscillate sinusoidally, their352

continuous relative phase values throughout the measurement must be linear. If353

the two signals have the same frequency, the continuous relative phase values354

must be constant and equal to the phase shift (Fig. 1), and if the signals have355

different frequencies, the continuous relative phase values must be linearly in-356

creasing or decreasing depending on the frequency difference (Fig. 2). There can357

be no way for continuous relative phase to fluctuate throughout the movement if358
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the joints oscillate sinusoidally and frequency artifacts have been removed. There-359

fore, for research into intralimb coordination using continuous relative phase we360

suggest using the amplitude centered Hilbert transform (as shown in Fig. 4) so361

that changes in coordination throughout the movement may be exposed.362

5.5. Normalization363

We have identified two main methods for normalization, which have been used364

to scale data to the unit phase space (Burgess-Limerick et al., 1993; Hamill et al.,365

1999). Others have argued for no normalization in favor of maintaining the origi-366

nal topology or aspect ratio of the data (Clark & Phillips, 1993; Kurz & Stergiou,367

2002). While others have employed the Hilbert transform to create an analytic368

signal (Lamoth et al., 2009; Palut & Zanone, 2005). In Section 3.1 we showed369

that the scaling method of Fuchs et al. (1996) adequately transforms the data,370

thus removing frequency artifacts from the continuous relative phase calculation.371

However, since sinusoidal data does not arise from empirical measurements of hu-372

man movement, the method will have limited use with such data. Understandably,373

many have used sinusoidal signals to demonstrate the effects of various normaliza-374

tion methods and phase angle definitions (Hamill et al., 1999; Kurz & Stergiou,375

2002; Peters et al., 2003) – including the current paper – because of the simple376

characteristics of sine waves. However, the validity of transferring the demon-377

strated methods from sinusoidal to empirical data have not always been made378

clear.379

Sinusoidal data often have their amplitude centered around zero, possibly for380

this reason the necessary shift of d when d 6= 0 has not been discussed. When381

dealing with empirical data, one should expect the data to be non-sinusoidal and382

have the amplitude not centered around zero. Therefore, we suggest that the data383
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first be centered, so that zero represents the midpoint between the maximum and384

minimum values (Rosenblum et al., 2001). The amplitude centering is analogous385

to the shift of d for sinusoidal signals. However, for non-sinusoidal empirical data386

the Hilbert transform should be used to remove frequency effects.387

5.6. Discrete and cyclic movements388

In keeping with the resemblance of human movement to the limit cycle, most389

studies involving continuous relative phase as a measure of coordination have390

applied it to cyclic movements. Running (Dierks & Davis, 2007; Hamill et al.,391

1999; Hein et al., 2012; Miller et al., 2010, 2008; Kurz et al., 2005; Trezise et al.,392

2011) and walking (Barela et al., 2000; Clark & Phillips, 1993; Haddad et al.,393

2010; Kwakkel & Wagenaar, 2002; Lamoth et al., 2002; Li et al., 1999; Meyns394

et al., 2013; Wagenaar & van Emmerik, 2000; Wu et al., 2004), the transition395

between gait modes (Kao et al., 2003; Lamoth et al., 2009; Seay et al., 2006;396

van Emmerik & Wagenaar, 1996) and swimming (Figueiredo et al., 2012; Seifert397

et al., 2010, 2011) constitute the most common cyclic human activities studied398

(note that we only consider whole-body movements in this review). These types of399

movements closely correspond with the concept of phase analysis, which allows400

unique characteristics of the movement to be exposed qualitatively, because of401

the shape of the phase space trajectories. For example, a damped oscillator will402

show, in phase space, convergence to the origin as it loses energy. Accordingly,403

some have argued that studying cyclic movements (modeled as pendula) in terms404

of energy transfer with the environment can provide important insight into the405

changing state of the modeled system (Clark et al., 1993; Kurz & Stergiou, 2004).406

However, central to dynamical systems theory is the continuous interaction407

between the many constraints (performer, the environment and the task (Newell,408
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1986)), which give rise to coordinated movement on the biomechanical level409

through self-organization. Furthermore, these interactions can influence perfor-410

mance of a task on different time scales (Schöllhorn et al., 2009). For exam-411

ple, fatigue can cause sprinters to make coordinative compensations for changing412

availability of energy resources (Trezise et al., 2011). On the other hand, for dis-413

crete tasks requiring precision, variability can also be managed throughout execu-414

tion of the task to aid performance (Bootsma & van Wieringen, 1990). Therefore,415

although only a few studies have used continuous relative phase to study discrete416

movements (Burgess-Limerick et al., 1993; Robins et al., 2006), it seems reason-417

able to do so in order to reflect the changing constraints affecting the performance418

of the task, given a few caveats. The time scales between repetitions of discrete419

tasks are different from those of cyclic movements and should be acknowledged420

by authors using continuous relative phase for analyzing coordination variability421

in discrete tasks. Additionally, time continuous concepts such as relaxation time,422

the amount of time required after the system is perturbed to return to its original423

stable state (Scholz & Kelso, 1989), may not yet be meaningful for discrete tasks.424

5.7. Interpretation425

So far we have proposed that continuous relative phase should be calculated426

based on amplitude centered Hilbert transform values rather than phase angles ob-427

tained through plotting phase portraits when the original signals are non-sinusoidal.428

Yet to be discussed is the interpretation of the continuous relative phase using the429

Hilbert transform. As shown in Figure 4 (bottom left), the centered Hilbert trans-430

form gives similar continuous relative phase to those gained from normalizing the431

phase portraits; however, with the frequency artifacts removed. Therefore, the432

interpretation of the continuous relative phase values using the Hilbert transform433
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should not change compared to the interpretation of continuous relative phase434

based on phase portraits (Hamill et al., 1999; Li et al., 1999). Furthermore, when435

using continuous relative phase for measures of variability such as an ensemble436

curve representing multiple trials or variability at each time point (Stergiou et al.,437

2001a,b; Yen et al., 2009) care should be taken to remove frequency artifacts as438

they could have significant influence on these measures.439

Some have suggested, that continuous relative phase does not allow one to440

make inferences on the original signals (Miller et al., 2010; Peters et al., 2003).441

In-phase coordination simply means that the two joints occupy the same phase442

angle at the same time in the movement, whether the phase angle is measured443

in phase space or in the complex plane. Peters et al. (2003) stated that the non-444

intuitive result was generated when the original signals had the same slope in the445

time domain but were not in-phase according to continuous relative phase. It446

seems that the authors interpreted continuous relative phase with respect to direc-447

tion (joint angle is increasing or decreasing) and velocity rather than displacement448

and velocity. Peters et al. (2003) highlighted two points on two lines with the same449

slope but obviously different displacement values and it is confusing that they sug-450

gest these should correspond with in-phase coordination according to continuous451

relative phase. That interpreting a joint angle’s movement direction and velocity452

should predict its relative phase is a misinterpretation of relative phase, but may453

provide the basis for a new form of dynamic analysis of coordination – one which454

is more descriptive than discrete relative phase and simpler, or possibly more in-455

tuitive, than continuous relative phase.456
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5.8. Recommendations for future use457

We have demonstrated the effects of normalization on various sinusoidal sig-458

nals as well as on non-sinusoidal signals. Although normalizing sinusoidal sig-459

nals adequately removes frequency effects, since sinusoidal signals will not be460

obtained from experimental data, we suggest that the normalization method pro-461

vided by Fuchs et al. (1996) is irrelevant for studying multi-articular or whole462

body movements. Others have suggested different normalization methods, or in463

fact no normalization at all, to account for the frequency or amplitude of empir-464

ical data, but as we have shown, these methods either do not remove frequency465

artifacts from the calculated continuous relative phase values or do not allow the466

full range of phase angles on which continuous relative phase is based. In place467

of a) sinusoidal normalization, b) normalization methods A and B, or c) no nor-468

malization we propose the following steps:469

1. centering the amplitude of the data around zero (equation 11)470

2. transform each signal into an analytic signal using the Hilbert transform471

(equation 7)472

3. calculate the phase angles for each signal (equation 8)473

4. calculate the continuous relative phase (equation 9)474

The Hilbert transform creates an analytic signal from non-sinusoidal signals, thereby475

removing frequency artifacts and making it appropriate for studying inter- and476

intralimb coordination in human movement. We should also mention that ana-477

lytic signals can be created for any real signal but the phase angle only has a real478

physical meaning if the real signal is a narrow-band signal. Of course, kinematic479

data representing human movement satisfy this condition (Meng et al., 2006), but480
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we bring attention to this in case researchers of human physiological or behav-481

ioral data encounter signals which do not have a narrow-band frequency spectrum482

(Boashash, 1992).483

Applying the methods in this paper to other types of human movement data484

was out of the scope of this paper, but we will highlight one particular point of485

interest for researchers in other domains of human movement science seeking486

to use continuous relative phase. We have suggested the signal’s amplitude be487

centered around zero; this is true for kinematic joint angles because the joint angle488

values are relatively arbitrary – they depend on how the joint angle is defined.489

However, if the values have qualitative meaning then another form of centering490

the data may be more appropriate. For example, Palut & Zanone (2005) looked491

at the lateral coordination of two tennis players on the court. The authors argued492

that the players could be modeled as a paired oscillator, which oscillates about493

the center line. In this case, the centerline (assigned as zero displacement) on494

the tennis court has qualitative meaning and should be preserved. For studies of495

player positional data, new methods for calculating the phase angle, such as those496

for tennis (Palut & Zanone, 2005), should be investigated.497

6. Conclusions498

In this paper we identified and compared commonly reported methods for cal-499

culating the phase angle for use in continuous relative phase analyses. Using syn-500

thetic and real data we compared the commonly reported normalization methods501

and showed that, after centering the signals’ amplitudes around zero, the con-502

tinuous relative phase values obtained from the analytic signal created using the503

Hilbert transform in all test cases gave the intuitive answer. We therefore suggest504
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that future research adopt the amplitude centered Hilbert transform to remove fre-505

quency artifacts of the non-sinusoidal signals being studied.506
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6.671

Appendix A. Invariance of the Hilbert transform with respect to a constant672

amplitude shift of the signal673

According to Gabor (1946) the Hilbert transform of a real signal (time depen-674

dent) x(t) is defined as675

H(x(t)) =
1

π
P.V.

∫ ∞

−∞

x(τ)

t− τ
dτ, (A.1)

where P.V. means that the integral is taken in the sense of the Cauchy principal

value. The Hilbert transform of a signal x(t) with respect to a constant shift c of
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the signal’s amplitude is

H(x(t)+ c) =
1

π
P.V.

∫ ∞

−∞

x(τ)+ c

t− τ
dτ

=
1

π
(P.V.

∫ ∞

−∞

x(τ)

t− τ
dτ +P.V.

∫ ∞

−∞

c

t− τ
dτ

︸ ︷︷ ︸

A.3
= 0

)

=
1

π
P.V.

∫ ∞

−∞

x(τ)

t− τ
dτ

= H(x(t)) (A.2)

because

P.V.

∫ ∞

−∞

c

t− τ
dτ = lim

a→−∞
lim
b→∞

lim
ε→0

(P.V.

∫ t−ε

a

c

t− τ
dτ +P.V.

∫ b

t+ε

c

t− τ
dτ)

= lim
a→−∞

lim
b→∞

lim
ε→0

([−c ln |t− τ|]t−ε
a +[−c ln |t− τ|]bt+ε)

= lim
a→−∞

lim
b→∞

lim
ε→0

(c(− ln |ε|+ ln |a|− ln |b|+ ln |ε|)

= lim
a→−∞

lim
b→∞

(c(ln |a|
︸︷︷︸

→0

− ln |b|
︸︷︷︸

→0

))

= 0. (A.3)

Hence, the Hilbert transform of a signal x(t) is invariant with respect to a constant676

shift of the amplitude of x(t).677
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