Retromer associated sorting nexins SNX1, SNX4, and SNX27 and the trafficking and basolateral membrane population of the intermediate conductance calcium-activated potassium channel (KCa3.1) in polarised epithelial cells

Elliot Pilmore

May 2017

In complete fulfilment of the requirements of the Masters of Science at the University of Otago, Dunedin, New Zealand
Abstract

The intermediate conductance calcium (Ca^{2+})-activated potassium (K^+) channel (KCa3.1) is targeted to the basolateral membrane of polarised epithelial cells, and is also found in many non-epithelial cell types. KCa3.1 performs several fundamental roles, including the promotion of transepithelial ion transport, and the maintenance of a homeostatic equilibrium inside cells. Thus, KCa3.1 is found in a wide range of tissues, from epithelial to neural, and is involved in several disease states. These disease states include sickle-cell anaemia, cardiac fibrosis, and diabetic nephropathy, and paint KCa3.1 as a potential target for novel disease therapies.

In order to create these novel disease therapies, it is vital to understand how KCa3.1 is trafficked within the cell. Functionally, KCa3.1 is trafficked from the ER to the Golgi in a manner dependent on Rab1, and from the Golgi to the plasma membrane in a manner dependent on Rab8. Additionally, KCa3.1 trafficking has been shown to require a functional cytoskeleton, as well as the motor protein Myocin-Vc. One trafficking pathway which may traffic KCa3.1 is the Retromer pathway. This pathway involves multiple protein complexes, including the cargo recognition complex, and the WASH complex, as well as multiple individual sorting nexin proteins. If KCa3.1 is found to interact with components of the Retromer pathway, it could lead to new disease therapies.

This project examined the role of three distinct sorting nexin protein; SNX1, SNX4, and SNX27, on the trafficking and basolateral membrane population of KCa3.1 in polarised epithelial cells. In order to do this, Fischer Rat Thyroid cells transfected to stably express a KCa3.1-BLAP (biotin ligase acceptor peptide) construct, were transfected with SNX1, 4, or 27 specific siRNA, then grown on filters in order to achieve polarity. This allowed for the apical and basolateral membrane populations of KCa3.1 to be independently assessed.

Immunoblots were used to determine the extent to which transfections were successful. In cells where the transfection was successful, the basolateral membrane population of KCa3.1 was determined by immunoblots. Additionally, Ussing chamber experiments were utilised in order to explore the effects of transfections on the KCa3.1 current when stimulated by the KCa3.1 opener 1-EBIO, or the KCa3.1 inhibitor clotrimazole.

This project showed the first evidence of the endogenous expression of SNX1 and SNX27 in FRT cells, and confirmed expression of SNX4 in FRT cells, first discovered in the McDonald Lab. Following this demonstration, cells were transfected with 40 pM of either SNX1, SNX4, or SNX27 siRNA. The transfection with SNX1 siRNA resulted in a 44 ± 8% decrease in SNX1 protein levels, however, showed no significant decrease in the basolateral membrane population of KCa3.1, nor in
the KCa3.1 sensitive current measured by Ussing chamber experiments was observed. The transfection with SNX4 showed a 62 ± 12% decrease in intracellular SNX4, however, similar to SNX1, a decrease in intracellular SNX4 did not appear to affect either the basolateral membrane population of KCa3.1, nor the KCa3.1 sensitive currents. Finally, the transfection of cells with SNX27 siRNA showed a 27 ± 4% decrease in the intracellular protein levels of SNX27. While knockdown of SNX27 did not elicit a significant change in the basolateral membrane population of KCa3.1, it did suggest the possibility of KCa3.1 missorting to the apical membrane, as there was a trend towards a significant increase in the apical membrane population of KCa3.1 in the SNX27 knockdown cells compared to the control cells (p = 0.0818; n=4). These results appear to be consistent with the notion that KCa3.1 is not recycled in polarised epithelial cells, and suggest that KCa3.1 is not trafficked via the Retromer pathway. While KCa3.1 does not appear to be trafficked via the Retromer pathway, there are still unknown factors regarding the trafficking of KCa3.1 which need to be explored, such as why KCa3.1 appears to be recycled in migratory cells. It is important to fully comprehend the trafficking mechanisms surrounding KCa3.1 in order to develop novel effective therapeutic techniques to combat pathophysiological conditions resulting from dysfunctional KCa3.1.
Acknowledgements

First and foremost, I would like to thank my primary supervisor, Kirk Hamilton, and my secondary supervisor, Fiona McDonald. Thank you both so much for devoting as much time as you have towards me to ensure that I have had the success I have this year. Thank you for always having your doors open, and for always offering me brilliant advice, and for coaxing me in the right direction when I needed it. Thank you especially for the support you both gave me when I fell ill. I will never forget how much it meant to me to have such supportive supervisors.

A special thank you to the chair of my MSc committee, Dr Martin Fronius. Every committee meeting we had you always listened to any problems I had, and you have always given me sound advice. In our last meeting, before I went to Auckland to write my thesis up, you said you believed in me. That meant a lot, even though I didn’t say it at the time. Thank you.

Rachel, thank you for putting up with me for a second year in a row. Thank you for helping me out when I managed to get myself stuck, and for being patient when I have had problems. I will always be grateful of the help you have given me, and I wish you the best for your future projects.

Tanya, thank you for being a wonderful teacher. You were always so patient when teaching me new techniques, and you always seemed to be able to answer my questions. Thank you for all your help when I was writing up from a different city, you were invaluable.

Pinky, thank you for all the conversations that we have had. I thoroughly enjoyed spending the summer with you during your summer studentship. I hope you continue to enjoy your lab experience.

I would like to extend special gratitude to the Department of Physiology for awarding me a Master’s of Science scholarship. I cannot thank you enough for the financial support you have provided me over the last year.

Finally, thank you to all my friends and family for believing in me. I love you all and I couldn’t have done this without all your support.
Table of Contents

1 Introduction ... 1
1.1 Overview .. 1
1.2 Polarity in Epithelial cells ... 2
1.3 Biosynthetic secretory pathway ... 3
 1.3.1 Apical Trafficking Pathways .. 5
 1.3.2 Basolateral Trafficking Pathways ... 6
 1.3.3 Fusion of vesicles with the membrane .. 8
1.4 Families of Potassium Channels .. 9
 1.4.1 KCa3.1 .. 10
 1.4.2 Trafficking of KCa3.1 .. 11
 1.4.3 Clinical relevance of KCa3.1 .. 12
 1.4.3.1 Hereditary xerocytosis ... 12
 1.4.3.2 Ulcerative colitis .. 13
 1.4.3.3 Autosomal dominant polycystic kidney disease .. 13
 1.4.3.4 Sickle cell anaemia ... 13
 1.4.3.5 Fluid secretion .. 14
 1.4.3.6 Cardiac fibrosis .. 15
 1.4.3.7 Diabetic nephropathy ... 15
 1.4.3.8 KCa3.1 in the neural system ... 16
 1.4.3.9 Alzheimer’s Disease .. 16
1.5 The Retromer pathway ... 16
 1.5.1 Structure of the cargo recognition complex ... 18
 1.5.2 The WASH complex .. 18
 1.5.3 Sorting nexins ... 19
 1.5.3.1 Sorting nexin 1 .. 20
 1.5.3.2 Sorting nexin 4 ... 21
 1.5.3.3 Sorting nexin 27 ... 22
2 Aims/Hypotheses .. 24
 2.1 Aims .. 24
 2.2 Hypotheses .. 24
3 Methods ... 25
 3.1 Cell models ... 25
 3.2 Molecular Biology .. 26
 3.3 Transfections .. 27
List of Figures

Figure 1.1 – Epithelial cells in vivo .. 3
Figure 1.2 – Biosynthetic secretory pathway in epithelial cells.. 4
Figure 1.3 – Basic anterograde trafficking routes in epithelia.. 6
Figure 1.4 – The KCa3.1 channel .. 9
Figure 1.5 – The Retromer complex .. 17
Figure 1.6 – Retromer and the early endosome ... 21
Figure 3.1 – Transwell/Snapwell permeable support .. 25
Figure 3.2 – The pBudCE4.1 plasmid ... 29
Figure 3.3 – Cellular process outlining the addition of biotin to the biotin ligase acceptor peptide sequence of KCa3.1 .. 29
Figure 3.4 – SDS-PAGE acrylamide gel ... 33
Figure 3.5 – Transfer of proteins from the polyacrylamide gel to the PVDF membrane 33
Figure 3.6 – Ussing chamber setup .. 39
Figure 4.1 – Sidedness experiment displaying the membrane localization of KCa3.1 45
Figure 4.2 – Antibody test for anti-SNX1 and anti-SNX27 .. 46
Figure 4.3 – siRNA optimization for SNX1 ... 47
Figure 4.4 – siRNA optimization for SNX27 .. 49
Figure 4.5 – Effect of SNX4 knockdown on the basolateral membrane population of KCa3.1 50
Figure 4.6 – Effect of SNX4 knockdown on KCa3.1 function .. 52
Figure 4.7 – Effect of SNX27 knockdown on the basolateral membrane population of KCa3.1 54
Figure 4.8 – Effect of SNX27 knockdown on KCa3.1 function ... 55
Figure 4.9 – Effect of SNX1 knockdown on the basolateral membrane population of KCa3.1 57
Figure 4.10 – Effect of SNX1 knockdown on KCa3.1 function ... 58
List of Tables

Table 3.1 – Protein size to polyacrylamide gel ... 32
Table 3.2 – Ingredients for the preparation of polyacrylamide gels 32
Table 3.3 – Table showing antibodies used .. 35
Table 3.4 – Ingredients used in restriction digest to isolate KCa3.1-HA 37
Table 3.5 – Modified Ringer’s solution .. 38
Table 3.6 – Oligonucleotide sequences for the siRNA used for knockdown transfections 42
List of Abbreviations

- Negative
+ Positive
± Plus or minus
% Percent
© Copyright
°C Degrees Celsius
μL Microlitre (1x10⁻⁶ Litres)
μg Microgram (1x10⁻⁶ grams)
μM Micromole (1x10⁻⁶ Moles)
1-EBIO 1-Ethyl-1,3-dihydro-2H-benzimidazol-2-one
Å Ångstrom
α alpha
Aβ amyloid-β protein
AβO amyloid-β protein oligomer
AD Alzheimer’s disease
ADPKD Autosomal dominant polycystic kidney disease
AEE Apical early endosome
AL Apical membrane specific labelling of KCa3.1-BLAP with streptavidin
AP Adaptin protein
AQP4 Aquaporin 4
ARE Apical recycling endosome
ATP Adenosine triphosphate
β beta
β2AR Beta-2-adrenergic receptor
BAR Bin/Amphiphysin/Rvs
BEE Basolateral early endosome
BCA Bicinchoninic acid
BirA Biotin ligase
BK Big conductance calcium-activated potassium channel
BL Basolateral membrane specific labelling of KCa3.1-BLAP with streptavidin
BLAP Biotin ligase acceptor peptide
βME β-mercaptoethanol
BSA Bovine serum albumin
CaCl₂ Calcium Chloride
CFTR Cystic Fibrosis transmembrane conductance regulator
CI-MPR Mannose-6-phosphate receptor
Cl⁻ Chloride ion
CLT Clotrimazole
CMM Cisternal maturation model
CO₂ Carbon dioxide
COP Coat protein
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COS-7</td>
<td>African Green Monkey kidney cells</td>
</tr>
<tr>
<td>CRE</td>
<td>Common recycling endosome</td>
</tr>
<tr>
<td>CRC</td>
<td>Cargo recognition core</td>
</tr>
<tr>
<td>Cs⁺</td>
<td>Caesium ion</td>
</tr>
<tr>
<td>CTRL</td>
<td>Cells transfected with 40 pM control siRNA</td>
</tr>
<tr>
<td>CTRL AL</td>
<td>Cells transfected with 40 pM control siRNA with the apical membrane population of KCa3.1 labelled with streptavidin</td>
</tr>
<tr>
<td>CTRL BL</td>
<td>Cells transfected with 40 pM control siRNA with the basolateral membrane population of KCa3.1 labelled with streptavidin</td>
</tr>
<tr>
<td>Cu²⁺</td>
<td>Copper ion</td>
</tr>
<tr>
<td>δ</td>
<td>delta</td>
</tr>
<tr>
<td>DCEBIO</td>
<td>5,6-Dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified Eagle medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulphoxide</td>
</tr>
<tr>
<td>DN</td>
<td>Diabetic nephropathy</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribose nucleic acid</td>
</tr>
<tr>
<td>DSCR3</td>
<td>Down’s syndrome critical regulator 3</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ELU</td>
<td>Elution buffer</td>
</tr>
<tr>
<td>EQU</td>
<td>Equilibration buffer</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>ERQC</td>
<td>Endoplasmic reticulum quality control</td>
</tr>
<tr>
<td>ETC</td>
<td>Endosome to trans-Golgi network transport carrier</td>
</tr>
<tr>
<td>Fam21</td>
<td>Family with sequence similarity 21</td>
</tr>
<tr>
<td>FERM</td>
<td>4.1 protein, ezrin, radixin, moesin</td>
</tr>
<tr>
<td>FRT-KCa3.1-BLAP</td>
<td>Fischer Rat Thyroid cell line stably transfected with the KCa3.1-BLAP plasmid</td>
</tr>
<tr>
<td>g</td>
<td>Grams</td>
</tr>
<tr>
<td>γ</td>
<td>gamma</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyde 3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>GPI-APs</td>
<td>Glycosylphosphatidylinositol-anchored protein</td>
</tr>
<tr>
<td>H⁺</td>
<td>Hydrogen ion</td>
</tr>
<tr>
<td>HbS</td>
<td>Haemoglobin with the sickle cell anaemia mutation</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HEK293</td>
<td>Human Embryonic Kidney cells</td>
</tr>
<tr>
<td>HeLa</td>
<td>Henrietta Lacks cell line</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxidase</td>
</tr>
<tr>
<td>HX</td>
<td>Hereditary xerocytosis</td>
</tr>
<tr>
<td>IB</td>
<td>Immunoblots</td>
</tr>
<tr>
<td>IK1</td>
<td>Intermediate conductance calcium-activated potassium channel</td>
</tr>
<tr>
<td>IKCa4</td>
<td>Intermediate conductance calcium-activated potassium channel</td>
</tr>
<tr>
<td>ISC</td>
<td>Short circuit current</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>K⁺</td>
<td>Potassium ion</td>
</tr>
<tr>
<td>KCa2.1</td>
<td>Small conductance calcium-activated potassium channel 1</td>
</tr>
<tr>
<td>KCa2.2</td>
<td>Small conductance calcium-activated potassium channel 2</td>
</tr>
<tr>
<td>KCa2.3</td>
<td>Small conductance calcium-activated potassium channel 3</td>
</tr>
<tr>
<td>KCa3.1</td>
<td>Intermediate conductance calcium-activated potassium channel</td>
</tr>
<tr>
<td>KCa3.1-BLAP</td>
<td>Intermediate conductance calcium-activated potassium channel containing a BLAP sequence</td>
</tr>
<tr>
<td>KCa3.1-HA</td>
<td>Intermediate conductance calcium-activated potassium channel containing a HA tag</td>
</tr>
<tr>
<td>KCNN</td>
<td>Gene encoding a small/intermediate conductance calcium-activated potassium channel</td>
</tr>
<tr>
<td>KCNN4</td>
<td>Gene encoding KCa3.1 (also known as IK1/IKCa1)</td>
</tr>
<tr>
<td>KCl</td>
<td>Potassium chloride</td>
</tr>
<tr>
<td>KDEL</td>
<td>Lysine, Aspartic acid, Glutamic acid, Leucine - Endoplasmic reticulum retention motif</td>
</tr>
<tr>
<td>KCa</td>
<td>Calcium activated potassium channel</td>
</tr>
<tr>
<td>Kᵢᵣ</td>
<td>Inwardly rectifying potassium channel</td>
</tr>
<tr>
<td>Kᵥ</td>
<td>Voltage gated potassium channel</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>LDLR</td>
<td>Low density lipoprotein receptor</td>
</tr>
<tr>
<td>LL</td>
<td>Dileucine sorting motif</td>
</tr>
<tr>
<td>LYS</td>
<td>Lysis buffer</td>
</tr>
<tr>
<td>μ</td>
<td>mu</td>
</tr>
<tr>
<td>MA</td>
<td>Macula adherens</td>
</tr>
<tr>
<td>mA</td>
<td>milliamps</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>Magnesium ion</td>
</tr>
<tr>
<td>mqH₂O</td>
<td>Water filtered through a Millipore filter</td>
</tr>
<tr>
<td>Na⁺</td>
<td>Sodium ion</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>NEM</td>
<td>N-ethylmaleimide</td>
</tr>
<tr>
<td>NEU</td>
<td>Neutralising buffer</td>
</tr>
<tr>
<td>NHE</td>
<td>Sodium/Hydrogen exchanger</td>
</tr>
<tr>
<td>NKCC</td>
<td>Sodium/Potassium/2Chloride (Na⁺/K⁺/2Cl⁻) cotransporter</td>
</tr>
<tr>
<td>NSF</td>
<td>N-ethylmaleimide-sensitive factor</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PBS/BSA</td>
<td>Phosphate buffered saline with 0.1% bovine serum albumin</td>
</tr>
<tr>
<td>PDZ</td>
<td>Post synaptic density protein 95, Drosophila disc large tumour suppressor 1, zonula occludens 1</td>
</tr>
<tr>
<td>PKD</td>
<td>Gene encoding for polycystin proteins</td>
</tr>
<tr>
<td>pM</td>
<td>Picomoles (1x10⁻¹² Moles)</td>
</tr>
<tr>
<td>pS</td>
<td>Picosiemens</td>
</tr>
<tr>
<td>PtdIns3p</td>
<td>Phosphatidylinositol-3-monophosphate</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene Fluoride</td>
</tr>
<tr>
<td>PX</td>
<td>Phox domain</td>
</tr>
<tr>
<td>Rab</td>
<td>Rab-GTPase</td>
</tr>
</tbody>
</table>
Rb* | Rubidium ion
RES | Resuspension buffer
RME-1 | Receptor mediated endocytosis 1
SCA | Sickle cell anaemia
SDS-PAGE | Sodium dodecyl sulphate polyacrylamide gel electrophoresis
siRNA | Short interfering RNA
SNAP | Synaptosomal-associated protein
SNAP23 | Synaptosomal-associated protein 23
SNARE | Soluble NSF attachment protein receptor
SNX | Sorting nexin
STX | Syntaxin
TBS | Tris Buffered Saline
TBS-T | Tris Buffered Saline with 0.1% Tween-20
TEN | Tubular endosomal network
TfNR | Transferrin receptor
TGN | Trans-Golgi network
TJC | Tripartite junctional complex
UC | Ulcerative colitis
VAMP | Vesicle-associated membrane protein
VPS | Vacuolar protein sorting-associated protein
VTM | Vesicular Transport Model
WASH | Wiskott-Aldrich syndrome protein and SCAR Homologue
YXXØ | Tyrosine based endocytosis and sorting motif
ZA | Zonula adherens
ZO | Zonula occludens
1 Introduction

1.1 Overview

The tissues of animals can be separated into four distinct categories; connective tissue, muscular tissue, nervous tissue, and epithelial tissue. While each of these tissue categories are vital, epithelial tissue is perhaps the most significant, as this is the tissue used to isolate compartments of the body, and that conveys the epithelial barrier function which precisely controls the transport of solutes throughout the body (Simons & Fuller, 1985). Epithelial cells form epithelial tissue, and the individual epithelial cells themselves convey many important functions, including, selectively passing macromolecules, through the use of channels and transporters, including solutes and ions, between body compartments separated by epithelial tissue. The maintenance of this selective passage is of paramount importance, as this selective passage of macromolecules maintains the homeostatic equilibrium of the body.

In vivo, epithelial cells bind together to form a sheet of epithelial tissue, with individual cells connected by proteins found in the tripartite junctional complex (TJC), which also separates the cell membrane into two distinct regions, known as the apical (mucosal), and the basolateral (serosal) membranes (Farquhar & Palade, 1963; Tepass et al., 2001). The apical membrane domain is oriented to face the external environment, which includes the lumens of hollow organs such as the intestine, the kidney, and the lungs, whilst the basolateral membrane domain contacts both the basal lamina and adjacent epithelial cells (Simons & Fuller, 1985; Tepass et al., 2001; Apodaca et al., 2012). One of the main advantages of having two distinct membrane regions is to allow for cellular polarisation. Polarisation occurs when some membrane bound proteins are selectively trafficked to one domain. This is important as polarisation sets up solute gradients, allows for more controlled absorption and secretion of ions and solutes. The mechanisms behind these selective trafficking are discussed later, however, contributing factors to protein sorting include; protein synthesis in the endoplasmic reticulum (ER), posttranslational modifications in the ER and the Golgi apparatus, and cytoskeletal function (Ellgaard & Helenius, 2003).

The main protein channel of interest for this project is the calcium activated potassium channel KCa3.1, which, in epithelial cells, is trafficked to the basolateral membrane (Bertuccio et al., 2014; Farquhar et al., 2017). KCa3.1 functions primarily as a K⁺ channel to regulate the intracellular and extracellular K⁺ levels (Ishii et al., 1997) However, the exact mechanisms controlling the number of KCa3.1 channels in the membrane remains to be intensively studied. This being said, certain aspects of the KCa3.1 trafficking pathway have been determined, such as the proteins Rab1 and
Rab8 (Babbey et al., 2006; Zhang et al., 2009; Dong et al., 2010), which are responsible for the regulation of KCa3.1 transport from the ER to the cis-Golgi body, and from the trans-Golgi body to the plasma membrane respectively (Bertuccio et al., 2014). Secondary to KCa3.1, this project focusses on proteins involved in a novel protein recycling pathway known as the Retromer pathway. This pathway involves multiple protein complexes that facilitate recycling of membrane proteins back to the cell membrane after their endocytosis, the most prominent of which are the cargo selective complex, which selects and binds the Retromer cargo, and the WASH complex, which connects Retromer to the actin cytoskeleton, facilitating movement (Yang et al., 2005). While Retromer has been studied intensively by multiple groups since its discovery, nobody has studied the possibility of interactions between Retromer and KCa3.1 until now.

1.2 Polarity in Epithelial cells

Epithelial polarity allows for controlled absorption or secretion of ions and molecules across the epithelia, and is the mechanism responsible for basic physiological functions such as the absorption of nutrients and the secretion, and subsequent expulsion of waste. As mentioned previously, the apical membrane faces into the lumen of organs, such as the intestine, and faces into body cavities, however the basolateral domain can be described as two separate membrane domains, the lateral and the basal domains, despite not being physically separate, as the apical and the basolateral membranes are. The lateral membrane domain interacts with epithelia cells which are adjacent to the cell, and contains the TJC on the apical most area of the domain, which defines the border between the apical and the basolateral membranes. The basal membrane domain interacts with subjacent cells, or with the components of the basement membrane though interactions with integrin receptors and dystroglycans (Apodaca et al., 2012). Furthermore, the basolateral membrane contains a relatively high concentration of phosphatidylinositol-3, 4, 5-triphosphate, which has been shown to regulate the formation of the basolateral membrane by acting as a target for basolaterally targeted proteins (Gassama-Diagne et al., 2006). When phosphatidylinositol-3, 4, 5-triphosphate was added to the apical membrane, basolateral proteins were found to target to the apical membrane, Additionally, this was found to not be due to disruption of the TJC, as the TJC was undisturbed by the addition of phosphatidylinositol-3, 4, 5-triphosphate, and the epithelial monolayer did not become “leaky” which would signify disruption to the tight junctions (Gassama-Diagne et al., 2006).

The main protein complex which is involved in creating a scenario where epithelial polarisation can exist is the TJC (Farquhar & Palade, 1963; Tepass et al., 2001), which acts on both the X, and Z-axes, forming a “ring” of membrane bound protein around the circumference of the cell. The TJC comprises of three individual elements; the zonula occludens (tight junction), the
zonula adherens (intermediate junction), and the macula adherens (desmosome) (Figure 1.1). The zonula occludens (ZO) is primarily characterised by the fusion of adjacent cell membranes, which results in the obliteration of the intercellular space. Furthermore, the ZO causes dense leaflets from the external plasma membrane of each cell to interact, forming a dense, single belt (Farquhar & Palade, 1963). Unlike the ZO, the zonula adherens (ZA) does not cause the elimination of the intercellular space, instead, the ZA is characterised by the presence of a small (~200 Ångströms (Å)) gap containing low density material. In some epithelia, the ZA forms a continuous belt, similar to the ZO, however this variable depending on the epithelia, and can be discontinuous (Farquhar & Palade, 1963). Similar to the ZA, the macula adherens (MA) also contains an intercellular space, which is slightly larger than that of the ZA (~240Å). Furthermore, the MA contains a central disc of cytoplasmic plaques, and cytoplasmic fibrils which interact with the plaques in order to anchor the cells together (Farquhar & Palade, 1963). The 3 components of the TJC act together to prevent membrane bound proteins from migrating from one membrane domain to the other (Madara, 1998). Furthermore, the TJC forms a semipermeable barrier, creating a secondary pathway for solutes to move, and controlling the paracellular transport of solutes (Figure 1.1) (Madara, 1998).

1.3 Biosynthetic secretory pathway

The biosynthetic secretory pathway is the cellular process behind the synthesis of cellular proteins. It is, therefore, important to understand the basics of this process when studying cellular protein function. Protein synthesis begins with the ribosomes in the cytosol, which decode
messenger RNA into amino acid sequences. For proteins to enter the secretory pathway, or for proteins that will be secreted or trafficked to the plasma membrane containing a hydrophobic signal sequence, the ribosomes move to the endoplasmic reticulum (ER), where the newly synthesised proteins undergo quality control (ERQC) (Rapoport et al., 1996). The ERQC acts to ensure that newly synthesised proteins are functioning correctly, and to prevent non-functional proteins from progressing in the trafficking pathway (Ellgaard & Helenius, 2003). Ineffective proteins are released into the cytoplasm, where they are degraded into their constituent amino acids through the ubiquitin-proteasome pathway (McCracken & Brodsky, 1996).

Once proteins successfully navigate through the ERQC, they are trafficked towards the cis-Golgi body via anterograde coat protein (COP) II vesicles (Barlowe et al., 1994). The COP II vesicles take proteins to the ER/cis-Golgi intermediate compartment, which acts to increase the concentration of proteins so that only a few vesicles are ultimately required to transport proteins (Figure 1.2) (Klumperman et al., 1998). Additionally, another type of COP vesicle, the COP I vesicle, also transports proteins around the Golgi and back to the ER, however, COP I largely traffics proteins

Figure 1.2 – Schematic diagram of the biosynthetic secretory pathway in epithelial cells. Proteins are trafficked from the ER to the cis-Golgi body through two vesicle systems; COP II vesicles travel to the ER/cis-Golgi intermediate compartment (ERGIC), which then travels to the cis-Golgi body. Proteins containing an endoplasmic reticulum KDEL motif are trafficked back to the ER in COP I vesicles. COP I vesicles are also used to traffic proteins in a retrograde fashion between the stacks of the Golgi apparatus. Finally, proteins are released from the trans-Golgi body, and trafficked to the plasma membrane (shown here as the basolateral membrane), either directly or indirectly. Pilmore, Unpublished.
containing an ER retention motif consisting of Lysine, Aspartic acid, Glutamic acid, and Leucine (KDEL) (Figure 1.2) (Majoul et al., 2001).

At the Golgi, proteins undergo further post translational modifications, which ensure that the proteins will be fully functional in the cell. There are two hypotheses as to how the Golgi apparatus traffics and matures proteins; the Vesicular Transport Model (VTM), and the Cisternal Maturation Model (CMM). The VTM proposes that the individual cisterna of the Golgi are static, and that proteins are trafficked between cisternae via COP I vesicles, receiving specific post translational modifications in each cisterna (Pfeffer, 2010). On the other hand, the CMM states that proteins enter the cisterna at the cis-Golgi, which then mature as the proteins inside receive post translational modifications (Figure 1.2). Furthermore, the CMM states that Golgi specific enzymes are trafficked retrogradely by COP I vesicles (Mironov et al., 2003), allowing for the individual cisterna to have a fluid enzymatic composition, compared to the static, but more specialised enzymatic composition seen in the VTM (Pfeffer, 2010). Ultimately, proteins exit the trans-Golgi body complete with post translational modifications which serve the dual functions of improving protein function, and facilitating protein trafficking through sorting signals (Wandinger-Ness et al., 1990).

1.3.1 Apical Trafficking Pathways

In polarised epithelial cells, membrane proteins need to contain specific motifs in order to accurately traffic them to the appropriate membrane (Misek et al., 1984; Fuller et al., 1985). Apical sorting signals are often post translational modifications, most commonly N-linked or O-linked glycosylation (Scheiffele et al., 1995; Yeaman et al., 1997), both of which lead to protein missorting if not present. As these modifications are added in the Golgi apparatus, proteins are trafficked as soon as they exit the trans-Golgi body. In apical anterograde trafficking, proteins are sorted at the Golgi based on their affinities to interact with self-aggregated structures (Lafont et al., 1998; Ohkura et al., 2014) comprised of cholesterol and glycosphingolipids known as lipid rafts (Hakomori & Handa, 2002; Wang & Silvius, 2003). The apically targeted proteins are sorted into vesicles, which then interact with lipid rafts, which act as the secondary sorting mechanism for apical transport vesicles (Brown et al., 1989; Lisanti et al., 1989; Kenworthy & Edidin, 1998). The main factor by which apical transport vesicles interact with lipid rafts is through the presence of glycosylphosphatidylinositol-anchored proteins (GPI-APs). GPI-APs become incorporated into the lipid rafts as the rafts pick up the apically targeted proteins at the trans-Golgi body (Brown et al., 1989; Lisanti et al., 1989; Tashima et al., 2006).
While many apical proteins are trafficked through the use of lipid rafts, some proteins are not. These proteins still utilise apical transport vesicles, however these do not have the GPI-APs, and do not interact with the glycosphingolipids of the rafts. Irrespective of whether proteins utilise lipid rafts or not, apically targeted proteins either utilise certain endosomes, such as the apical early endosome, or the apical recycling endosome, or are targeted directly targeted to the apical membrane (Figure 1.3). Additionally, all apically targeted vesicles dock to the membrane to release their proteins into the plasma membrane by soluble NSF attachment protein receptor (SNARE) mediated fusion, with the proteins synaptosomal-associated protein (SNAP) 23, and two SNARE proteins; vesicle-associated membrane protein (VAMP) 7, and Syntaxin (STX) 3 (Lafont et al., 1999; Sharma et al., 2006), which are discussed further in section 1.3.2.

1.3.2 Basolateral Trafficking Pathways

Unlike apical sorting signals, basolateral sorting signals are often the result of specific amino acid sequences, rather than from post translational modifications. Furthermore, a large amount of heterogeneity is present between these proteins, meaning that basolaterally targeted proteins largely have differing amino acid basolateral targeting sequences, however there are some common

![Diagram of trafficking routes in epithelia](image_url)

Figure 1.3 – Basic anterograde trafficking routes in epithelia. Green shows apical protein sorting, including both the apical early (AEE) and recycling (ARE) endosomes, which can then traffic proteins either to the common recycling endosome (CRE), or to the apical membrane, where SNAP23 and either STX1A or STX3 incorporate the proteins into the apical membrane. Additionally, in some polarised cells, apically targeted proteins can travel via the transcytotic pathway (Blue), where proteins are sent to the basolateral membrane, before being sent to the basolateral early endosome (BEE), then to the apical membrane. Orange shows basolateral protein sorting, including the BEE, which can traffic proteins either to the CRE or to the basolateral membrane, where SNAP23 and STX4 incorporate proteins into the basolateral membrane. Finally, proteins can be sent to a random membrane (Black), which achieves an asymmetric distribution through selective protein retention in the cell membrane through interactions with PDZ proteins. Pilmore, Unpublished.
motifs which have been identified. One of the main motifs involved in basolateral protein trafficking is the tyrosine (YXXØ) motifs, consisting of tyrosine (Y), two nonspecific amino acids (X), and a large hydrophobic residue (Ø) (Matter et al., 1992; Thomas et al., 1993; Sun et al., 2001). A second type of basolateral sorting signal are hydrophobic/dileucine (LL) motifs, which exist on the C-terminal domain (Miranda et al., 2001; Regeer & Markovich, 2004; Guezguez et al., 2006). Additionally, basolateral sorting signals and basolateral sorting machinery share common elements with endocytic sorting machineries (Rodriguez-Boulan & Musch, 2005; Deborde et al., 2008). Furthermore, it is not uncommon for basolateral proteins to have two sorting signals; both the low-density lipoprotein receptor (LDLR) and aquaporin 4 (AQP4) have both a YXXØ motif and an element with an acidic residue cluster (Matter et al., 1992; Madrid et al., 2001). Similarly, the basolateral protein CD147 contains both a mono-leucine motif and an acidic residue cluster (Deora et al., 2004).

There are two main mechanisms behind the basolateral trafficking of proteins; the use of adaptins and the exocyst complex. Adaptins contain heterotetrameric clathrin adaptor proteins, which recognise both the YXXØ and LL motifs through linking clathrin onto the membrane proteins (Yao et al., 2002; Doray et al., 2007). The adaptins AP-1 and AP-2 are two of the major components of clathrin coated vesicles, interacting predominantly with YXXØ and LL motifs, and serve different functions; AP-1 is involved in trans-Golgi body vesicles, while AP-2 is part of plasma membrane vesicles (Jackson et al., 2010; Robinson et al., 2010). Structural and biochemical experiments have shown that the YXXØ motif interacts with the μ subunit of AP-1 and AP-2 (Owen & Evans, 1998), while the LL domain has been suggested to have several interactions; the β subunit of AP-1 and AP-2, the μ subunit of AP-1 and AP-2, the γ/δ hemicomplex of AP-1, and the α/δ hemicomplex of AP-2 (Rodionov & Bakke, 1998; Bonifacino & Dell’Angelica, 1999; Geyer et al., 2002; Coleman et al., 2006; Doray et al., 2007).

The other basolateral trafficking mechanism is the exocyst complex, consisting of eight subunits (Sec3, 5, 6, 8, 10, Exo70, and Exo 84), that acts to regulate the delivery of basolateral cell surface proteins (Lipschutz et al., 2000). The exocyst complex was discovered originally in the yeast Saccharomyces cerevisiae through biochemical and genetic experiments (Novick et al., 1980; TerBush & Novick, 1995; TerBush et al., 1996). The mammalian exocyst complex was first purified from rat brain, however it was further found in all the examined tissues (Hsu et al., 1996; Hsu et al., 1998). Most of the exocyst subunits interact with multiple other exocyst subunits, although each individual subunit of the exocyst complex appears to have a unique function (Guo et al., 1999; Matern et al., 2001; Dong et al., 2005). Sec8 inhibition prevents the transport of the LDLR to the basolateral membrane, mutations in Sec5 and 6 hinder the trafficking of D-cadherin to the basolateral membrane, and overexpression of Sec10 reduces the transport of basolateral proteins
The exocyst is recruited to areas of membrane expansion and exocytosis, where it mediates vesicle tethering to the plasma membrane, at which point vesicle fusion through soluble N-ethylmaleimide-sensitive factor (NSF) protein receptor mediated membrane fusion can occur (discussed below) (Guo et al., 1999; Guo et al., 2000; Rivera-Molina & Toomre, 2013; Luo et al., 2014). In yeast, the exocyst protein Sec15 interacts with Rab8 (Wu et al., 2005). If this interaction occurs between one of the mammalian exocyst subunits and Rab8 this could suggest a role of the exocyst complex in the trafficking of KCa3.1 to the basolateral membrane.

1.3.3 Fusion of vesicles with the membrane

Once proteins have been successfully trafficked out to the plasma membrane, the cell needs to insert the protein into the plasma membrane for it to function. This is made possible by specialised proteins which lower the energy needed to insert proteins into the membrane. One group of proteins with the primary function of aiding vesicle integration with the plasma membrane are the soluble N-ethylmaleimide-sensitive fusion protein-attachment receptors (SNAREs). SNAREs are classified into two categories; vesicle SNAREs (v-SNAREs), and target SNAREs (t-SNAREs) (Sollner et al., 1993). Both v- and t-SNAREs associate with the plasma membrane, however the v-SNARE reside on the outside of the vesicles, while the t-SNAREs are located on the plasma membrane, allowing for a SNARE complex to form, mediating the specific recognition and fusion of vesicles with membranes (Sollner et al., 1993).

As with many protein groups, there are multiple v- and t-SNAREs. The v-SNAREs are known as vesicle-associated membrane proteins (VAMPs), and display polarity in polarised cells. This acts to stop any missorted vesicles from attaching to the incorrect membrane. VAMP7 is found on apically targeted vesicles, while VAMP3 is found specifically on basolaterally targeted membranes (Lafont et al., 1999; Procino et al., 2008). Unlike VAMP3 and VAMP7, another VAMP, VAMP8 does not show epithelial polarity, suggesting that VAMP8 is involved in exocytosis and recycling pathways (Wang et al., 2007). Similar to the polarity seen by the v-SNARE VAMP proteins, the t-SNARE proteins also exhibit epithelial polarity. STX (Syntaxin) 3 is primarily expressed on the apical membrane, and interacts with VAMP7 on apically targeted vesicles (Lafont et al., 1999), while STX 4 is expressed at the basolateral membrane, and interacts with VAMP3, found on basolaterally targeted vesicles (Procino et al., 2008). However, just as VAMP8 does not present polarity, there are two t-SNAREs not illustrating polarity in epithelial cells; STX 2 and Synaptosomal-associated protein 23 (SNAP23), which are both expressed at the apical and basolateral membranes (Fujita et al., 1998). In particular, SNAP23 interacts with both STX 3 and 4 to form t-SNARE complexes at the apical and the basolateral membranes respectively (Figure 1.3).
1.4 Families of Potassium Channels

Whilst K\(^+\) channels share the ability to traffic K\(^+\) ions with a higher affinity than Na\(^+\) ions (Morais-Cabral et al., 2001), they can be separated out into four general families; voltage gated channels, inward rectifying channels, tandem pore channels, and calcium (Ca\(^{2+}\)) activated channels (Jiang et al., 2002; MacKinnon, 2003). Ca\(^{2+}\) activated K\(^+\) (KCa) channels, which includes the channel KCa3.1, discussed in section 1.4.1, are activated directly or indirectly by the presence of intracellular Ca\(^{2+}\). The KCa channel family can be further subdivided into three categories, based on their conductance; big conductance (BK) channels, intermediate conductance (IK) channels, and small conductance (SK) channels. The SK and IK channels are both members of the KCNN gene family (Ishii et al., 1997; Joiner et al., 1997), therefore, both the IK and SK channels are relatively similar. Both the IK and SK channels are activated by Ca\(^{2+}\) as it binds to a calmodulin domain on the C-terminal complex (Xia et al., 1998; Fanger et al., 1999; Schumacher et al., 2001). Furthermore, both the IK and SK channels exhibit a relatively low conductance; IK has a conductance of \(~20-45~pS\), while SK is even lower, with a conductance of \(~2-20~pS\) (Ishii et al., 1997; Joiner et al., 1997). For reference, the BK channel has a conductance of \(~200~pS\) (Barrett et al., 1982). The similarities that exists between the IK and SK channels are due to them all being members of the KCNN gene family, with the IK channel (IK1/ KCa3.1) exhibiting \(~40\%\) similarity at the amino acid level compared to the SK channels (SK1-3/ KCa2.1-3) (Ishii et al., 1997; Joiner et al., 1997).

![Figure 1.4 – The KCa3.1 channel.](image)

This diagram shows the KCa3.1 channel, containing six transmembrane domains, labelled S1-S6. KCa3.1 also contains a calcium binding calmodulin domain on the C-terminus, and a pore forming loop between the 5\(^{th}\) and 6\(^{th}\) transmembrane domains. At the plasma membrane, four of the proteins shown here combine to form a heterotetrameric functional KCa3.1 channel. Pilmore, Unpublished.

The SK channels were first cloned from the mammalian brain (Kohler et al., 1996), and were identified before KCa3.1 was identified (Ishii et al., 1997; Joiner et al., 1997). SK channels contain the
traditional K\(^+\) selectivity pore in their pore loop, which is located between S5 and S6 (Kohler et al., 1996). The trafficking of the SK channel KCa2.3 has been shown to be controlled by a number of factors, including the calmodulin domain used in channel activation (Lee et al., 2003). Additionally, it has been shown that the N-terminal domain, the proximal C-terminal domain, and the calmodulin domain are all vital to traffic KCa2.3 from the ER out to the Golgi body, and that the distal C-terminal domain contains motifs which are required for KCa2.3 to exit the Golgi body and enter transport vesicles (Roncarati et al., 2005).

Importantly for this project, KCa2.3 has been shown to be recycled, which suggests that other members of the KCNN gene family may have also retained the ability for recycling. KCa2.3 has been shown to undergo membrane recycling, which is dependent on RME-1, Rab35, and an N-terminal domain (Gao et al., 2010; Lin et al., 2012). Additionally, KCa2.3 endocytosis has been shown to undergo caveolar trafficking, with endocytosis dependent on GTPases, and exocytosis depending on N-ethylmaleimide (NEM) (Lin et al., 2012), although the experiments performed by Lin and colleagues were in endothelial, rather than epithelial cells. While KCa2.3 has been shown to be recycled, current evidence suggests that KCa3.1 is not, instead, only undergoing a process of slow internalisation followed by degradation (Lin et al., 2012). Furthermore, under the timescale measured by Lin and colleagues (< 30 mins), KCa3.1 was found to not be trafficked from the basolateral membrane (Lin et al., 2012). While these results suggest that KCa3.1 is not recycled, a paper by Schwab and colleagues (Schwab et al., 2012) proposed that KCa3.1 is recycled in migratory cells. This team showed that KCa3.1 is subject to clathrin mediated endocytosis, and calculated that KCa3.1 should be internalised much faster than the 60-90 min half-life which is observed (Balut et al., 2010). This lead Schwab and collaborators to suggest their results were consistent with the notion of channel recycling, despite not producing data showing channel internalisation kinetics.

1.4.1 KCa3.1

In 1958, Gyorgi Gárdos was studying currents in erythrocytes when he observed that the addition of Ca\(^{2+}\) resulted in a stimulated electrical current (Gardos, 1958). It was further noted by Gardos that as Ca\(^{2+}\) increased, there was a resultant increase in K\(^+\) efflux. Although this Ca\(^{2+}\) sensitive K\(^+\) current was first observed in 1958, the current was not accurately shown to be that of KCa3.1 until 2003 (Hoffman et al., 2003). While the intermediate conductance Ca\(^{2+}\) activated K\(^+\) channel is primarily referred to nowadays as KCa3.1, in the past it was referred to as IK1, IKCa4, and originally as SK4.

The KCa3.1 channel consists of a tetrameric structure showing rotational symmetry around the channel pore, which, when constructed correctly, forms a voltage and time independent, ligand
binding channel. Each of the four subunits which make up KCa3.1 are comprised of 427 amino acids, arranged to form six transmembrane domains and a P loop between domains 5 and 6 (Figure 1.4) (Jiang et al., 2003; Klein et al., 2007). While it has been mentioned that KCa3.1 is activated by Ca²⁺, which binds to a calmodulin receptor on the C-terminal domain, KCa3.1 is also known to be activated by ATP, 1-EBIO, and DCEBIO (Devor et al, 1996; Joiner et al, 1997; Fanger et al, 1999; Gerlach et al., 2001). Furthermore, KCa3.1 has a number of inhibitors, namely charybdotoxin and clotrimazole (Devor et al, 1997; Ishii et al., 1997; Joiner et al., 1997).

1.4.2 Trafficking of KCa3.1

Much of KCa3.1 trafficking remains to be studied, however, there are certain aspects which have been deciphered. The majority of the knowledge regarding KCa3.1 trafficking is based on the anterograde KCa3.1 trafficking pathway. Recently, Bertuccio and colleagues (2014) examined the role of Rab1 and Rab8 in the trafficking of KCa3.1 to the basolateral membrane. Previously, the roles of both Rab1 and Rab8 in epithelial trafficking had been clearly defined; Rab1 regulates ER → cis-Golgi apparatus trafficking (Zhang et al., 2009), while Rab8 regulates trans-Golgi → basolateral membrane trafficking (Chen et al., 1998). The role of both Rab1 and Rab8 in the trafficking of KCa3.1 was discovered through dominant-negative mutations of Rab1 and Rab8, which resulted in a reduction of the membrane population of KCa3.1 at the basolateral membrane, demonstrating an essential role for both Rab1 and Rab8 in KCa3.1 trafficking. Additionally, it was shown that, following exit from the Golgi apparatus, KCa3.1 is not trafficked through either the transferrin receptor positive recycling endosomes, nor through RME-1, suggesting that KCa3.1 is directly trafficked to the basolateral membrane (Bertuccio et al., 2014).

As mentioned above, there are conflicting studies regarding the possible recycling of KCa3.1; Schwab found that KCa3.1 appeared to be internalised in a manner consistent with channel recycling in migratory cells (Schwab et al., 2012), while Lin found that KCa3.1 was only subject to slow internalisation and degradation in aortic vessels (Lin et al., 2012). While Lin and colleagues did not find any evidence of KCa3.1 recycling, they did find evidence of KCa2.3 recycling (Lin et al., 2012). This suggest that other members of the KCNN gene family may be recycled, such as KCa3.1.

Furthermore, the role of two further aspects have been established in KCa3.1 trafficking; the cytoskeleton and the motor protein myocin-Vc. Inhibiting either cytoskeletal activity or myocin-Vc activity each reduced targeting of KCa3.1 to the basolateral membrane, however it is unknown whether or not KCa3.1 is missorted to the apical membrane, or if it simply never reaches the membrane (Farquhar et al., 2017). In addition, Farquhar and colleagues (2017) stated that it is not understood the exact role that myocin-Vc plays in the trafficking of KCa3.1, and suggested that, it is
likely that myocin-Vc affects KCa3.1 trafficking after KCa3.1 leaves the Golgi apparatus, as both myocin-Vc and the cytoskeleton have been shown to interact with Rab8 (Chabrillat et al., 2005; Watanabe et al., 2008; Xu et al., 2009). Farquhar and collaborators (2017) proposed that, as myocin-Vc has been shown to traffic cargo along the microtubules, it is possible that myocin-Vc allows KCa3.1 to be trafficked along the microtubule cytoskeleton of the cell (Jacobs et al., 2009).

1.4.3 Clinical relevance of KCa3.1

As KCa3.1 is present in a wide variety of tissues, it is able to play a role in a number of pathophysiological states. Under normal physiological conditions, KCa3.1 plays an important role in the homeostasis of both intracellular and extracellular K⁺, therefore, if this balance is disrupted, it can lead to serious pathophysiological conditions. As it stands, this makes KCa3.1 out to be an attractive target for disease therapy. However, in order to generate novel therapies, it is vital to obtain a more complete understanding of both KCa3.1 trafficking and KCa3.1 stimulation/inhibition, as different disease states alter KCa3.1 expression in different ways; some states increase the membrane population of KCa3.1, while some decrease it, and some disease states act to alter the open probability of KCa3.1. Current experimental data suggest that altering the membrane population of KCa3.1, thus “resetting” the membrane population of KCa3.1 back to physiological levels, could act as a compensatory mechanism to reduce the effects of certain disease states.

1.4.4.1 Hereditary xerocytosis

Recently, it has been reported that KCa3.1 plays a role in hereditary xerocytosis (HX), which is also known as dehydrated hereditary stomatocytosis. HX is an autosomal dominant disease, resulting in congenital haemolytic anaemia, and is clinically categorised by primary erythrocyte dehydration (Miller et al., 1971). This dehydration is the result of greatly increased K⁺ permeability in comparison to Na⁺ permeability, which results in the loss of KCl from the cells, leading to cellular water loss in order to maintain the osmotic equilibrium (Miller et al., 1971). There have been three mutations in the KCNN4 gene which codes for KCa3.1 which have been linked to HX; one mutation within the calmodulin binding domain, and the other two on the pore forming domain (Andolfo et al., 2013; Glogowska et al., 2015; Rapetti-Mauss et al., 2015). As the KCNN4 mutations which lead to HX ultimately increase KCa3.1 channel activity, it is believed that the increased K⁺ efflux from KCa3.1, leads to Cl⁻ efflux, and subsequently, water exits the erythrocytes. This mechanism is similar to the erythrocyte dehydration seen in sickle cell anaemia (Lauf et al., 1992; Gibson et al., 1998), where KCa3.1 is activated by increased Ca²⁺ influx, leading to K⁺ efflux, and water loss (discussed in section 1.5.3.4).
1.4.4.2 Ulcerative colitis

A second disease state involving KCa3.1 is the inflammatory bowel disease, ulcerative colitis (UC). In the human colon, the dominant driving force of water absorption is electrogenic Na\(^+\) ion transport (Greig et al., 2004). A decrease in the potential difference caused by the electrogenic Na\(^+\) transport is a trademark trait of inflammation in the mucosa, reflecting downregulation of apical Na\(^+\) channels (Amasheh et al., 2004). A further driving force in water absorption are basolateral K\(^+\) channels, such as KCa3.1 (Sandle et al., 1994). These channels determine the intracellular membrane potential, which is an important factor in Na\(^+\) channel activity, and therefore, water absorbance. In UC, unlike in HX, the basolateral membrane concentration of KCa3.1 has been found to be significantly reduced compared to healthy patients (Al-Hazza et al., 2012). This reduction in KCa3.1 was sufficient to incur a 75% decrease in K\(^+\) ion flux, which lead to an impaired Na\(^+\) ion flux, and a subsequent reduction in the ability of affected cells to absorb water across the apical membrane (Al-Hazza et al., 2012). While this does not specifically indicate that a reduction in KCa3.1 expression correlates directly to the pathophysiological symptoms of UC, KCa3.1 was suggested to be a potential target for disease therapy to treat the symptoms of UC.

1.4.4.3 Autosomal dominant polycystic kidney disease

Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic disorder affecting luminal organs such as the liver, pancreas, heart vesicles, and the brain; however ADPKD is best known for its pathophysiological renal effects (Dalgaard, 1957; Torres et al., 2007; Torres & Harris, 2009). ADPKD can be caused by mutations in two individual genes, PKD1, which accounts for roughly 85% of ADPKD cases, and PKD2, which accounts for the remaining 15% of cases (Harris, 2006). The PKD genes encode for the proteins polycystin-1 and polycystin-2, which are believed to interact to form a protein complex located in the primary cilia of epithelial cells, and has been suggested to facilitate Ca\(^{2+}\) influx through mechanosensation derived from fluid movement (Qian et al., 1997; Yoder et al., 2002).

1.4.4.4 Sickle cell anaemia

Sickle cell anaemia (SCA) is a genetic disorder affecting the haemoglobin protein in the erythrocytes, where a single amino acid substitution allowing for haemoglobin proteins to adhere to each other under acidic conditions, such as in low oxygen, high carbon dioxide conditions (Nagel & Lawrence, 1991). Under physiological conditions, the intracellular cation homeostasis in erythrocytes is maintained by the active movement of Na\(^+\) and K\(^+\) ions by the Na\(^+\)/K\(^+\)-ATPase channel, and low passive ion permeability (Joyce, 1958). However, in patients with SCA, the passive cation permeability is substantially higher, causing erythrocytes to shrink, elevating the relative
concentration of the aforementioned mutated haemoglobin (HbS). Furthermore, as the time required for haemoglobin polymerisation is inversely proportional to the concentration of HbS to the power of between 30-50 \((\text{HbS}^{30-50})\), even small amounts of cell shrinkage severely increase the likelihood of HbS polymerisation (Eaton & Hofrichter, 1987).

There are three main transport systems involved in erythrocyte dehydration; increased conduction of positive ions into the deoxygenated erythrocytes, the K⁺-Cl⁻ cotransporter, and KCa3.1 (Lew & Bookchin, 2005). Under deoxygenation, \(\text{Ca}^{2+}\) enters the cell (Rhoda et al., 1990), which activates the KCa3.1 channel, and in turn causes K⁺ and Cl⁻ efflux through the both KCa3.1 and the K⁺-Cl⁻ cotransporter, leading to water loss (Lauf et al., 1992; Gibson et al., 1998). Additional studies have shown that hydration of erythrocytes can be increased through the use of KCa3.1 inhibitors, which reduce K⁺ efflux, therefore reducing Cl⁻ efflux and reducing water loss (Brugnara et al., 1993; De Franceschi et al., 1994).

1.4.4.5 Fluid secretion

As discussed above, KCa3.1 is believed to be involved in the dehydration of erythrocytes under deoxygenated conditions, however, KCa3.1 also plays a role in fluid secretions elsewhere in the body. Fluid secretion as a result of Cl⁻ efflux relies strongly on the activity of basolateral proteins in order to generate a sufficient electrochemical gradient. This gradient is generated in a two-step process; firstly, Na⁺/K⁺-ATPase uses primary active transport to export Na⁺ out of the cell against the concentration gradient, and secondly the Na⁺/K⁺/2Cl⁻ cotransporter (NKCC) uses secondary active transport to import K⁺ and Cl⁻ into the cell, driven by Na⁺ efflux. (Aleksandrov & Riordan, 1998; Trinh et al., 2008). KCa3.1 then allows for K⁺ efflux, preventing build-up of K⁺ from NKCC, and maintaining the K⁺ concentrations of both the extracellular and intracellular fluids, allowing for Na⁺/K⁺/ATPase to function optimally. As K⁺ efflux occurs, water is drawn out of cells in order to keep the osmotic homeostasis balanced, therefore, if more K⁺ occurs, due to increased KCa3.1, cells will have increased fluid secretion.

KCa3.1 is also able to inhibit fluid secretion, for example, in the stomach, where parietal cells rely on K⁺ secretion through the H⁺/K⁺-ATPase channel (Vallon et al., 2005). Upon the activation of KCa3.1 in the stomach, K⁺ is able to exit cells on the basolateral side, which leads to a decrease in K⁺ efflux at the apical membrane, and inhibiting fluid secretion (Rotte et al., 2011). This was observed when DC-EBIO, a potent KCa3.1 activator, elicited a decrease in gastric secretions, an effect attenuated upon the addition of KCa3.1 inhibitor TRAM-34 (Rotte et al., 2011).
1.4.4.6 Cardiac fibrosis

Fibrosis is the process of scarring, characterised by the accumulation of fibroblasts, resulting in the excess accumulation of the extracellular matrix, distorting the physiological architecture, and function of tissue. Cardiac fibrosis in particular, is a contributing factor in many cardiac diseases (Weber, 2000), and the contribution fibrogenesis plays in the impairment of cardiac function increasingly more recognised (Espira & Czubryt, 2009). Fibrosis itself can manifest in two forms; reactive interstitial fibrosis, or replacement fibrosis (Anderson et al., 1979). It is believed that left ventricular pressure overload leads to reactive interstitial fibrosis, which manifests into replacement fibrosis without the loss of cardiomyocytes (Isoyama & Nitta-Komatsubara, 2002). Acute myocardial infarction, on the other hand, results in myocardial cell death, and a state of replacement fibrosis (Hasenfuss, 1998).

Furthermore, the onset of cardiac fibrosis has been suggested to be the result of an imbalance between the synthesis of collagen in the heart, and the degradation of the myocardium (Banerjee et al., 2006). Interestingly, KCa3.1 has been demonstrated to have a role in both the rate of collagen secretion, and the rate of cardiac fibroblast proliferation (Wang et al., 2013a; Zhao et al., 2015). Zhao and associates (2015) showed that inhibiting KCa3.1 with TRAM-34 in pressure overloaded rats, exhibited a significant reduction in cardiac fibrosis, shown through a decrease in both angiotensin II and in overall myocardial inflammation. These results therefore suggest that KCa3.1 may be a novel target for cardiac fibrosis therapy in humans, particularly in cases of reactive interstitial fibrosis.

1.4.4.7 Diabetic nephropathy

Diabetic nephropathy (DN), also known as diabetic kidney disease, is amongst the most prevalent, and dire long-term complications faced by diabetic patients, affecting between 30-40% of diabetes mellitus patients (Gross et al., 2005). DN is caused by angiopathy of the glomerular capillaries, resulting in a progressive pathological renal condition (Kanwar et al., 2008). Additionally, DN is the leading cause of end-stage renal disease in the United States of America, and is a lead contributing factor towards diabetic morbidity and mortality across the globe (USRD, 2009).

One of the predominant conditions relating to DN is interstitial fibroblast activation; these fibroblasts rapidly proliferate, activating myofibroblasts in the process, leading to a marked increase in deposition of extracellular matrix into the renal interstitial space (Qi et al., 2006). As with cardiac fibrosis, discussed above, KCa3.1 has been known to be in fibroblasts since 1999, when it was cloned from fibroblast cells (Pena & Rane, 1999). Moreover, activated fibroblasts treated with TRAM-34 have shown to have significantly reduced proliferation, suggesting that KCa3.1 may be a potential target for treating the fibrosis stemming from DN in patients (Grgic et al., 2009).
1.4.4.8 KCa3.1 in the neural system

While the focus of KCa3.1 in disease thus far has revolved around cardiac and epithelial tissues, it has been shown, through immunolabelling, that KCa3.1 is expressed in all major neuronal cell types; including in the cingulate and motor cortices, cortical and subcortical neuronal regions, and the olfactory bulb (Turner et al., 2015). Additionally, KCa3.1 has been located in the spinal cord, where it plays a role in fluid secretion in ependymal cells, and in the dorsal root ganglion cells (Boettger et al., 2002; Bahia et al., 2005; Chen et al., 2015). Finally, KCa3.1 portrays an important role in the proliferation and migration of neuronal cells, such as endothelial cells and neuroblasts (Yamazaki et al., 2006; Turner & Sontheimer, 2014), and in the regulation of neuronal input to cerebellar Purkinje cells (Engbers et al., 2012).

1.4.4.9 Alzheimer’s Disease

Alzheimer’s disease (AD), is an irreversible, neurodegenerative disorder which progresses to slowly abolish patients’ cognitive ability. One of the lead factors contributing to AD is age; the incidence of AD is believed to double every 5 years after 65 years of age (Hirtz et al., 2007). One protein involved in the pathophysiology of Alzheimer’s disease is the amyloid-β protein (Aβ), which is a hydrophobic protein, which self-aggregates into amyloid fibrils, and deposits as amyloid plaques, which are a hallmark of AD. The Aβ aggregates which form then induce microglial activation, which clears the Aβ aggregates, but directly induces neurotoxicity through the release of inflammatory mediators in the process. (El Khoury et al., 2007; Cameron & Landreth, 2010). Aβ proteins are also expressed as oligomers (AβO), which also induce microglial activation (Maezawa et al., 2011). It was found that use of TRAM-34, a KCa3.1 inhibitor, amended the neurotoxicity caused by AβO induced microglial activation by controlling Ca²⁺ entry, preventing oxidative burst (Maezawa et al., 2011; Maezawa et al., 2012). Additionally, KCa3.1 blockade has been shown to be a target for another neural glial cell, astrocytes, which are also activated by Aβ accumulation (Wei et al., 2016) (Yi et al., 2016). Together, these results suggest that KCa3.1 could be an effective target to prevent or diminish the neurodegradation which occurs upon Aβ accumulation.

1.5 The Retromer pathway

The retromer pathway is a trafficking pathway, which is believed to be involved in the recycling and degradation of plasma membrane proteins, and in the regulation of endosome to trans-Golgi body trafficking (Arighi et al., 2004; Temkin et al., 2011). Retromer was first observed in yeast (Seaman et al., 1998), where it was observed to be essential in the process of retrieving the yeast retromer protein receptor VPS10p (vacuolar protein sorting 10 protein) from the endosome to the Golgi. VPS10p is a transmembrane sorting receptor which shuttles between endosomes and the
trans-Golgi body (Seaman et al., 1997). In yeast, the retromer complex consists of two sub-complexes; the VPS26, 29, 35 trimer, or the cargo recognition complex (CRC) (shown in Figure 1.5), and the VPS17p-VPS5p heterodimer (Horazdovsky et al., 1997; Seaman et al., 1998). While the CRC has been highly conserved between species, the genes encoding for VPS17p and VPS5p have evolved to form four proteins, rather than two, which allows for a greater number of combinations of heterodimers to form. In mammals, these proteins are sorting nexin (SNX) 1, SNX2, SNX5, and SNX6, and these sorting nexin proteins all contain a Bin/Amphiphysin/Rvs (BAR) domain, helping to promote membrane curvature (Carlton et al., 2004). Like in yeast, these proteins still form dimers, however only specific combinations occur; either SNX1 or SNX2 are able to form a dimer with either SNX5 or SNX6 (Rojas et al., 2007).

While the mammalian Retromer complex is largely homologous to the yeast Retromer complex in function (Arighi et al., 2004), the mammalian Retromer complex also regulates the transport of the mammalian homologue of the yeast protein VPS10p, sortilin (Mari et al., 2008; Fjorback et al., 2012). Recently, Retromer was found to play a role in the recycling of proteins from the early endosome to the plasma membrane (Chen et al., 2010). Retromer further uses a range of proteins in order to selectively recycle membrane proteins; for example, the beta-2-adrenergic receptor (β2AR) is recycled when the CRC containing the β2AR interacts with SNX27 (Temkin et al., 2011). Retromer is therefore recognised as a critical regulator of many export pathways from endosomes (Pocha et al., 2011).

Figure 1.5 – The Retromer complex. This diagram of the Retromer complex shows the cargo recognition complex (CRC), consisting of VPS26, 29, and 35, the WASH complex, consisting of CCDC53, WASH1, Fam21, SWIP, and Strumpellin, the SNX-BAR dimer, and SNX27, which is able to interact with both the WASH complex and the CRC. The green links show how proteins are able to interact with each other. Pilmore, Unpublished.
1.5.1 Structure of the cargo recognition complex

The CRC is a complex consisting of three vacuolar protein sorting-associated (VPS) proteins; VPS26, VPS29, and VPS35, which form a heterotrimer in a 1:1:1 ratio (Figure 1.5) (Norwood et al., 2011). While certain areas of the structure of VPS35 remains to be studied, it is known that VPS35 is a 796 amino acid long protein containing a curved surface with six helices and a series of hydrophobic grooves separated by ridges, believed to function as a binding site (Nothwehr et al., 1999). Additionally, the N-terminus of VPS35 contains a Proline, Arginine, Leucine, Tyrosine, Leucine (PRLYL) motif, which interacts with VPS26 (Reddy & Seaman, 2001; Zhao et al., 2007), and the C-terminus of VPS35 contains an α-solenoid fold which binds with VPS29 (Collins et al., 2005). These C- and N-terminal domains allow for VPS35 to function as the central scaffolding for the CRC (Hierro et al., 2007).

The second protein of the CRC is VPS29, which is the smallest protein in the CRC, and associates with the concave face of the C-terminus of VPS35 (Hierro et al., 2007). VPS29 also utilises conserved residues to interact with the α-solenoid fold on the VPS35 C-terminus (Collins et al., 2005). The final protein in the CRC is VPS26, a protein with three known isoforms; VPS26A, VPS26B, and Down’s syndrome critical region 3 (DSCR3). VPS26A was the first one of the three whose structure has been analysed, consisting of two sets of two antiparallel β sheets, connected together by a flexible linkage, and by a polar core (Shi et al., 2006). VPS26B has a very similar structure to VPS26A, including an identical binding motif to the A isoform, allowing for both isoforms to compete in binding to VPS35 (Collins et al., 2008). The final isoform of VPS26 is DSCR3, which remains to have its structure studied in depth, although it is believed to be a smaller size than either VPS26A or B (Collins et al., 2008).

1.5.2 The WASH complex

The Wiskott-Aldrich syndrome protein and SCAR Homologue (WASH) complex is an Arp2/3 activating protein located on the endosomal surface. Arp2/3 is a seven-subunit complex which is both a component and regulatory factor of the actin cytoskeleton (Machesky et al., 1999; Marchand et al., 2001; Kelly et al., 2006) (Figure 1.5). As the WASH complex activates Arp2/3, WASH is an integral part of the Retromer pathway, allowing for the formation of branched actin filaments. The mammalian WASH complex consists of five separate subunits, which function as one obligate multiprotein complex; WASH1, Strumpellin, SWIP, CCDC53, and Fam21 (Derivery et al., 2009; Gomez et al., 2012). While these components of WASH are highly conserved across eukaryotes, they are absent in yeast (Derivery & Gautreau, 2010).
WASH is required for Retromer-mediated trafficking, and the CRC recruits the WASH complex into endosomes through multiple LFa motif interactions between VPS35 of the CRC, and Fam21 (Family with sequence similarity 21) of WASH (Harbour et al., 2010; Harbour et al., 2012). Furthermore, these interactions require a fully functional CRC; Fam21 has been shown to only interact with VPS35 when VPS35 has formed an interaction with VPS29, suggesting that this interaction causes a conformational shift to allow for the Fam21-VPS35 interaction to establish (Helfer et al., 2013). The WASH complex has been shown to direct cargo in multiple directions; WASH is required to recycle the β2AR from the early endosome to the plasma membrane (Temkin et al., 2011), and to transport the mannose-6-phosphate receptor (CI-MPR) from the early endosome to the trans-Golgi body (Gomez & Billadeau, 2009). Additionally, WASH has been shown to be responsible for the endosomal sorting of the LDLR (Bartuzi et al., 2016), which is trafficked to the basolateral membrane by the exocyst complex (Grindstaff et al., 1998). This interaction could signify the ability for WASH to traffic other exocyst trafficked proteins.

The largest identified protein of the WASH complex, and a fairly unique member, is Fam21 (Jia et al., 2010), which has a notably long 1100 amino acid tail containing many features, amongst which are 21 LFa motifs (Jia et al., 2012). These LFa motifs are the way in which Fam21 interacts with VPS35; it is believed that the LFa motifs play a crucial role in the detection of the CRC density at the plasma membrane, further allowing for WASH recruitment coordination and the subsequent actin polymerisation which drives vesicle movement (Jia et al., 2012). While the interaction formed with VPS35 is perhaps the most notable formed by Fam21, Fam21 is capable of interacting with multiple proteins, linking the WASH complex with multiple proteins at the same time. Another notable interaction formed by Fam21 is with SNX27, which establishes that SNX27 mediated cargo is incorrectly trafficked if the interaction between SNX27 and Fam21 has not formed (Lee et al., 2016). Lee and collaborators (2016) also showed that this cargo is mistrafficked in different ways depending on if SNX27 or Fam21 are missing; if Fam21 is omitted, the cargo is missorted to the trans-Golgi body, whereas if SNX27 is absent, the cargo is sent to the lysosome for degradation (Lee et al., 2016). The globular head of Fam21 is also used for interactions; binding to both WASH1 of the WASH complex, and to SNX1/2, which further interact with the cargo in the CRC (Gomez & Billadeau, 2009).

1.5.3 Sorting nexins

Sorting nexins (SNX) are a family of proteins with 33 unique members identified in mammals; although more members are apparent in other organisms such as yeast (Cullen, 2008). The members of the SNX protein family are characterised by the presence of a Phox (PX) domain (Teasdale & Collins, 2012), which interact with phosphatidylinositol-3-monophosphate (PtdIns3p) enriched
elements of the early endocytic network (Seet & Hong, 2006). Other domains possessed by SNX proteins, including SNX1, include the BAR domain, which consists of 3 α-domains, together forming a rigid curved structure (Carlton et al., 2004; Peter et al., 2004). This curved BAR domain has been hypothesised to bind optimally to the curvature of membranes, providing the ability to drive membrane curvature, leading to vesicle formation and stabilizing the highly curved membranes found in vesicles (Zimmerberg & McLaughlin, 2004; Frost et al., 2008).

1.5.3.1 Sorting nexin 1

SNX1, along with SNX2 are the mammalian orthologs of the yeast protein VPS5p, which forms an interaction with the VPS17p, who’s mammalian orthologs are SNX5 and SNX6 (Carlton et al., 2005; Griffin et al., 2005; Rojas et al., 2007; Wassmer et al., 2009). Structurally, all of SNX1, 2, 5, and 6 contain not only the characteristic PX domain of sorting nexins, but also a BAR domain. Along with PtdIns3P, SNX1 also interacts with phosphatidylinositol-3,5-biphosphate (Ptd (3,5) P₂). This is the interaction required for SNX1 to target the highly curved subdomains of the early endosome (Carlton et al., 2004). Due to the role SNX1 plays in the early endosome, it is also one of the defining features of the endosome to trans-Golgi network (TGN) transport carrier (ETC) (Bujny et al., 2007) (Figure 1.6).

In the early endosome, SNX1 and another sorting nexin, SNX4, both form sorting tubules, however, these tubules are structurally distinct, and sort specific proteins to specific locations (Traer et al., 2007). The exact process behind how these sorting nexins form such distinct tubules remains to be uncovered, however variations in the affinity and specificity towards different phosphoinositides appears to be a contributing factor towards the formation of these highly-specified sorting tubules (Carlton et al., 2004; Traer et al., 2007). Another factor which may contribute to the highly-specified tubules is that sorting nexins may form higher order complexes, which can specifically exclude other sorting nexins with similar functions (Carlton et al., 2004). It has also been suggested that sorting nexins such as SNX3 are able to utilise the transport structures created by sorting nexins like SNX1 and SNX4 in order to transport their cargo, as they are unable to synthesise transport structures (Strochlic et al., 2007).

In epithelia, the RNA interference of SNX1 expression lead to defective Retromer mediated sorting, however similar experiments with SNX2 have failed thus far to outline a relationship between the two sorting nexins (Carlton et al., 2005; Rojas et al., 2007). SNX1 has been shown to interact with both SNX5 and SNX6, and the suppression of either SNX5 or SNX6 leading to a significant loss in the stabilisation of SNX1, further leading to a decrease in SNX1 expression (Wassmer et al., 2007). This suggests that the SNX-BAR heterodimers formed by SNX1/2 and SNX5/6
act together in order to generate an early endosomal tubular subdomain, allowing for the docking of the CRC.

1.5.3.2 Sorting nexin 4

Aside from SNX1, 2, 5, and 6, there is another SNX protein with a BAR domain; SNX4 (Traer et al., 2007). In yeast, the proteins SNX4, SNX41, and SNX42 act alongside the yeast proteins VPS5 and VPS17. While SNX4 in yeast forms a complex with SNX41 and SNX42, it is unknown if this complex is conserved at all in mammals, or if SNX41 or 42 have mammalian orthologues at all. The mammalian ortholog of yeast SNX4 acts in a similar way to SNX1, 2, 5, and 6, by creating transport tubules from the early endosome (Traer et al., 2007), although it is unknown if SNX4 plays a role in the tubular endosomal network (TEN) in the same way that SNX1 does. It is known that suppression of SNX4 leads to the missorting of the transferrin receptor (TfnR) into the lysosomal degradation pathway, however, it is unknown if this missorting is due to the structural integrity of the TEN being affected, or if TfnR is trafficked through an intact TEN (Traer et al., 2007).

Mammalian SNX4 does not appear to interact directly with TfnR, unlike in yeast, where a direct interaction occurs (Traer et al., 2007). It has been suggested that SNX4 interacts with another protein, reggie-1, which itself interacts with TfnR (Solis et al., 2013). An alternate hypothesis is that SNX4 regulates TfnR through the process of geometry based sorting; which proposes that the bulk

Figure 1.6 – The early endosome. Clathrin coated vesicles bind to the surface of the early endosome and to the early endocytic sorting tubules. Tubules also protrude from the early endosome in order to sort proteins in vesicles. The red bands show the tubules formed by the SNX1/2-SNX5/6 heterodimer, which creates the endosome to TGN transport carriers (ETC). The green bands show the tubules formed by SNX4, which create the tubular endosomal network (TEN). The blue bands show SNX27, which utilises tubules in order to recycle proteins such as the β2AR back to the plasma membrane. The early endosome also traffics proteins to both the TGN and along recycling tubules independently of sorting nexins. Modified from a figure by Cullen (Cullen, 2008).
flow of membrane exiting the early endosome does so through membrane tubules with a narrow
diameter, similar to those created by SNX4 (Cohen & Pintavirrooj, 2004). This allows for any protein
lacking a sorting sequence which leaves the membrane by bulk flow, like TfnR, to be indirectly sorted
by SNX4 (Traer et al., 2007). There is also evidence that SNX4 may be linked to molecular motors; as
SNX4 interacts with the (-) end of the cytoskeletal motor protein dynein (Traer et al., 2007). This
interaction is an important factor allowing for long range transport of SNX4 mediated cargo, such as
TfnR-enriched domains. This long-range transport extends from simply occurring along early
enodosomal sorting tubules, as SNX4 cargo can be trafficked from the early endosome to the
juxtanuclear endocytic recycling compartment. Dynein may also be used to assist membrane
Tabulation and membrane fission in SNX4 mediated transport (Day et al., 2015).

1.5.3.3 Sorting nexin 27

SNX27 is a unique sorting nexin in that it is the only sorting nexin currently known to contain a
PDZ (post synaptic density protein 95, Drosophila disc large tumour suppressor 1, zonula occludens
1) domain (Kajii et al., 2003). PDZ domains are commonly found in signalling proteins amongst
kingdoms of life, including animals, and play critical roles in anchoring membrane bound receptor
proteins to their cytoskeletal components (Ponting, 1997; Li et al., 2009). This PDZ domain is vital for
the function of SNX27, as it allows for multiple proteins interactions to form, including interactions
with ZO-2, a component of the tight junction (Zimmerman et al., 2013). PDZ domains are amongst
the most prevalent protein-protein interaction scaffoldings found in trafficking and signalling
proteins (Zhang & Wang, 2003). Among PDZ domains, there are two subcategories; canonical
domains, which have a conserved cavity recognising different PDZ binding motifs, and noncanonical
domains, which promote protein interactions with specific protein partners, involving protrusions
from the core PDZ folds (Zhang & Wang, 2003).

SNX27 itself utilise both the canonical and the non-canonical isoforms of PDZ domain in order
to simultaneously interact with type1 PDZ ligands, and with the CRC through interactions with VPS26
(Gallon et al., 2014). These unique interactions allow for SNX27 to act as a cargo adaptor protein for
Retromer-mediated transport of endosomes to the cell surface (Lauffer et al., 2010; Temkin et al.,
2011; Steinberg et al., 2013; Gallon et al., 2014). These SNX27 cargoes include the β2AR (Lauffer et
al., 2010), NMDA receptors (Wang et al., 2013b), and ion channels such as the basolaterally
trafficked sodium-hydrogen exchanger 3 (NHE3) (Lunn et al., 2007; Balana et al., 2011; Singh et al.,
2015).

Furthermore, SNX27 interacts with Fam21 of the WASH complex (Figure 1.5), through a direct
interaction with the FERM (4.1 protein, ezrin, radixin, moesin) domain on the N-terminus of Fam21
(Lee et al., 2016). FERM domains are widespread domains specialised in the localisation of proteins to the plasma membrane, and are located in a number of proteins involved in both cytoskeletal movement and the plasma membrane (Chishti et al., 1998; Pearson et al., 2000). This interaction is critical for the correct trafficking of the β2AR, and for NHE3. As mentioned previously, if SNX27 is not present in the cell, the SNX27 mediated cargo is sent to degradation in the lysosome, whereas if Fam21 is not present, the SNX27 mediated cargo is sent to the trans-Golgi body (Lee et al., 2016). The current array of evidence suggests that Retromer is largely involved in recycling of proteins from the plasma membrane to the trans-Golgi network, or to the plasma membrane from the early endosome. Retromer is also believed to play a role in protein degradation. Despite the array of data surrounding Retromer, little is known about how, if at all, KCa3.1 interacts with Retromer, leading to further study being necessary.
2 Aims/Hypotheses

2.1 Aims

1. To determine the effects of SNX1, SNX4, and SNX27 knockdown on the protein levels of SNX1, SNX4, and SNX27 in Fischer Rat Thyroid cells stably transfected with KCa3.1 (FRT-KCa3.1-BLAP cells).

2. To determine if SNX1, SNX4, or SNX27 alter the trafficking of the KCa3.1 channel to the basolateral membrane of polarised epithelial FRT-KCa3.1-BLAP cells.

3. To assess any changes in the functional expression of KCa3.1 when any of SNX1, SNX4, or SNX27 are knocked down in polarised FRT-KCa3.1-BLAP cells through the use of Ussing chamber experiments.

2.2 Hypotheses

1. I hypothesise that knocking down SNX1, SNX4, or SNX27 will result in a decrease of the protein levels of SNX1, SNX4, or SNX27 in Fischer Rat Thyroid cells stably transfected with KCa3.1.

2. I hypothesise that knocking down SNX1, SNX4, or SNX27 will decrease the membrane population of KCa3.1 at the basolateral membrane of polarised epithelial FRT-KCa3.1-BLAP cells.

3. I hypothesise that the function of the KCa3.1 channel of KCa3.1 will be decreased when SNX1, SNX4, or SNX27 are knocked down in polarised epithelial FRT-KCa3.1-BLAP cells.
Methods

3.1 Cell models

In this project, immortalised cell lines were used as a model in order to demonstrate the effect of Retromer disruption on the population of KCa3.1 at the basolateral membrane. For this project, two cell lines were used, which allowed for multiple techniques to be used. The main cell line used for this project was FRT-KCa3.1-BLAP cells. These cells are modified from FRT (Fischer Rat Thyroid) cells derived Fischer Rat thyroid glands (Zurzolo et al., 1991; Tasevski et al., 1998), through the stable integration of a plasmid containing KCa3.1-BLAP (Bertuccio et al., 2014) (discussed later), and were used for immunoblot experiments and Ussing chamber experiments. These cells are able to form a polarised monolayer, allowing for the membrane population of KCa3.1 to be measured at the basolateral membrane, making them ideal for both immunoblot and Ussing chamber experiments, while unmodified FRT cells served as control cells. FRT-KCa3.1-BLAP cells were cultured in Nutrient Mixture F-12 (Catalogue# 21700075, Ham’s F-12; Invitrogen, Carlsbad, CA, USA), modified with 10% (v/v) foetal bovine serum (FBS), and 1% (v/v) penicillin/streptomycin (penstrep). Cellular media was further modified with the glycopeptide antibiotic Zeocin (850 μg/mL), which prevented the removal of the plasmid from the cells.

The other cell line used for this project were COS-7 cells. These cells are fibroblast like cells derived from African green monkey kidneys (Gluzman, 1981). These cells were selected due to their high transfection efficiency (Felgner et al., 1987; Aleksic et al., 1996). Unlike the FRT-KCa3.1-BLAP cells used for immunoblot and Ussing chamber experiments, COS-7 cells do not possess the ability to form a polarised monolayer, instead, they were used to transiently express KCa3.1-HA-pcDNA3.1. These cells were cultured in a growth media consisting of DMEM (Catalogue# 12100-046, Dulbecco’s Modified Eagle Medium; Gibco, ThermoFisher Scientific, Waltham, Massachusetts, USA) modified with 10% (v/v) FBS.

Figure 3.1 – Schematic diagram showing Transwell™/Snapwell™ permeable support showing the apical and basolateral compartments, the location of the permeable support, and the support ring, which prevents the permeable support from touching the base of the container. Pilmore, Unpublished.
All cells were grown cultured in 25 cm² cell culture flasks (Catalogue# 136196, Nunc™ Cell Culture Treated EasYFlasks™) at 37°C in 5% CO₂. For immunoblot experiments, FRT-KCa3.1-BLAP cells were seeded in Transwell™ permeable supports in order to achieve polarity (Figure 3.1). For Ussing chamber experiments, FRT-KCa3.1-BLAP cells were seeded on Snapwell™ filters in order to achieve polarity on a filter to fit the Ussing chamber apparatus (Figure 3.1). In addition to using lysates from both FRT-KCa3.1-BLAP and COS-7 cells, HEK293 (Human Embryonic Kidney) cell lysate was used as a positive control for both the SNX1 and SNX27 antibodies. HEK293 lysate was obtained from the McDonald Lab.

Finally, the *Escherichia coli* (*E.coli*) bacteria (strain DH5α) transformed with a plasmid coding for KCa3.1 containing an HA tag (KCa3.1-HA) were cultured to amplify this plasmid that was then extracted, purified, and transfected into mammalian COS7 cells. This allowed for non-membrane bound KCa3.1 to be observed by immunoblot, as the KCa3.1-BLAP model exclusively presented membrane bound KCa3.1. Bacteria harbouring the KCa3.1-HA plasmid were grown in a selection media of LB media (10g Bacto-tryptone, 5g yeast extract, 10g NaCl in 1L mqH2O) containing ampicillin (0.1% v/v) overnight at 37 °C on a shaker. Following this, the plasmid DNA was extracted through the use of a Nucleobond™ Xtra midiprep kit, which contains all of the buffers used in this section unless otherwise stated (Catalogue# 740410.50, Machery-Nagel, Bethlehem, Pennsylvania, USA) as outlined briefly in section 3.5.1.

3.2 Molecular Biology

As stated previously, the FRT-KCa3.1-BLAP cells used for this project originate from unmodified FRT cells that had been transfected with a plasmid containing KCa3.1-BLAP (biotin ligase acceptor peptide) – BirA (biotin ligase enzyme) – KDEL construct using Lipofectamine 2000™ (Catalogue# 11668019, Invitrogen, Carlsbad, CA, USA). This stable transfection introduced the BirA enzyme, which contains an endoplasmic reticulum retention motif (KDEL) behind the human cytomegalovirus (CMV) promoter of the bicistronic, or dual gene, plasmid pBudCE4.1. The pBudCE4.1 plasmid was created by amplifying KCa3.1-BLAP DNA from pcDNA3.1, which was then subcloned into the pBudCE4 plasmids, forming the pBudCE4.1 plasmid (Figure 3.2) (Balut et al., 2010). This plasmid created a cellular model where the KCa3.1 channel undergoes a process known as “internal biotinylation”.

Internal biotinylation was first reported in 2005 by Alice Ting, when she used streptavidin to label cell surface epidermal growth factors in HeLa cells (Chen et al., 2005). The Devor Lab then further developed this technique in order to allow for membrane specific detection of KCa3.1 in polarised epithelial cells (Figure 3.3) (Balut et al., 2010; Gao et al., 2010). In short, KCa3.1 in the cells
contains a biotin ligase acceptor peptide (BLAP) which is located on the extracellular loop between the S3 and S4 domains. This BLAP sequence undergoes biotinylation in the endoplasmic reticulum as a result of BirA, which localises to the endoplasmic reticulum. After leaving the ER, the biotin-tagged KCa3.1 is trafficked to the basolateral membrane. Neither the trafficking nor function of KCa3.1 is changed by the addition of either the BLAP sequence or the extracellular biotin (Gao et al., 2010).

3.3 Transfections

3.3.1 Protein expression knockdowns

For this project, FRT-KCa3.1-BLAP cells were transfected with silencing RNA (siRNA), in order to decrease synthesis of specific proteins. The relative KCa3.1 membrane population was first quantified by immunoblot, following which, differences in membrane populations of KCa3.1 in the knockdown cells compared to the control cells were determined. The FRT-KCa3.1-BLAP cells were used for both IB and Ussing chamber experiments, and these experiments were paired, so that the knockdown of the specific protein caused by transfection with siRNA measured for IB would be the same as the knockdown found in the Ussing chamber experiments. Similarly, the KCa3.1 membrane population was measured through dual experiments of IB and Ussing chamber experiments.

The knockdowns performed in this project were performed through forward transfection of FRT-KCa3.1-BLAP cells. In order to perform a forward transfection, the cells were seeded the day before the transfection, so that cells were in the growth phase during the transfection, increasing the amount of siRNA taken up. The siRNA used for this project (discussed later), was transfected into the cells through the use of two reagents; Lipofectamine 3000 and p3000 (used in a 3:2 ratio) (Catalogue# L3000015, Life Technologies, Thermo Fischer Scientific Inc, Waltham, MA, USA). The oligonucleotide sequences of the siRNA used for this project are shown in table 3.6. Transfections were performed in the presence of F12 Serum Free Media (Catalogue# 21700075, Ham’s F-12; Invitrogen, Carlsbad, CA, USA). In order to transfect 40 pM of siRNA, either control siRNA or protein specific siRNA, 50 µL of Serum Free Media was put into two separate 1.5 ml tubes. To the first tube, 3 µL of Lipofectamine 3000 was added, and to the second tube, 2 µL of P3000 was added, followed by 40 pM of siRNA. These tubes were then individually vortexed, before being combined and vortexed again, to ensure that everything mixed. The tube was then incubated at room temperature for 15 min, during which time, the media on the cells being transfected was changed from the growth media discussed earlier to the serum free transfection media. After the incubation period, the media from the tube was added to the apical media of the cells being transfected, and the transfection was left to incubate for 6 hr in the incubator, following which, the media was changed back to growth media and the cells were left to grow for 48 hr to ensure confluence.
3.3.2 Plasmid transfections

In order to express KCa3.1-HA, COS7 cells were transfected with plasmid encoding KCa3.1-HA. Like with the transfections performed earlier, these transfections were forward transfections. The main difference between the plasmid transfection here and the siRNA transfections discussed above, is that the plasmid transfections involved transfecting 1 µg of plasmid protein, while siRNA transfections involved transfecting 40 pM siRNA. The other difference is that plasmid transfections were performed on 6 cm plates seeded with 1x10^6 cells.

Like the siRNA transfections, 50 µL of transfection media was added to two 1.5 ml tubes, and either 3 µL of Lipofectamine 3000 or 2 µL of P3000 + 1 µg was added to one tube. Each tube was then vortexed, the tubes mixed together, and the final tube vortexed again before being incubated at room temperature for 15 min. The growth media on the cells was then removed, replaced with transfection media, and the transfection media from the tube was added to the cells and incubated for 6 hr.
Figure 3.2 – The pBudCE4.1 plasmid. The KCa3.1-BLAP gene is located between Xho1 (A) and Kpn1 (B), and the BirA-KDEL gene is located between Hind3 (C) and Sal1 (D). Pilmore, Unpublished.

Figure 3.3 – Cellular process outlining the addition of biotin (B) to the biotin ligase acceptor peptide (BLAP) sequence of KCa3.1 in polarised epithelial cells. When KCa3.1 is synthesised in the ER, the biotin ligase enzyme, BirA attaches a biotin molecule to the BLAP sequence, which exits on the loop between the 3rd and 4th transmembrane domains. Following this, KCa3.1 traffics normally to the basolateral membrane, where the loop between the 3rd and 4th transmembrane domains is an extracellular loop. When biotin is attached to this loop, it provides an extracellular biotin to label, allowing for membrane selective labelling of KCa3.1 with streptavidin. Then antibodies for streptavidin can be used to detect this KCa3.1-BLAP-streptavidin construct. Pilmore, Unpublished.
3.4 Western Blotting

Western blots or immunoblots (IB) were used to measure the levels of KCa3.1 protein at both the apical and the basolateral membrane of polarised epithelial cells. To produce a successful IB, there are several important steps which must take place, which are outlined below.

3.4.1 Labelling of KCa3.1 and cell lysis

Once the FRT-KCa3.1-BLAP cells are grown to confluency on polarised filters, the membrane bound KCa3.1 is able to be labelled by incubating either the apical or the basolateral membrane in 0.1% streptavidin in PBS/BSA (v/v) for 25 min at 4°C (10% bovine serum albumin in phosphate buffered saline). The cells were then washed in ice cold PBS/BSA three times for five min each wash. A final wash in ice cold PBS for five min was finally carried out to remove any remaining PBS/BSA prior to cell lysis. It was important that both the labelling of KCa3.1 with streptavidin and washing cells with PBS/BSA are carried out at 4°C in order to prevent internalisation of KCa3.1 so that only membrane bound KCa3.1 channels are visualised in immunoblot experiments through the use of an anti-streptavidin antibody. Once the cells have been labelled, the cells are ready to undergo lysis. This was completed by incubating cells in 130 μL lysis buffer on the apical membrane for 15 min (40 μL EDTA free protease inhibitor and 960 μL lysis solution; HEPES 50 mM, EDTA 1 mM, NaCl 150 mM, and Triton 5 mL; made up to 500 mL with ddH2O). The lysed cells were then scraped off the membrane and transferred to a microcentrifuge tube, which was spun at 14000g for 10 min at 4°C in order to separate the proteins from the lipids. The supernatant, containing the proteins, was transferred to a fresh microcentrifuge tube, while the pellet containing lipids was discarded.

3.4.2 Protein sample analysis

In order to determine the volume of cellular lysate to load for IB the protein concentration of the lysates were analysed in a Bicinchoninic acid (BCA) assay (Smith et al., 1985). The BCA assay determined the protein concentration through the use of three reagents; A, B, and S (Catalogue# 5000111, BioRad, Hercules, Ca, USA), and protein standards of known concentrations. For the BCA assay, 6 μL of protein standard (Bovine Serum Albumin) or cellular lysate was loaded in triplicate into a 96 well plate. This was followed by the addition of either 30 μL of reagent A (for protein standards), or 30 μL reagent AS (1 mL reagent A and 20 μL reagent S, for cellular lysates), and finally the addition of 240 μL reagent B. The absorbance of the BCA assay was the measured through the use of a Synergy 2 Multi-Mode Microplate Reader set to measure absorbance at 630 nm, and the absorbance results quantified using Gen5 software (Biotek, Winooski, VT, USA).

In order to then calculate the concentration of the cellular lysate, first, the absorbance of each of the protein standards were determined, creating a protein concentration curve. Following this,
the absorbance of the lysates were measured and the protein concentration is calculated by using the protein concentration curve set by the protein standards.

3.4.3 Sodium Dodecyl Sulphate Poly-Acrylamide Gel Electrophoresis

Sodium dodecyl sulphate poly-acrylamide gel electrophoresis (SDS-PAGE) is a process that acts to separate proteins based on molecular weight. This occurs because sodium dodecyl sulphate (SDS) has a negatively charged head with a lipophilic tail, which allowing for SDS to bind non-covalently with proteins, conferring a negative charge onto them (Weber & Osborn, 1969; Rath et al., 2009). SDS binds proteins in a ratio of 1:4, and acts to linearise proteins, resulting in the secondary, tertiary, and quaternary bonds found in proteins being converted from secondary, tertiary, and quaternary protein bonds into primary bonds (Reynolds & Tanford, 1970; Rath et al., 2009).

The other aspect of SDS-PAGE is the poly-acrylamide gel electrophoresis (PAGE), and is a process whereby proteins that have been loaded into a polyacrylamide gel are separated based on molecular weight. This technique is based on the principle that negatively charged particles will move towards a positively charged region of an electric field (Ganguli, 1956). In PAGE, the negatively charged proteins migrate from the cathode, which itself is negatively charged, to the positively charged anode. This allows for the proteins to be separated by molecular weight, as higher molecular weight proteins will encounter more resistance than lower molecular weight proteins, thus, the high molecular weight proteins will lag behind their smaller molecular weight counterparts (Shapiro et al., 1967; Weber & Osborn, 1969). A protein ladder, which contains a negatively charged, prestained proteins of known sizes is also run on the PAGE, allowing for protein size to be calculated depending on their location relative to the ladder.

SDS-PAGE acrylamide gels were created using the volumes listed below in Table 3.2. The volume of each reagent to make resolving gels changes depending on the desired acrylamide percentage gel, which are shown in Table 3.1. In order to determine what percentage gel to make, it is important to know the sizes of the proteins which are desired to be visualised. Once the desired protein range was calculated, the desired resolving gel was made, for example, the 79 kDa protein KCa3.1 was detected using an 8% gel, as was the 59 kDa protein SNX1, the 60 kDa protein SNX4, and the 61 kDa protein SNX27. This involved preparing the gel solution, and pouring 10 mL of the solution into a watertight gel cassette, followed by 1 mL of water-saturated butanol in order to remove air bubbles and prevent evaporation whilst the resolving gel was setting. After the resolving gel was set, butanol was poured off, and a further 2 mL of stacking gel was added to the gel. A comb was then added before the stacking gel set, so that wells were created in the stacking gel for protein loading (Figure 3.4).
Table 3.1 – Protein size to polyacrylamide gel table. All proteins desired to be visualised by IB should be within the protein size range of the gel being made (Abcam, 2015).

<table>
<thead>
<tr>
<th>Protein size range (recommended) (kDa)</th>
<th>Polyacrylamide gel percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 – 200</td>
<td>8%</td>
</tr>
<tr>
<td>30 – 200</td>
<td>10%</td>
</tr>
<tr>
<td>20 – 150</td>
<td>12%</td>
</tr>
</tbody>
</table>

Table 3.2 – Ingredients for the preparation of gels to run SDS-PAGE electrophoresis

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>8% Resolving Gel 10mL</th>
<th>10% Resolving Gel 10mL</th>
<th>12% Resolving Gel 10mL</th>
<th>Stacking Gel 5mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>4.6 mL</td>
<td>3.8 mL</td>
<td>3.2 mL</td>
<td>3 mL</td>
</tr>
<tr>
<td>1.5M Tris pH 8.8</td>
<td>2.6 mL</td>
<td>2.6 mL</td>
<td>2.6 mL</td>
<td></td>
</tr>
<tr>
<td>0.5M Tris pH 6.8</td>
<td></td>
<td></td>
<td></td>
<td>1.25 mL</td>
</tr>
<tr>
<td>10% SDS</td>
<td>100 µL</td>
<td>100 µL</td>
<td>100 µL</td>
<td>50 µL</td>
</tr>
<tr>
<td>30% Acrylamide/Bis-acrylamide</td>
<td>2.6 mL</td>
<td>3.4 mL</td>
<td>4 mL</td>
<td>665 µL</td>
</tr>
<tr>
<td>10% APS</td>
<td>50 µL</td>
<td>50 µL</td>
<td>50 µL</td>
<td>25 µL</td>
</tr>
<tr>
<td>TEMED</td>
<td>10 µL</td>
<td>10 µL</td>
<td>10 µL</td>
<td>5 µL</td>
</tr>
</tbody>
</table>

Once the gels had set, they were moved to vertical running frames (Catalogue# EC120, ThermoEC, Holbrook, New York) in a gel tank, which was filled with running buffer. 10 µL of prestained protein ladder (Catalogue# 10748010, Benchmark, Invitrogen, Carlsbad, CA, USA) was loaded into the 1st well, followed by protein samples mixed with sample buffer (500µL 5x βME free sample buffer (3 mL 20% SDS, 3.75 mL 1M Tris buffer pH 6.8, 9 mg bromophenol blue, 4.5 mL glycerol, adjusted to 15 mL with H₂O) and 10µL βME) in subsequent wells. The volume of protein...
sample loaded were determined via BCA protein assays so that 30 μg of protein was added to each lane. The gels were then run for 90 min at 140 V to completely separate the proteins.

3.4.4 Transfer of Proteins from Gel to Membrane

Once the SDS-PAGE gels have separated out the proteins sufficiently, it was necessary to transfer the proteins from the gel to a more durable structure, such as a polyvinylidene fluoride (PVDF) membrane (Catalogue# 88518, Thermo Fischer Scientific Inc, Waltham, MA, USA). This PVDF membrane is necessary in order to incubate the proteins in primary and secondary antibodies to allow for visualisation. In order to transfer the proteins from the gel to the PVDF membrane so that the proteins retain the separation achieved during SDS-PAGE, the gel with proteins attached and a blank, activated piece of PVDF membrane (PVDF membrane activated via incubation in methanol for 20 seconds) are sandwiched together between pieces of filter paper which have been soaked in transfer buffer (25 mM Tris, 120 mM Glycine; made to 1L with ddH₂O).

![Figure 3.4](image.jpg) – SDS-PAGE acrylamide gel. In SDS-PAGE, proteins stack together when moving through the stacking gel, allowing for accurate size based separation when flowing through the resolving gel. Pilmore., Unpublished.

![Figure 3.5](image2.jpg) – Transfer of proteins from the polyacrylamide gel to the PVDF membrane. As it is in SDS-PAGE, protein transfer moves proteins from the cathode to the anode. However, unlike in SDS-PAGE, where proteins are able to run off the gel, the Polyvinylidene fluoride (PVDF) membrane is non-porous, so proteins cannot be transferred through the membrane and onto the filter paper. Pilmore., Unpublished.

It is important to ensure that the filter paper on the cathode side (Figure 3.5) is rolled out thoroughly in order to remove any air bubbles, as these could result in sections of the gel not being
transferred onto the PVDF membrane. Transfers were run using a Semi-Dry transfer system (TE 77 PWR Semi-Dry transfer unit, Amersham ECL Semi-Dry Blotters, GE Healthcare Life Sciences), which was run for 2 hr at 45 mA per gel.

3.4.5 Blocking the PVDF membrane

Once all of the proteins from the SDS-PAGE acrylamide gel have been transferred to the activated PVDF membrane, protein detection is able to occur. However the accuracy of protein detection can be significantly improved by first binding non-specific proteins to any empty areas of the PVDF membrane. This is necessary as proteins bind to the PVDF membrane with an extremely high affinity, meaning that proteins can “accidentally” bind to the PVDF membrane (Matsudaira, 1987). In order to bind non-specific proteins to the empty areas of the PVDF membrane, the membrane is immediately immersed in a blocking solution of 5% low-fat (0.1% fat) dairy milk powder in Tris-buffered saline – Tween (TBS-T; 10mM Tris-HCl, 100mM NaCl, made to 1L with ddH₂O, 0.1% Tween-20 v/v, pH 7.4) for one hr at room temperature. The proteins in this solution do not react with the primary antibody used for protein detection, meaning that only the proteins detected are from cell lysates.

3.4.6 Antibodies

After the PVDF membrane has been blocked in 5% non-fat dairy milk powder in TBS-T for an hr, the membrane is ready to be incubated in the primary antibody used to detect a specific protein. The primary antibody is diluted in TBS-T at a concentration between 1/1000 and 1/10,000, depending on the antibody (discussed later). In order to obtain optimal visualisation of protein, the PVDF membrane is incubated in primary antibody overnight at 4°C on a shaker. After this incubation, the primary antibody removed and the PVDF membrane was washed in TBS-T for three 10 min washes. The appropriate secondary antibody is then selected, in order to react with the primary antibody. The secondary antibody is required as it is conjugated with horseradish peroxidase (HRP), which fluoresces when activated with a Lumilight™ solution. This secondary antibody is also diluted in TBS-T and incubated for one hr at room temperature on a shaker. Finally, the secondary antibody was removed and the PVDF membrane was washed in TBS-T for three 10 min washes.
Table 3.3 – Table showing antibodies used. Antibodies used for this project showing what the antibody reacts to, the animal in which the antibody was purified in, the amount the antibody was diluted in TBS-T by to reach working concentration, and the catalogue number. Additional information regarding these antibodies is in section 2.9.1.

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Purification</th>
<th>Dilution</th>
<th>Company</th>
<th>Catalogue #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary antibodies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-Streptavidin</td>
<td>Rabbit</td>
<td>1:1000</td>
<td>Genscript</td>
<td>A00621-10</td>
</tr>
<tr>
<td>anti-GAPDH</td>
<td>Rabbit</td>
<td>1:2000</td>
<td>Sigma Aldrich</td>
<td>g8795</td>
</tr>
<tr>
<td>anti-SNX1</td>
<td>Goat</td>
<td>1:1000</td>
<td>Abcam</td>
<td>ab134126</td>
</tr>
<tr>
<td>anti-SNX4</td>
<td>Rabbit</td>
<td>1:1000</td>
<td>Abcam</td>
<td>ab170562</td>
</tr>
<tr>
<td>anti-SNX27</td>
<td>Rabbit</td>
<td>1:1000</td>
<td>Abcam</td>
<td>ab178388</td>
</tr>
<tr>
<td>anti-HA</td>
<td>Rabbit</td>
<td>1:1000</td>
<td>Sigma Aldrich</td>
<td>ab137838</td>
</tr>
<tr>
<td>Secondary antibodies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-rabbit</td>
<td>Donkey</td>
<td>1:5000</td>
<td>GE Healthcare</td>
<td>NA934-1ML</td>
</tr>
<tr>
<td>anti-goat</td>
<td>Donkey</td>
<td>1:10000</td>
<td>Santa Cruz</td>
<td>sc-2020</td>
</tr>
</tbody>
</table>

3.4.7 Visualisation of proteins

After the proteins of interest on the PVDF membrane have been treated with both primary and secondary antibody, the proteins can be visualised. This is achieved through the use of a Lumilight™ solution (Roche, Basel, Switzerland), which reacts with the HRP conjugated secondary antibody. This reaction causes light to be released due to the oxidation of luminol in the Lumilight solution. This light occurs only where antibodies are bound, and the light is captured by Carestream Kodak Biomax Film (Catalogue# Z350370, Sigma Aldrich, St Louis, Missouri, USA) (Thorpe et al., 1985). As the Kodak Biomax Film is extremely sensitive to light, exposure of the film is minimised to only capturing light released from the PVDF membrane by performing the exposure in a darkroom. The film is then subsequently developed by immersing it in a developer solution (1 part developer: 4 parts water) (Catalogue# 183 8374, Rapid Access Developer, Carestream Dental, Atlanta, Georgia, USA) followed by rinsing any remaining developer solution off in water, and immersion in a fixer solution (1 part developer: 4 parts water) (Catalogue# 183 8374, Rapid Access Fixer, Carestream Dental, Atlanta, Georgia, USA).
3.5
KCa3.1-HA DNA preparation

3.5.1
Bacterial lysis and KCa3.1-HA isolation

For this project, a KCa3.1 channel containing an HA tag was planned to be used for immunoprecipitation experiments. The *KCa3.1-HA* plasmid for this project was generously donated by the Devor Lab from the University of Pittsburgh. The *E.Coli* containing the *KCa3.1-HA* plasmid was stored as a glycerol stock at -80 °C. Bacterial growth is outlined in section 2.1, and, as with all cellular experiments, the first step of this was to lyse the bacteria in order to obtain the plasmid DNA. This was performed by centrifuging the bacteria at 6000g for 15 min at 4 °C to obtain a bacterial pallet, which was then resuspended in Resuspension Buffer RES, and lysed through the addition of 8 mL of Buffer LYS, which contains sodium hydroxide/SDS, and 8 mL of the Neutralising Buffer NEU and incubated for 5 min at room temperature. The addition of Buffer NEU allows for proteins and cellular debris to precipitate out of solution, while plasmid DNA remains soluble. Following this, the lysate was filtered through a Nucleobond™ Xtra Column Filter which had been washed with 15 mL of Equilibration Buffer EQU and allowed to empty by gravity flow. The filter was then washed with 5 mL of Buffer EQU, and the column was subsequently washed without the filter with 8 mL of buffer WASH. Any plasmid DNA bound to the column was then eluted from the column through the addition of 5 mL of Elution ELU Buffer ELU. Isopropyl alcohol was then added to the eluted solution, caused the previously soluble plasmid DNA in solution to precipitate, and the solution was separated by centrifuging the solution at 4 °C for 30 min. The supernant was discarded, and the pellet washed by being resuspended in 2 mL of 70% ethanol, before being centrifuged at 15000g for 5 min at room temperature. Finally the ethanol was carefully removed, and the pellet was allowed to dry at room temperature. The dry DNA pellet was resuspended and stored in TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0), and the concentration of the DNA was determined by Nanodrop.

3.5.2
Restriction digest

Once the plasmid DNA was extracted and stored in TE buffer, a Restriction digest was performed in order to ensure that the plasmid purified indeed contained *KCa3.1-HA*. This was done through the use of two restriction enzymes, EcoR1 (Catalogue# 10703737001, Roche Applied Science, Penzburg, Germany) and Xho1 (Catalogue# 10703770001, Roche Applied Science), as described by Syme and colleagues (Syme et al., 2003). Three digests were performed; a negative control digest (uncut), a single cut digest, and a double digest, as shown in Table 3.4. Each of the digests contained 0.5 µg of plasmid DNA, as determined previously by nanodrop measurement. Additionally, 3 µL of Buffer H (Sigma Aldrich, St Louis, Missouri, USA) was used, as it is the optimised buffer for these restriction enzymes. The 1.5 mL tubes containing each of these mixes were incubated at 37 °C for 1 hr to ensure digestion.
Table 3.4 – Table showing the ingredients used in restriction digests to isolate \(\text{KCa3.1-HA} \)

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Uncut digest</th>
<th>Single cut digest</th>
<th>Double Digest</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{KCa3.1-HA plasmid})</td>
<td>0.5 µg</td>
<td>0.5 µg</td>
<td>0.5 µg</td>
</tr>
<tr>
<td>Buffer H</td>
<td>3 µL</td>
<td>3 µL</td>
<td>3 µL</td>
</tr>
<tr>
<td>EcoR1 enzyme</td>
<td></td>
<td>1 µL</td>
<td>1 µL</td>
</tr>
<tr>
<td>Xho1 enzyme</td>
<td></td>
<td></td>
<td>1 µL</td>
</tr>
<tr>
<td>Water</td>
<td>26 µL</td>
<td>25 µL</td>
<td>24 µL</td>
</tr>
</tbody>
</table>

The products of the restriction digest were then treated with DNA loading dye (Catalogue# R0611, Thermo Fischer Scientific Inc, Waltham, MA, USA), in order to stop the digestion reaction, and to convey a negative charge onto the plasmid proteins. This loading dye contains both bromophenol blue and xylene cyanol FF in order to track DNA movement, along with EDTA in order to bind divalent metal ions and inhibit metal-dependent nucleases. The proteins from the restriction digest were then run on a 1% agarose gel with TAE (Tris, Acetic acid, EDTA buffer; 40 mM Tris, 20 mM acetic acid, 1 mM EDTA, made to 1L in ddH\(_2\)O) for 30 min at 100V, before being visualised through use of ultraviolet light.

3.6 Ussing chamber

In conjunction with IB experiments, which measured the membrane population of \(\text{KCa3.1} \), functional studies measuring transepithelial ion transport through the \(\text{KCa3.1} \) channel were also performed. These functional studies are vital to understand the effects of knockdown of components of the Retromer pathway on \(\text{KCa3.1} \), as the ability of cells to transport K\(^+\) ions is reliant on both adequate membrane populations of \(\text{KCa3.1} \), and that \(\text{KCa3.1} \) has an adequate open probability. These functional experiments were completed through the use of an Ussing chamber apparatus. The Ussing chamber apparatus consists of two identical chambers, giving the ability to control the extracellular solution on the apical and basolateral membranes independently (Ussing & Zerahn, 1951), as well as a space to put an insert containing cells to measure.

Ussing chambers measure changes in the short circuit current (\(\text{I}_{\text{sc}} \)) across tissue, or, in this case, a cellular monolayer, by measuring the current of the apical and basolateral extracellular fluids. Two current sensing electrodes, one for the apical chamber, and one for the basolateral chamber (Figure 3.6) calculate the transepithelial current and two additional voltage sensing electrodes
calculate the resistance of the cellular monolayer through Ohm’s Law (Resistance = Voltage / Current).

3.6.1 Ussing chamber cell culture

For the Ussing chamber experiments, FRT-KCa3.1-BLAP cells were grown to form a polarised monolayer by seeding cells onto SnapwellTM filters 72 hr prior to the experiment (Figure 3.1). This ensured a fully confluent monolayer without achieving cellular overgrowth. This method of cell growth is similar to the method used to grow a confluent cellular monolayer for IB experiments.

3.6.2 Modified Ringer’s Solution

For Ussing chamber experiments, the epithelia is surrounded by a solution known as Ringer’s solution. This solution acts to mimic the extracellular fluid, containing ions to be exchanged in the cells, as well as glucose to provide cellular energy. This creates an environment where cells are able to function normally, allowing for ion channel activity to be measured. In the case of KCa3.1, however, standard Ringer’s Solution is replaced in favour of a modified Ringer’s Solution.

Table 3.5 – Modified Ringer’s Solution. Ingredients for the modified Ringer’s solution used for Ussing chamber experiments. Both the concentration of each ingredient and the weight of each ingredient for 1L of solution are listed, and the Ringer’s solutions were adjusted to a pH of 7.4.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Apical Ringers solution</th>
<th>Basolateral Ringer’s solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium Gluconate</td>
<td>145 mM</td>
<td>5 mM</td>
</tr>
<tr>
<td>Sodium Gluconate</td>
<td></td>
<td>145 mM</td>
</tr>
<tr>
<td>HEPES</td>
<td>10 mM</td>
<td>10 mM</td>
</tr>
<tr>
<td>Magnesium Chloride (hexahydrate)</td>
<td>1 mM</td>
<td>1 mM</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td>4 mM</td>
<td>4 mM</td>
</tr>
<tr>
<td>Glucose</td>
<td>10 mM</td>
<td>10 mM</td>
</tr>
</tbody>
</table>

This modified solution is similar to standard Ringer’s Solution, however, is modified for use in either the apical or basolateral Ussing chambers, and contains increased CaCl\textsubscript{2} (4 mM compared to 1.2 mM found in standard Ringer’s Solution) in order to compensate for the Ca2+ buffering effect of
the gluconate anions present (Durham, 1983; Ryabov et al., 1999) (Table 3.5). These solutions created an artificial K⁺ gradient by exaggerating K⁺ concentration differences, as well as removing apical Na⁺ transport; which leads to an overall amplified K⁺ current through KCa3.1, allowing for more accurate measurement of changes in KCa3.1 activity.

3.6.3 Ussing chamber set up

Prior to use of the Ussing chamber apparatus, some crucial elements must be set up. Firstly, the modified Ringer’s solutions outlined in section 3.6.2 must be warmed in a water bath to 37°C in order to keep the “extracellular” environment as close to physiological conditions as possible. Secondly, the current- and voltage-sensing electrodes must be created. This is done by filling the tips of empty plastic electrodes with agar gel (3% agar in 3M KCl (v/v)). Once the agar was set, the remainder of the electrode was filled with 3M KCl solution, and the end capped with either a voltage- or current-sensing electrode. Finally, the completed electrode was checked to ensure that there were no air bubbles, as these would reduce the effectiveness of the electrodes.

Once the Ringer’s Solution was warmed and the electrodes were made, wires were plugged into the electrodes, and an empty Snapwell filter was placed into the middle of the Ussing chamber (Figure 3.6). The chambers were then filled with Apical Ringer’s Solution, and the electrodes were zeroed in preparation to accurately measure the current and resistance of the cellular monolayer.

Figure 3.6 – Ussing chamber setup. The apical and basolateral chambers are set up to contain distinct solutions, and are connected through the insertion of a Snapwell insert. Current, voltage, and resistance are measured through the use of two pairs of current and voltage sensing electrodes, which are inserted into each chamber, as shown, with V representing the voltage sensing electrode, and I representing the current sensing electrode. Finally, solutions and oxygen are fed into each chamber through the holes at the top of the chamber, with the larger hole for Ringer’s Solutions, and the smaller hole to feed oxygen into the chamber. Pilmore., Unpublished.
being tested. A Snapwell filter containing a confluent cellular monolayer was inserted into the system, and apical and Basolateral Ringer’s Solutions were added to the apical and basolateral chambers. The recording was then begun, allowing for measurement of the K\(^+\) current.

3.6.4 Measuring K\(^+\) current changes

When the cells have been placed into the Ussing chamber, the electrodes begin to measure both the current and resistance in the Ussing chamber across the monolayer. When the current trace has stabilised, KCa3.1 ligands can be used to either open or close the channel. In order to stimulate KCa3.1, the ligand 1-EBIO was used, which caused an increase in the current, referred to as the 1-EBIO sensitive current (Devor et al., 1996). Conversely, in order to inhibit the channel, clotrimazole was used (Devor et al., 1997), leading to a decrease in the current, denoted as the clotrimazole sensitive current. When measuring the K\(^+\) current, first the current must be stable, or not fluctuating, so that an accurate change in current can be measured, and the transepithelial resistance must be over 500 Ω·cm\(^2\). When both of these criteria were met, 100 µM of 1-EBIO was added to both the apical and basolateral chambers. The current was then allowed to stabilize again, and the change in current was noted. Next, 10 µM of clotrimazole was added to both the apical and basolateral chambers, and the current was allowed to stabilize again. Finally, the clotrimazole sensitive change in current was noted. For this experiment, the change in current was measured by the vertical change in current (Δ\(y\)) before and after the addition of either 1-EBIO or clotrimazole.

3.7 Chemicals

3.7.1 Zeocin

Zeocin (phleomycin D) (Catalogue# R25001, Life Technologies, Thermo Fischer Scientific Inc, Waltham, MA, USA), is a glycopeptide antibiotic cultivated in *Streptomyces verticillus*. For this project, Zeocin is used as a component of selection media in order to keep the KCa3.1-BLAP plasmid expressed in the FRT cells used, maintaining the FRT-KCa3.1-BLAP cell line (section 3.1). FRT-KCa3.1-BLAP cells contain a Zeocin resistance gene, which prevents Zeocin evoking cell death by fracturing double strands of DNA (Ehrenfeld et al., 1987; Chankova et al., 2007). In the inactive form, Zeocin is bound to a Cu\(^{2+}\) ion. Upon entering the cell, on the other hand, the Cu\(^{2+}\) ion is cleaved from Zeocin, allowing it to bind to DNA (Oh et al., 2002).

3.7.2 Streptavidin

Streptavidin (Catalogue# 434302, Life Technologies, Thermo Fischer Scientific Inc, Waltham, MA, USA) is a non-glycosylated homotetrameric protein which binds with a high affinity to biotin. This high affinity bond formed to biotin was used in order to tag KCa3.1-BLAP channels present in the membrane, allowing for the membrane population of KCa3.1 to be quantified via IB experiments.
(section 3.4.1). This was possible due to the FRT-KCa3.1-BLAP cells expressing KCa3.1 with an extracellular biotin. Streptavidin acts by forming hydrogen bonds with biotin, following which, tryptophan residues interact, stabilizing the hydrogen bonds, and increasing the interaction strength (Kurzban et al., 1990).

3.7.3 1-EBIO

1-ethyl-benzimidazolone (1-EBIO) (Catalogue# SML0034-50MG, Sigma Aldrich, St Louis, Missouri, USA), is a Ca^{2+} activated K^+ channel opener, found to open the KCa3.1 channel by Devor and colleagues (section 3.6.4) (Devor et al., 1996). Alongside Ca^{2+} activated K^+ channels, KCa3.1 has also been shown to activate the cystic fibrosis transmembrane conductance regulator channel (CFTR) (Devor et al., 1996).

3.7.4 Clotrimazole

Clotrimazole (Catalogue# C6019-5G, Sigma Aldrich, St Louis, Missouri, USA), is an antifungal drug which was first found to inhibit the K^+ current seen in cells expressing the KCa3.1 channel by Devor and colleagues (Devor et al., 1997), and was shown to block the KCa3.1 channel with high potency by Wulff (section 3.6.4) (Wulff et al., 2000). As both 1-EBIO and clotrimazole are DMSO soluble, it was important to not exceed a concentration of 0.5% DMSO when reconstituting either 1-EBIO or clotrimazole in DMSO (Adefolaju et al., 2015).

3.7.5 Lipofectamine 3000

Lipofectamine 3000 (Catalogue# L3000015, Life Technologies, Thermo Fischer Scientific, Waltham, MA, USA) is a common transfection reagent. Purchase of Lipofectamine 3000 included the reagent P3000, and these reagents were used together in a 3:2 ratio (Lipofectamine 3000:P3000) in order to increase the transfection efficiency during forward transfections (section 3.3). Lipofectamine 3000 forms a complex with nucleic acid molecules, allowing then to overcome the large electrostatic repulsion of the cellular membrane and enter the cell.

3.8 Plasmids and siRNA

3.8.1 siRNA

For this project, cells were transfected with either 40 pM of control siRNA, or with 40 pM of protein specific siRNA. All the siRNA used in this project was reconstituted in RNAse free water, aliquoted and stored at -20 °C. Additionally, the three protein specific siRNAs used for this project (SNX1 siRNA (Catalogue# NM_053411), SNX4 siRNA (Catalogue# NM_001127550), and SNX27 siRNA (Catalogue# NM_001110151)) were all purchased from Sigma Aldrich (Sigma Aldrich, St Louis, Missouri, USA). Oligonucleotide sequences for the siRNA used are shown in table 3.6 below.
Control siRNA was used as a negative control for this project, and was transfected into cells at the same concentration as the SNX siRNAs. The control siRNA used for this project was custom made by Sigma Aldrich (Sigma Aldrich, St Luis, Missouri, USA).

Table 3.6 – Oligonucleotide sequences for the siRNA used for knockdown transfections

<table>
<thead>
<tr>
<th>siRNA</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNX1 siRNA</td>
<td>GAAUCAUCCUACCAUGUUA</td>
</tr>
<tr>
<td>SNX4 siRNA</td>
<td>CUGUCAUGCAGAUCAGCAU</td>
</tr>
<tr>
<td>SNX27 siRNA</td>
<td>GUACUUCUUUCAUCAGGCU</td>
</tr>
<tr>
<td>Control siRNA</td>
<td>UGGAGUGAAUACCACGACGAU</td>
</tr>
</tbody>
</table>

3.8.2 KCa3.1-HA

The KCa3.1-HA plasmid for this project was generously donated by the Devor Lab from the University of Pittsburgh. This plasmid contains the gene encoding KCa3.1-HA inserted into the pcDNA3.1 plasmid through the use of EcoR1 and Xho1 restriction enzymes, and the pcDNA3.1 plasmid was transformed into the E-Coli strain DH5α. The E-Coli were stored in a glycerol stock at -80 °C. In order to extract the KCa3.1-HA plasmid, the E-Coli was grown in LB media overnight, and the pcDNA3.1 plasmid extracted through the use of a DNA purification kit. The extracted plasmid was stored in RNAse free water at -20 °C, and transfected into cells via forward transfection with Lipofectamine 3000 as described in section 3.6.2.

3.9 Antibodies

3.9.1 Primary antibodies

3.9.1.1 Anti-Streptavidin

The anti-streptavidin antibody used in this project was developed in rabbits through the use of polyclonal streptavidin, and is purified from rabbit anti-serum by protein G resin (Catalogue# A00621-10, GenScript, Piscataway, NJ, USA). The anti-streptavidin polyclonal antibody binds to streptavidin, which is present on membrane bound KCa3.1-BLAP, and is used at 1:1000 dilution in TBS-T.

3.9.1.2 Anti-GAPDH

GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) is a protein found in FRT cells, and is used as an internal protein control for IB experiments. This is because, unlike other proteins, the concentration of GAPDH in cells remained unaffected by any of the treatments used for this project.
This allowed for the concentration of other proteins to be “normalised”, showing the true concentration of proteins, allowing for comparisons to be made between samples. The anti-GAPDH antibody (Catalogue# g8795, Sigma Aldrich, St Louis, Missouri, USA) was purified in rabbits, and HA binds directly to GAPDH, and is diluted at 1:2000 in TBS-T.

3.9.1.3 Anti-SNX1

Anti-SNX1 is an antibody which binds directly to sorting nexin 1 (SNX1), and was purified in goats (Catalogue# ab134126, Abcam, Cambridge, UK). The anti-SNX1 antibody binds to the SNX1 present in cell lysate, and was used at 1:1000 concentration, diluted in TBS-T.

3.9.1.4 Anti-SNX4

The anti-SNX4 antibody used binds to sorting nexin 4 (SNX4). This antibody was purified in rabbit (Catalogue# ab170562, Abcam, Cambridge, UK). This antibody was used at 1:1000, diluted in TBS-T.

3.9.1.5 Anti-SNX27

The anti-SNX27 antibody used for this project binds to the C-terminal of sorting nexin 27 (SNX27) was purchased from Abcam (Catalogue# ab178388, Abcam, Cambridge, UK). The anti-SNX27 antibody was purified in rabbit, and was used at a concentration of 1:1000, and was diluted in TBS-T.

3.9.1.6 Anti-HA

The anti-HA antibody used in this project binds to the HA protein tag. Specific proteins were modified to contain an HA tag, allowing for detection with the HA antibody. The anti-HA antibody was purchased from (Catalogue# ab137838, Sigma Aldrich, St Louis, Missouri, USA), and was purified in rabbit. Anti-HA was diluted to 1:1000 for use in immunoblotting.

3.9.2 Secondary antibodies

3.9.2.1 Donkey anti-Rabbit IgG linked Horseradish-peroxidase whole antibody

The donkey anti-rabbit IgG linked Horseradish-peroxidase (HRP) whole antibody was used in order to visualise proteins which used a primary antibody purified in rabbit. These antibodies were anti-streptavidin, anti-GAPDH, anti-SNX4, anti-SNX27, and anti-HA primary antibodies. The donkey anti-rabbit IgG linked HRP whole antibody was purchased from GE Healthcare (Catalogue# NA934-1ML, GE Healthcare, Chicago, IL, USA). As with all HRP linked whole antibodies, the donkey anti-rabbit IgG linked HRP whole antibody reacts with luminol in order to produce a low intensity light in the areas to which it has bound. This light is able to be detected by film, allowing for specific protein
expression to be quantified. The dilutions used for this antibody varied from 1:2000 to 1:10,000 depending on the primary antibody used in order to optimise fluorescence.

3.9.2.2 Donkey anti-Goat IgG linked Horseradish-peroxidase whole antibody

Similar to the donkey anti-rabbit IgG linked HRP whole antibody, the donkey anti-goat IgG linked HRP whole antibody was used in order to visualise proteins bound to primary antibodies purified in goat. This antibody was anti-SNX1 for this project. The donkey anti-goat IgG linked HRP whole antibody was purchased from Santa Cruz Biotechnology (Catalogue# sc-2020, Santa Cruz Biotechnology, Dallas, TX, USA). This antibody was used at a 1:2000 dilution.

3.10 Statistical analysis

The data for this project was analysed through the use of Microsoft Excel™ 2013, ImageJ, and Graphpad Prism 6. In order to analyse IB blot data, the protein of interest was quantified through the use of ImageJ software (imagej.nih.gov/ij), following which, the proteins were normalised to the GAPDH control protein through Microsoft Excel™. This prevented analysis errors as differences in protein loading were able to be easily corrected. Ussing chamber data was analysed by transferring the trace data into Microsoft Excel™ and the change in current was measured upon the addition of both 100 µM 1-EBIO and 10 µM clotrimazole. The results from both of these were uploaded to Prism, in order for statistical analyses to be carried out. In order to gain accurate statistical results, way ANOVA analyses was carried out within each data set for data with more than two groups, while paired t-tests were performed for data sets with only two groups. This allowed for the significance of change between groups to be accurately observed. An additional test for outliers (ROUT outlier test) was also carried out for each data set, and any outliers were omitted from data sets to ensure accurate statistical analysis. Statistical significance for this project was set at p < 0.05.
4 Results

Sorting nexins (SNX) are a large group of proteins, with 33 identified members in mammals (Cullen, 2008). SNX proteins interact strongly with the early endocytic network (Seet & Hong, 2006), and some portray a specialised role in vesicle formation through the presence of a BAR domain (Zimmerberg & McLaughlin, 2004; Frost et al., 2008). The presence of this BAR domain presents a role of SNX proteins in channel recycling. While it is unknown if KCa3.1 is recycled, a relationship between SNX proteins and KCa3.1 could indicate the potential for recycling. The aim of this project was to examine the role of three sorting nexins, SNX1, SNX4, and SNX27, which might be involved in the Retromer pathway, in the basolateral trafficking and function of KCa3.1 in a polarised epithelium.

4.1 Confirmation of basolateral localisation of KCa3.1

Before this investigation began, it was important to ensure that KCa3.1 was localised to the basolateral membrane of the polarised FRT-KCa3.1-BLAP epithelial cells. This experiment, known as a sidedness experiment, was accomplished by seeding cells onto filters, and growing the cells until the cells formed a confluent monolayer, as determined through visualisation by light microscope.

![Figure 4.1 – Sidedness experiment displaying the membrane localisation of KCa3.1. A. Representative blot demonstrating KCa3.1 at 79 kDa, and the loading control GAPDH at 37 kDa. Lane 1 exhibits the cells without KCa3.1 labelling, which was used as a negative control, lane 2 displays the apical membrane population of streptavidin, and lane 3 presents the basolateral membrane population of KCa3.1. B. Quantification of the immunoblots carried out in the sidedness experiments, normalised to the negative control. The results here reveal a significant increase in the basolateral membrane population of KCa3.1 compared to the negative control (p < 0.05; n=4), and a trend towards a significant increase in the membrane population of KCa3.1 at the basolateral membrane compared to the population at the apical membrane (p < 0.05; n=4). The presence of the non-specific 82 kDa band is consistent with previous results from the Hamilton lab using the KCa3.1-BLAP model, and does not interfere with KCa3.1. ANOVA analyses were performed between each group in B to assess significance between each group.](image-url)
Once this confluency was reached, the membrane bound biotinylated KCa3.1 was labelled with streptavidin. Streptavidin was added to either the apical or the basolateral membrane, allowing for both the apical and the basolateral membrane populations of KCa3.1 to be labelled and visualised independently of one another. Figure 4.1A displays a representative blot of KCa3.1 during a sidedness experiment, with KCa3.1 at 79 kDa, and GAPDH at 37 kDa. Lane 1 contains the negative control, or lysate from cells without KCa3.1 labelled with streptavidin, from cells that have undergone no streptavidin labelling, whilst lanes 2 and 3 contain lysate from cells with the apical or basolateral membrane populations of KCa3.1 labelled respectively. Figure 4.1B presents the quantification of these immunoblots, which demonstrates the majority of KCa3.1 was present in the basolateral membrane. Additionally, the difference between the apical and the basolateral membrane populations is significant (p < 0.05), leading to the possibility that significance would emerge if more experiments were carried out. The nonspecific band at 82 kDa has consistently been identified in immunoblots of the KCa3.1-BLAP channel (Farquhar et al., 2017).

4.2 Antibody tests

For this project, immunoblots were used as a primary experiment, ergo it was essential to ensure that each antibody used for this project was functional with lysate from FRT-KCa3.1-BLAP cells, and, just as importantly, to demonstrate the endogenous expression of the SNX proteins present in the FRT-KCa3.1-BLAP cells. These immunoblot experiments were performed by using cells which the antibody in question had previously been proven to detect SNX1 and SNX27 in the positive control (HEK 293 cellular lysate) provided by members of the McDonald lab, and FRT-KCa3.1-BLAP cells. Figure 4.2 demonstrates the antibody test results for both anti-SNX1 and anti-SNX27 antibodies, which displays lysate from HEK293 cells, a positive control for both the SNX1 and SNX27 antibodies, in lane 1, and FRT-KCa3.1-BLAP cells in lane 2.
4.3 siRNA tests

Aside from the sidedness experiment and the antibody tests, the final preliminary experiment to carry out before the onset of this project was to determine the effectiveness of the SNX1 and SNX27 siRNAs on the protein population of SNX1 and SNX27 respectively. This was done by transfecting cells with increasing concentrations of siRNA, and observing which concentration resulted in the greatest decrease in protein expression of the SNX protein targeted by the siRNA, determined by immunoblot. Figure 4.3 presents the results of the SNX1 siRNA test; with Figure 4.3A presenting a representative immunoblot displaying increasing concentrations of SNX1 siRNA transfected into FRT-KCa3.1-BLAP cells, and Figure 4.3B exhibiting the quantification of the immunoblots from Figure 4.3A. The lanes run in figure 4.3A are all FRT-KCa3.1-BLAP cells, and are transfected as follows; lane 1 has no transfection, lane 2 was transfected with 40 pM control siRNA, and lanes 3-5 were transfected with 10, 20, or 40 pM SNX1 siRNA respectively. This preliminary knockdown of SNX1 proved non-significant up to the transfection with 40 pM of SNX1 siRNA, however, future transfections with 40 pM of SNX1 siRNA proved successful (section 4.4.3; figure 4.9), suggesting these experiments failed due to either poor technique or poor transfection media were the reason behind this.
The preliminary experiments suggested that the SNX1 siRNA would not lead to a significant decrease in the intracellular protein levels of SNX1 (Figure 4.3), and that the SNX27 siRNA would not lead to a significant decrease in the intracellular protein levels of SNX27. Figure 4.4 presents the results of the SNX27 siRNA test; Figure 4.4A depicts a representative immunoblot with lysates from cells transfected with increasing concentrations of SNX27 siRNA, and Figure 4.4B characterises the quantification of the immunoblots for SNX27, and Figure 4.4C illustrates the quantification for the immunoblots for KCa3.1. Figure 4.4B reveals that transfecting cells with 40 pM SNX27 siRNA lead to the largest decrease in SNX27 protein levels, however, there was no significant difference between any of these groups (p > 0.05; n=3).

Figure 4.3 – siRNA optimisation for SNX1. This figure displays the results of optimising the siRNA for SNX1. **A.** Representative immunoblot for SNX1 siRNA optimisation. Lane 1 contains lysate from untransfected FRT-KCa3.1-BLAP cells, Lane 2 reveals lysate from cells transfected with 40 pM control siRNA, and Lanes 3-5 contain lysate from cells transfected with 10, 20, or 40 pM SNX1 siRNA. **B.** Quantification of the SNX1 immunoblots. These results reveal no significant changes between the control siRNA and any of 10, 20, or 40 pM siRNA transfections on the amount of SNX1 in the cell (p > 0.1; n=3). ANOVA analysis was performed between each group in B to assess significance.
Figure 4.4 – siRNA optimisation for SNX27. This figure demonstrates the results of optimising the siRNA for SNX27. For this experiment, FRT-KCa3.1-BLAP cells were transfected with 10, 20, or 40 pM of SNX27 siRNA for 48 hr. A. Representative immunoblot revealing the effect of increasing siRNA concentration on both SNX27 expression, and KCa3.1 basolateral membrane population. Lane 1 displays lysate from untransfected FRT-KCa3.1-BLAP cells, Lane 2 displays lysate from cells transfected with control siRNA, Lane 3 displays lysate from cells transfected with 10 pM SNX27 siRNA, Lane 4 displays lysate from cells transfected with 20 pM SNX27 siRNA, and Lane 5 displays lysate from cells transfected with 40 pM SNX27 siRNA. B. Quantification of the SNX27 immunoblots. This quantification confers that transfecting cells with 40 pM SNX27 siRNA did not lead to a significant change in the intracellular levels of SNX27 (p > 0.05; n=3). C. Quantification of the KCa3.1 immunoblots, demonstrating that transfecting cells with 40 pM SNX27 siRNA does not lead to a significant difference in the basolateral membrane population of KCa3.1 (p > 0.05; n=3). ANOVA analyses were performed between each group in B and C to assess significance.
4.4 The effect of specific Sorting Nexin proteins on KCa3.1 trafficking to the basolateral membrane

4.4.1 The effect of SNX4 on the trafficking of KCa3.1 to the basolateral membrane

SNX4 is a sorting nexin which transports vesicles by interacting with the (-) end of dynein, allowing for the long range transport of cargo proteins (Traer et al., 2007). It has also been hypothesised that the tubules created by SNX4 may be used to traffic proteins lacking a specific sorting sequence, as they can be trafficked by bulk flow (Traer et al., 2007). For this section, SNX4 is presented first as results are presented in chronological order, allowing for changes in methodology to be more easily followed. In order to determine any effect SNX4 plays on the trafficking of KCa3.1 to the basolateral membrane in polarised epithelial cells, several experiments were required.

![Figure 4.5](image)

Figure 4.5 – Effect of SNX4 knockdown on the basolateral membrane population of KCa3.1. A. Representative blot demonstrating intracellular SNX4 levels and membrane KCa3.1 populations in cells transfected with SNX4 siRNA. Lane 1 contains lysate from untransfected FRT-KCa3.1-BLAP cells, Lane 2 exhibits lysate from cells transfected with control siRNA, Lane 3 presents lysate from cells transfected with 40 pM SNX4 siRNA, with the apical membrane population of KCa3.1 labelled, and Lane 4 displays lysate from cells transfected with 40 pM SNX4 siRNA, with the basolateral membrane population of KCa3.1 labelled. B. Quantification of the SNX4 immunoblots, UTR is untransfected, CTRL is control, SNX4 AL is SNX4 knockdown with apical KCa3.1 labelled, and SNX4 BL is SNX4 knockdown with basolateral KCa3.1 labelled. This data revealed that transfecting cells with 40 pM SNX4 siRNA leads to a ~70% decrease in SNX4 protein levels compared to cells transfected with 40 pM control siRNA (p < 0.001; n=5). C. Quantification of KCa3.1 immunoblots. This data reported that transfecting cells with 40 pM of SNX4 siRNA did not lead to any significant difference in either the apical or the basolateral membrane populations of KCa3.1 (p > 0.1; n=5). ANOVA analyses were performed between each group in B and C to assess significance.
Primarily, it was necessary to ensure that a 40 pM transfection with SNX4 siRNA lead to a significant decrease in the intracellular levels of SNX4. It was unnecessary to conduct preliminary experiments regarding the detection of SNX4, or the transfection of SNX4 siRNA into FRT-KCa3.1-BLAP cells, as SNX4 was both found to be present, and knocked down in FRT cells by the McDonald Lab (McDonald, Unpublished Data). The effect of SNX4 on the basolateral membrane population of KCa3.1 was determined by immunoblot, where four samples were analysed; lysate from untransfected cells, lysate from cells transfected with 40 pM control siRNA, and the final two samples of lysate transfected with 40 pM SNX4 siRNA (Figure 4.5). It was demonstrated that transfecting cells with 40 pM of SNX4 siRNA lead to a ~70% decrease in the protein levels of SNX4 compared to the control siRNA (p < 0.001; n=5) (Figure 4.5B). Both the untransfected cells and the control cells had the basolateral membrane population of KCa3.1 labelled, as did one of the samples transfected with 40 pM SNX4 siRNA. The other sample transfected with SNX4 siRNA had the apical membrane population of KCa3.1 labelled. This allowed for samples where SNX4 knockdown had been determined to occur to be re-run in order to determine if a subsequent change in the basolateral membrane population of KCa3.1 occurred, and if any KCa3.1 was missorted to the apical membrane (Figure 4.5). These results revealed no significant difference in the basolateral membrane population of KCa3.1 compared to the control (p > 0.05; n=5) (Figure 4.5C). The apical labelling of KCa3.1 seen here could be due to two factors; KCa3.1 is sorted to the apical membrane, or the epithelial monolayer was not completely formed during the apical labelling, leading to basolateral KCa3.1 being labelled as part of the “apical” labelling. Despite a significant knockdown of SNX4, there was no significant change in the basolateral membrane population of KCa3.1.

Next, electrophysiology was used to determine any functional changes in KCa3.1 caused by SNX4 knockdown. For these experiments, both the 1-EBIO sensitive current and the clotrimazole sensitive current were measured across KCa3.1-BLAP FRT epithelia mounted in an Ussing chamber (Figure 4.6). The 1-EBIO sensitive and clotrimazole sensitive currents were defined by the vertical change in current (Δy) before and after the addition of either 1-EBIO or clotrimazole. These results displayed a significant decrease in the change in current seen when stimulating cells with 100 μM 1-EBIO (1-EBIO sensitive current) in cells transfected with 40 pM SNX4 siRNA compared to cells transfected with 40 pM control siRNA (Figure 4.6B). While a significant (p < 0.05; n=5) change in the 1-EBIO sensitive current was seen, there was no significant change seen in the current between cells transfected with 40 pM SNX4 siRNA and control cells when treated with 10 μM clotrimazole (clotrimazole sensitive current) (Figure 4.6C). Finally, the transepithelial resistance was measured to ensure that a tight epithelia formed for each experiment. The transepithelial resistance at the time which 1-EBIO was taken, and the average resistance of both the control and knockdown traces were
compared and analysed. There were no significant differences found between any of the groups (p > 0.05; n=5) (Figure 4.6D). The cells used for Ussing chamber experiments in figure 4.6 were paired with cells used for figure 4.5, meaning that all cells were passaged, seeded, and transfected at the

Figure 4.6 – Effect of SNX4 knockdown on KCa3.1 function. A. Representative Ussing chamber traces presenting the effect of stimulating cells with both 100 μM 1-EBIO and inhibition by 10 μM clotrimazole, displaying FRT-KCa3.1-BLAP cells without siRNA transfection (Blue), cells transfected with 40 pM control siRNA (Red), and cells transfected with 40 pM SNX4 siRNA (Green). B. Quantification of 1-EBIO sensitive current, revealing a significant decrease in the 1-EBIO sensitive current in cells transfected with 40 pM SNX4 siRNA (SNX4) compared to the control (CTRL) (p < 0.05; n=5). There was no significant difference seen between the untransfected cells (UTR) and the CTRL. C. Quantification of the clotrimazole sensitive current, conceding no significant differences between any of the groups measured (p > 0.1; n=5). D. Quantification of the transepithelial resistance for Ussing chamber experiments, showing no significant differences between any of the groups (p > 0.05; n=5). ANOVA analyses were performed between each group in B, C, and D in order to assess significance.
same time to ensure that if a decrease in SNX4 was seen in immunoblots, that same knockdown would be present in the cells used for electrophysiology.

4.4.2 The effect of SNX27 on the trafficking of KCa3.1 to the basolateral membrane

SNX27 is a unique sorting nexin, known to be involved in the trafficking of several proteins, including the tight junction protein ZO-2 (Zimmerman et al., 2013), and the basolaterally trafficked sodium hydrogen exchanger NHE3 (Singh et al., 2015). This trafficking of NHE3 suggests that SNX27 may be able to traffic other basolaterally trafficked proteins, such as KCa3.1. The effect of SNX27 was determined by transfecting cells with SNX27 siRNA, and measuring the intracellular protein levels of SNX27 and membrane bound KCa3.1 via immunoblot, and measuring membrane KCa3.1 through Ussing chamber experiments. Figure 4.7A details the representative immunoblots for both SNX27 and KCa3.1, and the quantifications for these immunoblots are portrayed in Figure 4.7B and 4.7C. Figure 4.7B reveals that transfecting cells with 40 pM SNX27 siRNA led to a significant decrease in the intracellular SNX27 expression compared to cells transfected with 40 pM control siRNA (p < 0.01; n=4). Figure 4.7C however, features no significant differences between the control cells and the SNX27 knockdown cells for either the apical or the basolateral populations of KCa3.1. Additionally, there was no significant difference between the apical and basolateral membrane populations of KCa3.1 in cells transfected with 40 pM SNX27 siRNA. Interestingly, there was a trend towards a significant difference between the apical and basolateral membrane populations of KCa3.1 in control cells (p < 0.1; n=4).
As in the SNX4 experiments, Ussing chamber experiments were used to determine any functional changes in KCa3.1 caused by SNX27. Figure 4.8 displays the results of the Ussing chamber experiment conducted with cells paired to the cells used for the immunoblots in Figure 4.7. The Ussing chamber results demonstrate that there is a significant decrease in the effect of treating cells transfected with 40 pM SNX27 siRNA with 100 µM 1-EBIO compared to cells transfected with 40 pM
control siRNA (p < 0.01; n=4). Contrary to this, there appears to be no significant difference in the

Figure 4.8 – Effect of SNX27 knockdown on KCa3.1 function. A. Representative Ussing chamber trace presenting the effect of treating cells with both 100 µM 1-EBIO and 10 µM clotrimazole on cells transfected with 40 pM SNX27 siRNA (Red) compared to 40 pM control siRNA (Blue). B. Quantification of 1-EBIO sensitive current. This reveals that cells with significantly less SNX27 had a significantly lower response to the addition of 1-EBIO compared to control cells (p < 0.01; n=4). C. Quantification of clotrimazole sensitive current, illustrating no significant difference in the clotrimazole sensitive response between the control cells or the SNX27 knock down cells (p > 0.1; n=4). D. Quantification of the transepithelial resistances showing no significant change in the transepithelial resistance in the cells transfected with SNX27 siRNA compared to the control cells (p > 0.1; n=4). Paired two sided t-tests were performed between each group in B, C, and D to assess significance.
relative function of KCa3.1 in FRT-KCa3.1-BLAP cells transfected with 40 pM control siRNA and 40 pM SNX27 siRNA when treated with 10 µM clotrimazole. Additionally, the reduction in SNX27 did not appear to affect the transepithelial resistance (p > 0.1; n=4), revealing that the cells with decreased SNX27 were still able to form a functional, polarised epithelia (Figure 4.8D).

4.4.3 The effect of SNX1 on the trafficking of KCa3.1 to the basolateral membrane

The sorting nexin SNX1 is one of the primary sorting nexin proteins involved in the cargo selection into the cargo retention complex (Wassmer et al., 2007), along with SNX2, 5, and 6. In addition to the PX domain expressed by all SNX proteins, SNX1 contains a BAR domain, which aids in the creation of endosome tubulation vesicles. While there is currently no evidence that KCa3.1 is recruited into the Retromer pathway, a relationship between SNX1 and KCa3.1 could strongly suggest the possibility for KCa3.1 recycling by Retromer. The effect of SNX1 on the trafficking of KCa3.1 to the basolateral membrane was inspected, again through the use of siRNA. Similar to the SNX4 and SNX27 experiments examining KCa3.1, FRT-KCa3.1-BLAP cells were transfected with either 40 pM of control siRNA or SNX1 siRNA. Figure 4.9A displays the representative immunoblot for both KCa3.1 and SNX1, along with the loading control GAPDH. From each of the SNX1 immunoblots, the average of the two control lanes (one with apical KCa3.1 labelled with streptavidin, one with basolateral labelled KCa3.1), and the average of the two SNX1 knockdown lanes was taken, and the averages were used to calculate the average knockdown seen across all immunoblots, presented in figure 4.9B. These results outlined a ~55% decrease in SNX1 protein expression in cells transfected with 40 pM SNX1 siRNA compared to the control cells (p < 0.05; n=4). From the KCa3.1 immunoblots, each lane was normalised to the control lane which contained the apical membrane population of KCa3.1 (CTRL AL). Figure 4.9C revealed that there were no significant differences between the control and the knockdown lanes, for either the apical or the basolateral membrane populations of KCa3.1. Additionally, there were no significant differences between the apical and basolateral membrane populations for either the control cells, or the cells transfected with 40 pM SNX1 siRNA.
Aside from immunoblot experiments, electrophysiology experiments to measure channel functionality were performed. These electrophysiology experiments were in the form of Ussing chamber experiments, and were utilised in order to determine any functional changes on KCa3.1 caused by changed in intracellular SNX1. The representative trace for these Ussing chamber experiments is exhibited in Figure 4.10A. These traces boast a significantly reduced (~60%, p < 0.05; n=4) 1-EBIO sensitive current in cells transfected with 40 pM SNX1 siRNA compared to control cells, however, this decrease was not matched in the clotrimazole sensitive current (p > 0.1; n=4). As the decrease in the 1-EBIO sensitive current was not matched in the clotrimazole sensitive current, therefore it is unlikely that SNX1 plays a functional role in KCa3.1 trafficking. Additionally, as no significant change was observed in the basolateral membrane population of KCa3.1 in cells with decreased SNX1, it is unlikely that SNX1 portrays a role in the trafficking of KCa3.1 in polarised epithelial cells. Furthermore, the traces showed no significant change in the transepithelial

Figure 4.9 – Effect of SNX1 knockdown on the basolateral membrane population of KCa3.1. A. Representative blots for SNX1 and KCa3.1. Lanes 1 and 2 display lysate from cells transfected with 40 pM control siRNA, while Lanes 3 and 4 demonstrate lysate from cells transfected with 40 pM SNX1 siRNA. Lanes 1 and 3 represent lysate from cells with apical membrane located KCa3.1, and Lanes 2 and 4 display lysate from cells with the basolateral membrane. B. Quantification of the SNX1 immunoblots, revealing a significant decrease in the protein levels of SNX1 in cells transfected with 40 pM SNX1 siRNA compared to control cells (p < 0.05; n=4). C. Quantification of KCa3.1 immunoblots, demonstrating no significant differences between the control (CTRL) and SNX1 knockdown (SNX1) cells, for either the apical membrane population of KCa3.1 (AL), or the basolateral membrane population of KCa3.1 (BL). Additionally, there was no significant differences found between the CTRL AL and BL, or between the SNX1 AL and BL. Paired two sided t-tests were performed between the groups in B and an ANOVA analysis was performed in group C to assess significance.
resistance when cells were transfected with SNX1 siRNA (p > 0.1; n=4) (Figure 4.10D). As with the previous experiments, the resistance was measured at the point 1-EBIO was added. These results verify that the FRT-KCa3.1-BLAP cells formed a polarised monolayer effectively regardless of SNX1 inside the cell.
Figure 4.10 – Effect of SNX1 knockdown on KCa3.1 function. A. Representative trace displaying the effect of 100 µM 1-EBIO and 10 µM clotrimazole on cells transfected with either 40 pM control siRNA or 40 pM SNX1 siRNA. B. Quantification of the 1-EBIO sensitive current, revealing that transfecting cells with 40 pM SNX1 siRNA lead to a significant reduction in the 1-EBIO sensitive current compared to cells transfected with 40 pM SNX1 siRNA (p < 0.05; n=4). C. Quantification of the clotrimazole sensitive current. These results demonstrate no significant differences in the clotrimazole sensitive current between the control cells and the SNX1 knockdown cells. D. Quantification of the transepithelial resistance showing no significant change in the transepithelial resistance between the control and SNX1 knockdown cells (p > 0.1; n=4). Paired two sided t-tests were performed between each group in B, C, and D to assess significance.
4.5 Summary of Results

This project found that transfection of FRT-KCa3.1-BLAP cells with 40 pM of SNX(\(x\)) (where (\(x\) = SNX1, SNX4, or SNX27) siRNA lead to a significant decrease in the intracellular levels of SNX(\(x\)) respectively, as measured by immunoblot. In contrast to this, there was no significant difference found in the basolateral membrane population of KCa3.1 in FRT-KCa3.1-BLAP cells that were transfected with 40 pM of either SNX(\(x\)) siRNA. There was no significant difference in the apical membrane population of KCa3.1 in the FRT-KCa3.1-BLAP cells transfected with 40 pM of SNX1 or SNX27 siRNA. I hypothesise that there would be no significant change in the apical membrane population of KCa3.1 in FRT-KCa3.1-BLAP cells transfected with 40 pM of SNX4 siRNA, however this was not measured due to time constraints. In electrophysiology experiments, treating cells with 100 \(\mu\)M of the KCa3.1 stimulator 1-EBIO showed a significant decrease in current in FRT-KCa3.1-BLAP cells transfected with 40 pM of either SNX(\(x\)) siRNA when compared with control cells. In contrast, treating cells with 10 \(\mu\)M of the KCa3.1 inhibitor clotrimazole showed no significant change in the current in FRT-KCa3.1-BLAP cells transfected with either SNX(\(x\)) siRNA when compared to control cells.

Finally, a plasmid containing KCa3.1-HA-pcDNA3.1 was extracted from E.coli. A restriction digest was performed to ensure that the extracted plasmid contained the correct genetic information. When the plasmid was incubated with the restriction enzymes EcoR1 and Xho1, the plasmid split into two portions of the appropriate sizes to be KCa3.1-HA and the remaining plasmid. A transfection experiment was then carried out to determine the optimal transfection time and concentration for KCa3.1-HA expression. 1 or 2 \(\mu\)g of KCa3.1-HA-pcDNA3.1 was transfected into COS-7 cells for either 24 or 48 hours, however the results proved inconclusive, and the experiment was discontinued due to time constraints.
5 Discussion

5.1 Preface

The intermediate conductance calcium-activated potassium channel, KCa3.1, is a channel expressed throughout the body, where it plays a variety of roles. Amongst these are; an active role in both smooth muscle (Neylon et al., 1999) and fibroblast proliferation (Neylon et al., 1999; Wang et al., 2013a), which can affect cardiac fibrosis (Wang et al., 2013a; Zhao et al., 2015). Additional roles of KCa3.1 include fluid secretion, resulting in dysfunction of KCa3.1 being fully or partly responsible for the phenotypes of diseases such as hereditary xerocytosis (Andolfo et al., 2013; Glogowska et al., 2015; Rapetti-Mauss et al., 2015) and sickle cell anaemia (Lew & Bookchin, 2005), a role in ulcerative colitis (Al-Hazza et al., 2012), and a role in at least two renal diseases; autosomal polycystic kidney disease (Yoder et al., 2002), and diabetic nephropathy (Qi et al., 2006; Grgic et al., 2009). KCa3.1 has also been portrayed as a potential therapeutic target in several cancers, such as gliomas (Abdullaev et al., 2010), lung cancers (Bulk et al., 2015), hepatocellular carcinomas (Liu et al., 2015), and renal clear cell carcinomas (Rabjerg et al., 2015). Moreover the use of the pharmacological KCa3.1 inhibitor Senicapoc, has been studied as a therapy for both hereditary xerocytosis (Rapetti-Mauss et al., 2016), and in sickle cell anaemia (Ataga et al., 2008), suggesting that KCa3.1 can be targeted safely to reduce the pathophysiological symptoms of disease.

The diversity of tissues in which KCa3.1 can be found, along with the still growing list of pathological conditions, has created a need to discover the mechanisms surrounding both KCa3.1 trafficking to and from the plasma membrane. As previously discussed in the introduction, little is known about KCa3.1 trafficking, although both the Devor (University of Pittsburgh) and Hamilton (University of Otago) laboratories have made substantial advancements in this area. Two separate Rab proteins, Rab1 and Rab8, are known to be involved in the anterograde trafficking of KCa3.1 (Bertuccio et al., 2014). Rab1 is responsible for trafficking of proteins from the ER to the cis-Golgi body (Zhang et al., 2009), while Rab8 is responsible for trafficking from the trans-Golgi body to the plasma membrane (Dong et al., 2010). KCa3.1 was also shown to not traffic through either RME-1 or transferrin receptor positive recycling endosomes, which suggest direct trafficking from the Golgi body to the basolateral membrane in polarised epithelial cells (Bertuccio et al., 2014). Recently, both the cytoskeleton and the motor protein myocin-Vc also have been implicated in the trafficking of KCa3.1 (Farquhar et al., 2017). The inhibition of either the cytoskeleton or of myocin-Vc leads to a significant decrease in the basolateral membrane population of KCa3.1. Additionally, both myocin-Vc and the cytoskeletal elements are known to interact with Rab8 (Chabrillat et al., 2005; Watanabe et al., 2008; Xu et al., 2009). This led Farquhar and colleagues to suggest that myocin-Vc simply allows
KCa3.1 to travel along the microtubule cytoskeleton to the basolateral membrane, rather than directly trafficking KCa3.1 to the basolateral membrane (Farquhar et al., 2017).

An area of cellular physiology which has gained traction recently is the Retromer pathway that is involved in both the recycling and degradation of plasma membrane protein (Arighi et al., 2004; Chen et al., 2010; Temkin et al., 2011), and helps to regulate endosome to trans-Golgi body (Arighi et al., 2004). This pathway consists of multiple protein complexes, namely the cargo recognition complex (CRC), consisting of VPS26, VPS29, and VPS35 (Norwood et al., 2011), and the Wiskott-Aldrich syndrome protein and SCAR Homologue (WASH) complex (Derivery et al., 2009; Gomez et al., 2012). The protein complexes involved in Retromer interact with each other, and interact with multiple individual proteins, such as sorting nexin (SNX) proteins (Wassmer et al., 2009).

While Retromer is involved in the recycling of proteins such as the basolaterally located β2 adrenergic receptor (β2AR), which is recycled by SNX27 directly to the plasma membrane from the early endosome (Lauffer et al., 2010; Temkin et al., 2011), KCa3.1 has been shown to not traffic through the recycling endosome (Lin et al., 2012). However, there is some evidence that KCa3.1 may be recycled. Schwab and colleagues found that KCa3.1 was subject to clathrin mediated endocytosis in migratory cells, and discovered that KCa3.1 appeared to be residing in the plasma membrane for longer than expected, a finding which Schwab and co-workers believe is consistent with the notion of channel recycling (Schwab et al., 2012). Furthermore, another member of the KCNN gene family, KCa2.3, is recycled in polarised both endothelial and epithelial cells (Gao et al., 2010; Lin et al., 2012). This recycling has been shown to be partially dependent on an amino acid sequence within the N-terminus. While this 12 amino acid sequence (GQPLQLFSPSNP (Gao et al., 2010)) is not conserved in KCa3.1, there is a possibility of a recycling domain on KCa3.1, as some groups believe that KCa3.1 can be recycled in certain cell types (Schwab et al., 2012).

In order to study the effect of the Retromer on KCa3.1 recycling in epithelia, in this project the SNX proteins SNX1, SNX4, and SNX27 were studied. FRT-KCa3.1-BLAP cells were transfected with 40 pM of either control siRNA or SNX(x) (where (x) = SNX1, SNX4, or SNX27) siRNA in order to decrease intracellular expression of a specific SNX protein. The effectiveness of this knockdown was then measured by immunoblot, as was the membrane populations of KCa3.1, and the quantified results were normalised and compared to the cells transfected with 40 pM control siRNA. Furthermore, KCa3.1 function at the basolateral membrane was measured through Ussing chamber experiments, where the change in current was measured after stimulating or inhibiting the KCa3.1 channel, and differences in the change in current between the control and knockdown cells were analysed. I hypothesised that transfecting FRT-KCa3.1-BLAP cells with SNX(x) siRNA would lead to a
significant decrease in the intracellular expression of that SNX protein. Additionally, I hypothesised that this significant decrease in the SNX protein levels would lead to a significant decrease in the basolateral membrane population of KCa3.1, as measured by immunoblot, and a significant decrease in both the 1-EBIO and clotrimazole sensitive currents, compared to control epithelia.

5.2 Technical approach

For this project, a robust, reliable KCa3.1 labelling system was required, as accurate determination of the membrane population of KCa3.1 was vital to observe the channel at the basolateral membrane. The labelling system used in this study was based on the internal biotinylation method developed by Alice Ting (Chen et al., 2005), and modified to biotinylate KCa3.1 by Devor and colleagues (Balut et al., 2010). This method of internal biotinylation centres around cells stably transfected with KCa3.1 which has been modified to contain a biotin ligase acceptor peptide (BLAP) sequence on an extracellular loop between the 3rd and 4th transmembrane domains. The plasmid these cells were transfected with also contains a biotin ligase enzyme (BirA), modified to contain an endoplasmic reticulum retention motif (BirA-KDEL) (Figure 3.2). In the cell, this system allows for KCa3.1 to be synthesised in the ER by ribosomes, then subsequently biotinylated by BirA on the BLAP sequence. At the plasma membrane, KCa3.1 functions normally, whilst exhibiting an extracellular biotin, which can be detected by selective labelling with streptavidin, allowing for immunoblots where only membrane bound KCa3.1 is shown. Gao and colleagues compared KCa3.1 to KCa3.1-BLAP, and found that the addition of BLAP did not significantly affect the activation of KCa3.1 by DCEBIO, nor the inhibition of KCa3.1 by clotrimazole (Gao et al., 2010). Moreover, it has been published that neither KCa3.1 trafficking nor function is adversely affected by the addition of the BLAP sequence (Gao et al., 2010).

This plasmid was stably transfected into Fischer Rat Thyroid (FRT) cells, which are able to form a polarised epithelial sheet (Winter et al., 2011). The resultant cell line in known as FRT-KCa3.1-BLAP cells. As FRT-KCa3.1-BLAP cells retain the ability to form polarised epithelial sheets, the cells were cultured onto semi-permeable membranes for experimental procedures, allowing for both the apical and basolateral membrane populations of KCa3.1 to be independently observed.

5.3 Experimental overview

This study was undertaken with four experimental goals to be competed. The base aspect of this project was the preliminary experiments; the sidedness experiment, where the basolateral localisation of KCa3.1 was confirmed (Figure 4.1), the SNX antibody tests, where antibodies confirmed that each SNX protein was present in FRT cells (Figure 4.2), and the SNX siRNA tests, where the ability of each SNX siRNA to decrease the corresponding protein was determined (Figures
4.3 and 4.4). The sidedness experiment served to ensure that KCa3.1 was being trafficked to the basolateral membrane, as reported in previous studies (Bertuccio et al., 2014; Farquhar et al., 2017). The SNX antibody tests ensure that the antibodies were able to detect endogenously expressed SNX proteins in FRT cells. Finally, the SNX siRNA tests served to find the optimal concentration of siRNA to transfect into cells.

The second area of this project was to ensure that transfecting cells with 40 pM of SNX(x) siRNA led to a significant decrease in SNX(x) protein expression compared to cells transfected with 40 pM control siRNA. If a passage of cells were found to have no decrease in the SNX(x) intracellular protein levels, the neither the apical nor the basolateral membrane populations of KCa3.1 were measured. Changes in the relative intracellular protein levels of SNX(x) were measured through immunoblot experiments.

The third part of this project observed the membrane populations of KCa3.1 in cells transfected with 40 pM SNX(x) siRNA or control siRNA. For cells transfected with 40 pM SNX(x) siRNA, the apical and basolateral membrane populations of KCa3.1 were independently measured, and were compared to the membrane population of KCa3.1 in cells transfected with 40 pM control siRNA. As previously mentioned, these experiments were only carried out on cells with a decrease in intracellular SNX(x) protein expression due to transfection of cells with SNX(x) siRNA.

The final aspect of this project was to observe the functional expression of KCa3.1 in FRT-KCa3.1-BLAP cells transfected with 40 pM SNX(x) siRNA, then measuring the relative change in current, as determined by Ussing chamber experiments. The change in current was measured following the addition of either 1-EBIO or clotrimazole, in order to detect the 1-EBIO sensitive current or the clotrimazole sensitive current in both epithelia transfected with 40 pM control siRNA and cells transfected with 40 pM SNX(x) siRNA. The differences in both the 1-EBIO sensitive current, and the clotrimazole sensitive current were measured in both the control epithelia and the SNX(x) knockdown epithelia.

While four aspects of this project have been outlined, the final three were carried out simultaneously, and in parallel. Cells for these experiments were all seeded from the same passage of cells, and transfected with 40 pM of siRNA. Additionally, all the cells were cultured in the same environment, eliminating many variables which may reduce consistency. This allowed for the assumption that the Ussing chamber experiments experienced the same SNX(x) knockdown as the immunoblot experiments, where the level of knockdown was easily measured. It was imperative that the SNX(x) knockdown was identical in the Ussing chamber experiments, as it allowed for
changes in current seen when the KCa3.1 at the cell membrane was simulated with 1-EBIO or inhibited with clotrimazole to be matched to a % decrease in the intracellular SNX(x) protein levels.

5.3.1 Preliminary experiments

As mentioned above, the preliminary experiments for this project consisted of the sidedness experiment, the antibody tests, and the siRNA tests. The sidedness experiment (Figure 4.1) revealed that the majority of KCa3.1 was expressed at the basolateral membrane compared to both the cells where no membrane bound KCa3.1-BLAP channels were not labelled through the use of streptavidin (hereafter referred to as unlabelled cells) (p < 0.05; n=4), and to apically labelled cells (cells where the apical membrane population of KCa3.1 was labelled with streptavidin) (p < 0.05; n=4). While the difference between the apical and basolateral membrane populations of KCa3.1 was not significant, there was a trend towards significance seen, suggesting that significance may emerge with more experiments. Previous studies have shown that KCa3.1 is located solely in the basolateral membrane (Bertuccio et al., 2014; Farquhar et al., 2017). This suggests the possibility that the small, non-significant amount of KCa3.1 detected at the apical membrane compared to the negative control was due to streptavidin. If the cellular monolayer was not fully confluent when streptavidin was placed on the apical membrane, some of the basolaterally located KCa3.1 may have been accidentally labelled. Alternatively, if not all the streptavidin was removed by washing steps, then streptavidin on the apical membrane could bind to the basolaterally located KCa3.1 during cell lysis. As there was a trend towards a significant difference seen between the apical and basolateral membranes in the sidedness experiment, this difference was considered to be the baseline for other experiments. Ergo, apical expression akin to what was seen in Figure 4.1 was considered to be normal, and siRNA experiments with only a small amount of apical expression were not considered to be caused by KCa3.1 missorting to the apical membrane. Furthermore, later in this project, the apical expression of KCa3.1 was measured in both the control and knockdown cells. This allowed for relative changes in the apical KCa3.1 signal to be measured, ensuring that any perceived apical missorting of KCa3.1 in cells where Retromer was disrupted was actually occurring.

The antibody test (Figure 4.2) for this project proved two things. Firstly, these results revealed that both the anti-SNX1 and the anti-SNX27 antibody indeed identified endogenously expressed proteins in FRT cells, as protein bands appeared in the lysate from FRT cells. Secondly, these results demonstrated that both SNX1 and SNX27 were present in FRT cells, as the protein bands occurred at the correct molecular weight. These protein bands appeared in both the positive control lysate (lysate from HEK293 cells, as shown by immunoblot provided by the manufacturer) and in the lysate from FRT cells.
The SNX27 siRNA test (Figure 4.4) for this project determined the optimal siRNA concentration for transfecting cells with SNX27 siRNA, showing that transfecting cells with 40 pM SNX27 siRNA led to the largest decrease in SNX27 protein levels compared to the cells transfected with 40 pM of control siRNA, however this was not a significant change ($p > 0.05$; n=3).

Additionally, the antibody used to detected the C-terminus of SNX27, and suggested that SNX27 run at 28 kDa, rather than 61 kDa. The antibody purchased for detection of SNX27 stated that SNX27 run at 28 kDa, however, after the preliminary experiments, it was revealed that other SNX27 antibodies detected SNX27 at 61 kDa. My preliminary experiments were not able to detect SNX27 at 60 kDa, as the PVDF membrane was sectioned horizontally with reference to the protein ladder to allow for simultaneous detection of both SNX27 (28 kDa) and GAPDH (37 kDa). This meant that any higher molecular weight bands of SNX27 were located on the GAPDH portion of the membrane. SNX27 was detected at 61 kDa by a member of the McDonald Lab. This allowed for the accurate detection of the whole SNX27 protein at 61 kDa using the antibody available, rather than detecting a portion of the SNX27 protein at 28 kDa, as detected in Figures 4.2 and 4.4.

I believe that the detection of SNX27 at 28 kDa was insufficiently accurate for the preliminary experiments, ergo the more accurate detection at 61 kDa was required in order to determine a more accurately calculated knockdown of SNX27. When determining the effect of SNX27 on the basolateral membrane population of KCa3.1, it was vital to accurately determine if a transfection with SNX27 siRNA was successful, as any experiments where a siRNA transfection did not elicit a significant decrease in the protein levels were not accepted to measure changes in the membrane populations of KCa3.1.

On the other hand, the SNX1 siRNA test (Figure 4.3) for this project did not show any significant decrease in SNX1 expression in any of the SNX1 siRNA transfections, up to 40 pM. There are a number of possibilities as to why these transfections did not yield a significant decrease in the intracellular expression of SNX1, including unrefined transfection technique, bad transfection reagents or media, or non-specific protein binding for SNX1. Figure 4.3 showed the representative immunoblot for SNX1, and also shows a faint band underneath the perceived SNX1 band, suggesting the possibility of nonspecific protein bands being detected by anti-SNX1 in FRT cells. This non-specific binding did not occur in the SNX1 experiments discussed in section 5.3.4.

5.3.2 The effect of SNX4 on the trafficking of KCa3.1

The first sorting nexin protein whose effect I studied on the trafficking of KCa3.1 was SNX4; a protein involved in the trafficking of vesicles from the early endosome to the trans-Golgi body and back to the plasma membrane (Traer et al., 2007). Silencing of SNX4 expression results in the
transferrin receptor being sent into the lysosomal degradation pathway, rather than being recycled (Traer et al., 2007). If decreasing the protein levels of SNX4 indeed affects the membrane population of KCa3.1, it could suggest that KCa3.1 is recycled by a previously unknown mechanism. Therefore, it is important to examine the possibility that SNX4 plays a role in the trafficking of KCa3.1.

Before any effect of SNX4 on the trafficking or membrane population of KCa3.1 could be established, a significant decrease in the intracellular expression of SNX4 had to be observed. FRT-KCa3.1-BLAP cells were seeded onto semipermeable filters, then were transfected with 40 pM of either control siRNA or SNX4 siRNA. This transfection resulted in a 62 ± 12% decrease in the intracellular protein levels of SNX4 compared to the control, which was highly significant (Figure 4.5B) (p < 0.001; n=5).

When immunoblots detected that a successful SNX4 siRNA transfection occurred, a second sample of this cellular lysate was run on immunoblot in order to measure the apical and basolateral membrane populations of KCa3.1. This was possible as both the apical and basolateral membrane populations of KCa3.1 were labelled prior to cell lysis. It was hypothesised that, by decreasing the intracellular protein levels of SNX4, the basolateral membrane population of KCa3.1 would also be reduced. As both the apical and the basolateral membrane populations of KCa3.1 were measured in cells transfected with SNX4 siRNA, any KCa3.1 missorted from the basolateral to the apical membrane would be able to be detected. Figure 4.5C shows no significant change in the basolateral membrane population of KCa3.1 between the control cells and the cells transfected with SNX4 siRNA. Interestingly, there was also no significant difference between the basolateral membrane population of KCa3.1 in the control cells and the apical membrane population of KCa3.1 in the SNX4 knockdown cells (Figure 4.5C). This could suggest that some KCa3.1 was missorted from the basolateral membrane to the apical membrane, however, it is possible that the FRT-KCa3.1-BLAP cells did not completely cover the filter they were grown on. This could have led to some of the basolateral membrane population of KCa3.1 to be labelled in the apically labelled samples. Additionally, this experiment highlighted the need to measure the apical membrane population of KCa3.1 in the cells transfected with 40 pM control siRNA. The apical membrane population of KCa3.1 was not measured in the control cells for this experiment as previous experiments have shown the basolateral localisation of KCa3.1 (Bertuccio et al., 2014; Farquhar et al., 2017). Following this experiment, the apical membrane population of KCa3.1 was labelled in order to allow for changes in not only the basolateral membrane population of KCa3.1 to be measured, but for changes in the apical membrane population of KCa3.1 to be measured as well.
The final aspect of detecting any effect which SNX4 plays on the trafficking and membrane populations of KCa3.1 was performing Ussing chamber experiments. This was performed by seeding and transfecting cells at the same time and with the same concentrations of siRNA as the immunoblot experiments discussed above, to ensure that any changes detected were indeed due to a change in SNX4. Additionally, both the 1-EBIO and the clotrimazole sensitive currents were measured, to ensure that any changes seen in the current were truly due to changes in the membrane population of KCa3.1, and not due to contaminating factors, such as other potassium channels, which may be activated by 1-EBIO (Bahia et al., 2005). It was shown that, in cells transfected with 40 pM SNX4 siRNA, there was a significant 36 ± 8% decrease in the 1-EBIO stimulated current than in control cells (Figure 4.6B) (p < 0.05; n=5). In contrast to this, cells transfected with 40 pM SNX4 siRNA did not show any significant difference in the clotrimazole sensitive current compared to the control cells (Figure 4.6C) (p > 0.1; n=5). As the change in the 1-EBIO sensitive current was not consistent with the clotrimazole sensitive current, nor by the immunoblot experiments, it is likely that the basolateral membrane population of KCa3.1 is not affected by SNX4. It is may be possible that the change in the 1-EBIO sensitive current is due to the presence of another EBIO-sensitive K+ channel, for example, an SK channel, which are also stimulated by the presence of 1-EBIO (Pedarzani et al., 2001), although no reports could be found of SK channels present in FRT cells. On the other hand, clotrimazole does not appear to inhibit SK channels (Malik-Hall et al., 2000). It is known that the SK3 (KCa2.3) channel is recycled in endothelial cells (Lin et al., 2012), although KCa3.1 was revealed to not be recycled in endothelial cells. However, it is may be possible that KCa3.1 is recycled in FRT cells, as KCa3.1 is closely related to KCa2.3, as both channels are from the KCNN gene family. KCa3.1 was hypothesised to be recycled in migratory cells (Schwab, 2012), which may further increase the possibility of KCa3.1 recycling in FRT cells.

Finally, it was determined that there was no change in the transepithelial resistance when cells were transfected with SNX4 siRNA (p > 0.05; n=5) (Figure 4.6D). This strongly suggests that the FRT-KCa3.1-BLAP cells used for this experiment were able to form a confluent tight epithelial monolayer when SNX4 was knocked down. This is important as a tight epithelia is vital for the success of Ussing chamber experiments.

I hypothesised that decreasing the intracellular protein levels of SNX4 would decrease the basolateral membrane population of KCa3.1, as measured by both immunoblots and Ussing chamber experiments. Immunoblot experiments showed no significant decrease in the basolateral membrane population of KCa3.1 in cells with less SNX4. Additionally, the Ussing chamber experiments did not show a significant decrease in the basolateral membrane population of KCa3.1. These results prove that my hypotheses were incorrect, and strongly suggest that SNX4 does not
appear to play a role in the trafficking of KCa3.1. Furthermore, it appears that KCa3.1 is not trafficked by bulk flow along the tubules formed by SNX4, as the basolateral membrane population of KCa3.1 did not significantly change when SNX4 was knocked down. Certain proteins, such as TfnR, are trafficked through SNX4 tubules while not directly interacting with SNX4 itself, instead being sorted into these tubules in a geometrical manner (Cohen & Pintavirooj, 2004). These results suggest that, unlike TfnR, KCa3.1 is not indirectly sorted by SNX4, nor directly interacts with SNX4 to be trafficked between the plasma membrane and the early endosome. While it appears that KCa3.1 trafficking in unaffected by SNX4, it is possible that other SNX proteins with similar roles, such as SNX1/2, which are also involved in cargo selection and trafficking (Wassmer et al., 2009). Additionally, as SNX1 and SNX4 both form sorting tubules in the early endosome, it is possible that KCa3.1 is not trafficked by SNX proteins in order to reach the early endosome for its degradatory pathway (Carlton et al., 2004; Traer et al., 2007). The effect of SNX1 on the trafficking of KCa3.1 is further discussed in section 5.3.4.

5.3.3 The effect of SNX27 on the trafficking of KCa3.1

SNX27 is a unique sorting nexin protein, containing a PDZ domain, a domain unseen amongst other SNX proteins. SNX27 has been shown to aid in trafficking the β2AR (Lauffer et al., 2010), and the sodium-hydrogen exchanger NHE3, which is trafficked to the basolateral membrane (Singh et al., 2015). SNX27 utilises both its FERM domain and its PDZ domain in order to selectively traffic its cargo (Lauffer et al., 2010; Temkin et al., 2011; Steinberg et al., 2013; Gallon et al., 2014). Additionally, in SNX27 depleted cells, it was shown that cargo was sent into a lysosomal degradation pathway (Lee et al., 2016).

As with the effect of SNX4, the effect of SNX27 on KCa3.1 trafficking and basolateral membrane population could not be examined before a SNX27 knockdown was observed. FRT-KCa3.1-BLAP cells were transfected with either 40 pM control siRNA or 40 pM SNX27 siRNA, and the cellular lysates were run on an immunoblot. These results showed a 27 ± 4% decrease in the intracellular levels of SNX27 compared to the control cells (Figure 4.7B) (p < 0.01; n=4). While this knockdown appeared smaller than the SNX27 knockdown (51 ± 10% decrease) seen in the SNX27 siRNA test (p > 0.05)(Figure 4.4), this knockdown was significant, unlike the SNX27 knockdown of the siRNA test. It is possible that this difference in the transfections was because the original immunoblots detected SNX27 at 28 kDa, as per the manufacturer’s instructions, rather than detecting the protein at 61 kDa, the size of SNX27 published by other groups. When SNX27 was detected at 61 kDa in FRT-KCa3.1-BLAP cells transfected with 40 pM of SNX27 siRNA, using the same antibody, a significant decrease in the intracellular levels of SNX27 was observed (p < 0.01; n=4) (Figure 4.7B).
Just as with looking at the effect of SNX4 on the membrane population of KCa3.1, the cellular transfections where a decrease in the intracellular protein levels of SNX27 was observed were used to observe the apical and basolateral membrane populations of KCa3.1. Unlike with the SNX4 experiments, these immunoblots studied both the apical and basolateral membrane populations of KCa3.1 in the control cells as well as in the SNX27 siRNA transfected cells. This allowed for any differences in the apical membrane population of KCa3.1 to be measured, rather than making the assumption that no KCa3.1 would be detected at the apical membrane of control cells. When the immunoblots were analysed, there was no significant difference detected in the basolateral membrane population of KCa3.1 between the control cells (CTRL BL) and the cells where a SNX27 knockdown was performed (SNX27 BL) (Figure 4.7C). This suggested that SNX27 was not involved in the trafficking of KCa3.1 to the basolateral membrane.

Interestingly, the apical membrane population of KCa3.1 in the cells transfected with 40 pM SNX27 siRNA appeared to be higher than the apical population of KCa3.1 in the control cells, with what was approaching significance (Figure 4.7) (p = 0.0818; n=4). As these results are from only 4 experiments, this could suggest that without SNX27, the basolaterally targeted KCa3.1 is missorted to the apical membrane. However more experiments would be required before any conclusions could be drawn. If the apical membrane population of KCa3.1 is indeed increased when SNX27 is decreased, but the basolateral membrane population is decreased, it could suggest that surplus KCa3.1 is produced under normal conditions, and there is a cellular process to limit the basolateral membrane population of KCa3.1, however the apical membrane is free to be occupied.

Additionally, the basolateral membrane population of KCa3.1 in the control cells was almost significantly higher than the apical membrane population of KCa3.1 in the control cells (Figure 4.7C) (p < 0.1; n=4), which appears to suggest that the FRT-KCa3.1-BLAP cells seeded for this experiment formed a near confluent monolayer, with very little streptavidin leaking through to the basolateral membrane KCa3.1, although this is unconfirmed. The results seen in Figure 4.7C suggest that the SNX27 siRNA knockdown which caused a 27 ± 4% decrease in SNX27 was unable to significantly decrease the basolateral membrane population of KCa3.1, however a more substantial reduction in the intracellular protein expression of SNX27, or an increased number of experiments may have shown that KCa3.1 was able to be missorted to the apical membrane. This being said, no conclusions can be drawn from the immunoblots in Figure 4.7.

Again, like with SNX4, the SNX27 immunoblot experiments were paired to Ussing chamber experiments. These results showed an 83 ± 8% decrease in the 1-EBIO sensitive current, which is highly significant (p < 0.001; n=4) (Figure 4.8B). While this decrease in current appears promising, it
is likely that this result is not solely due to changes in the membrane population of KCa3.1, as only
a 27 ± 4% decrease in SNX27 was observed (Figure 4.7B). As with SNX4, this amplified 1-EBIO
sensitive current may be the result of other SK channels, which are stimulated by 1-EBIO alongside
KCa3.1 (Pedarzani et al., 2001) however, the presence of SK channels in FRT cells must first be
confirmed by immunoblot, as there were no published reports of any SK channels present in FRT
cells at the time of writing of this report. If SK channels, including KCa2.3, are present in FRT cells,
and if a decrease in SNX27 leads to a decrease in basolateral membrane population of KCa2.3, this
could aid in the magnitude of change seen, and this could be even more significant if KCa2.3 was
missorted to the apical membrane. In order to test this hypothesis, it is vital to first observe
endogenous KCa2.3 in FRT cells, a gap in the current literature. This is because the Ussing chamber
set up for this experiment had an artificial K+ gradient designed to amplify the basolateral K+
current of KCa3.1, ergo if KCa3.1, or a similar channel, was missorted to the apical membrane, it
would have an amplified negative effect on the 1-EBIO sensitive current. While an 83 ± 8%
decrease in the 1-EBIO sensitive current was seen in cells transfected with 40 pM SNX27 siRNA
compared to the control (Figure 4.8B), this decrease was not seen in the clotrimazole sensitive
current. While there was a slight decrease seen in the clotrimazole sensitive current (27 ± 14%),
this was not significant (p > 0.1; n=4) (Figure 4.8C). This further suggests that the 1-EBIO sensitive
current seen is not solely due to changes in the basolateral membrane population of KCa3.1.

Finally, there appeared to be no significant differences between the transepithelial
resistance of the control cells and the SNX27 deficient cells (p > 0.1; n=4) (Figure 4.8D),
demonstrating that the cells were able to form a tight epithelial monolayer with significantly
decreased intracellular levels of SNX27 (Figure 4.8D). This is especially important in the case of
SNX27, as SNX27 has been shown to traffic ZO-2 (Zimmerman, 2013), suggesting that cells with less
SNX27 may not form tight junctions as efficiently, which may allow for the streptavidin used to
label the apical population of KCa3.1 to leak through to the basolateral membrane more easily. If
there was a significant decrease in the transepithelial resistance, it could signify that the increase
in the apical membrane population of KCa3.1 was due to more streptavidin leaking through the
transcellular pathway. As there is no significant change in the transepithelial resistance, it is
possible that the almost significant increase in the apical membrane population of KCa3.1 in the
SNX27 scarce cells is due to KCa3.1 being missorted to the apical membrane from the basolateral
membrane, however more experiments are required to confirm this.

For this aspect of the project, my first hypothesis was correct, and transfecting cells with 40
pM SNX27 siRNA lead to a significant decrease in the intracellular levels of SNX27 (Figure 4.7B). My
second hypothesis was not correct, as there was no significant change in the basolateral
membrane population of KCa3.1 in the SNX27 knockdown cells compared to the control cells (Figure 4.7C). However, it is possible that some KCa3.1 was missorted to the apical membrane without leading to a decrease in the basolateral membrane population of KCa3.1. Finally, my third hypothesis, that both the 1-EBIO sensitive current and the clotrimazole sensitive currents would be decreased in cells transfected with 40 pM SNX27 siRNA, was incorrect, as there was no significant change in the clotrimazole sensitive current, despite the change in the 1-EBIO sensitive current (Figure 4.8). These results suggest that KCa3.1 does not interact with SNX27. Additionally, it appears unlikely that the KCa3.1 channel is trafficked along SNX27 specific tubules. This is consistent with the current literature on KCa3.1, as SNX27 is involved in the recycling pathway from the early endosome to the plasma membrane, as shown in Figure 1.6 (Lauffer et al., 2010; Temkin et al., 2011; Gallon et al., 2014; Lee et al., 2016). Previously, it has been shown that KCa3.1 is not recycled in endothelial cells, unlike the similar KCa channel, KCa2.3 (Lin et al., 2012). Additionally, KCa3.1 trafficking in epithelial cells is recycling endosome independent (Bertuccio et al., 2014), instead being trafficked directly to the basolateral membrane (Bertuccio et al., 2014). The results shown here suggest that KCa3.1 is not recycled in a SNX27 dependent mechanism, strengthening the hypothesis that KCa3.1 is not recycled in epithelial cells. The results seen here, and the results published by Lin and colleagues (2010), and Bertuccio and collaborators (2014), are not supported by the work of Schwab and contemporaries (2012), who suggest that KCa3.1 is recycled in migratory epithelial cells, however, do not provide evidence of a specific mechanism, instead stating that their observations were consistent with the notion of channel recycling, however noting the lack of channel internalisation kinetics data. This could suggest that KCa3.1 is trafficked differently in migratory cells compared to stationary cells.

5.3.4 The effect of SNX1 on the trafficking of KCa3.1

Finally, the effect of SNX1 on the trafficking of KCa3.1 was measured. In vivo SNX1 forms a dimer with either SNX5 or SNX6, as does the similar SNX2 (Griffin et al., 2005; Rojas et al., 2007; Wassmer et al., 2007). SNX1 contains a BAR domain, which aids in the formation of vesicles and the internalisation of membrane bound proteins (Peter et al., 2004; van Weering et al., 2012). Furthermore SNX1 has been shown to recycle the basolaterally trafficked protein E-cadherin (Bryant et al., 2007), suggesting that SNX1 is capable of recycling other basolaterally trafficked proteins.

When FRT-KCa3.1-BLAP cells were transfected with 40 pM SNX1 siRNA, compared to cells transfected with 40 pM control siRNA, a significant decrease in the intracellular protein levels of SNX1 were detected (Figure 4.9B) \((p < 0.05; n=4)\). This decrease in SNX1 is significantly more than was detected in the SNX1 siRNA test \((p < 0.01)\) (Figure 4.3). The increased transfection efficiency seen in Figure 4.9 compared to Figure 4.3 is likely due to multiple factors, including; more refined
transfection technique due to months more practice, and the use of a different batch of transfection media. As each batch of transfection media is made by hand, small differences in the pH or concentration may occur, which could have upset the delicate balance needed for successful siRNA transfections.

In the SNX1 knockdown cells where a decrease in SNX1 was detected were then used to observe the apical and basolateral membrane populations of KCa3.1 in both the control and the SNX1 depleted cells (Figure 4.9C). These results showed no significant difference in the basolateral membrane population of KCa3.1 in either the control cells or the cells where SNX1 was reduced. This suggests that SNX1 is not involved in the trafficking of KCa3.1 to the basolateral membrane. Similarly, there was no significance seen in the differences in the apical membrane population of KCa3.1 between the control cells and the cells transfected with SNX1 siRNA. As KCa3.1 is not expected in the apical membrane in control cells, this suggests that a reduction in SNX1 did not lead to missorting of KCa3.1 from the basolateral membrane to the apical membrane. Following the trend of non-significance, there was no significance seen between the apical or basolateral membrane populations of KCa3.1 in the cells transfected with either 40 pM control siRNA or 40 pM SNX1 siRNA, suggesting the possibility that the FRT-KCa3.1-BLAP cells did not completely form a monolayer on the filters used for immunoblot experiments, allowing for apical streptavidin to label the basolateral membrane population of KCa3.1. As mentioned previously, it is known that, in a confluent epithelial monolayer, KCa3.1 is localised to the basolateral membrane (Farquhar et al., 2017).

Just as with the SNX4 and SNX27 experiments, this experiment utilised functional experiments in the form of Ussing chamber experiments (Figure 4.10). These experiments showed a significant decrease in the 1-EBIO sensitive current in the cells transfected with 40 pM SNX1 siRNA compared to the cells transfected with 40 pM control siRNA (p < 0.05; n=4) (Figure 4.10B). This 61 ± 11% decrease in the 1-EBIO sensitive current was not matched by the clotrimazole sensitive current, which only has a 45 ± 19% decrease in the SNX1 knockdown cells compared to the control cells, a decrease which is statistically non-significant (p > 0.1; n=4) (Figure 4.10C). As the cells did not exhibit a change in the clotrimazole sensitive current, nor in the basolateral membrane population of KCa3.1 when transfected with SNX1 siRNA, it is highly unlikely that SNX1 is involved in the trafficking of KCa3.1. Additionally, there was no significant change in the transepithelial resistance when cells were transfected with SNX1 siRNA (p > 0.1; n=4) (Figure 4.10D). This signifies the formation of a tight epithelial monolayer in the cells with less SNX1. The formation of a tight epithelial monolayer proves that the Ussing chamber results are not due to a leakier or defective epithelia.
The results seen here strongly suggest that SNX1 is not involved in the trafficking of KCa3.1, either to or from the plasma membrane. Additionally, combined with the results presented in section 4.4.1, which examined the potential role of SNX4 in the trafficking of KCa3.1, it is unlikely that any SNX proteins are involved in the trafficking of KCa3.1 between the plasma membrane and the early endosome. This is suggested as both SNX1 and SNX4 are key proteins in the formation of SNX sorting tubules, and both branch from the plasma membrane to the early endosome for membrane protein transport (Carlton et al., 2004; Traer et al., 2007). As KCa3.1 does not appear to be internalised by a SNX1 specific mechanism, it is unlikely that KCa3.1 is transported from the endosome to trans-Golgi body, as SNX1 is one of the defining features of this pathway (Bujny et al., 2007). Furthermore, it is unlikely that either SNX5 or SNX6 play a role in the trafficking of KCa3.1, as SNX1 possesses a well-documented interaction with both SNX5 and SNX6, with suppression of either SNX5 or SNX6 leading to a decrease in SNX1 expression (Wassmer et al., 2007). It is also unlikely that SNX2 portrays a role in the trafficking of KCa3.1, due to its similarity to SNX1, as these proteins are believed to have interchangeable roles in trafficking (Rojas et al., 2007), however, as SNX2 is similar to SNX1, it is possible that the effect of SNX1 knockdown is blunted by the upregulation of SNX2. Finally, it is improbable that SNX3 plays a role in the trafficking of KCa3.1, as SNX3 has been suggested to utilise the tubules created by SNX proteins such as SNX1 (Strochlic et al., 2007). This is because SNX3 is unable to synthesise their own transport structures (Strochlic et al., 2007).

When the intracellular protein levels of either SNX1, SNX4, or SNX27 are reduced by siRNA transfection, a significant decrease in the 1-EBIO sensitive current was observed. This would suggest that the functional expression of KCa3.1 is reduced, however none of these transfections lead to a significant, or trended towards a significant decrease in the clotrimazole sensitive currents. This suggests that another factor was responsible for the change in the 1-EBIO sensitive current. I hypothesise that another member, or members of the KCNN gene family may be responsible for this, providing that this channel is endogenously expressed in the FRT cell line. As mentioned earlier, the small conductance calcium activated K⁺ channel KCa2.3 has been shown to be recycled in epithelial cells (Gao et al., 2010; Lin et al., 2012).

5.4 Limitations

In this project, there were several limitations, which were minimised where possible. Of these limitations, perhaps the most prevalent was that the KCa3.1 activator, 1-EBIO, is not completely specific to KCa3.1, instead also activating the KCa3.1 relatives, KCa2.1, KCa2.2, and KCa2.3 (Pedarzani et al., 2001), which appeared to cause a misleading change in the 1-EBIO sensitive current. While KCa2.3 is found in human thyroid tissue, a search of the NCBI Geo database revealed no evidence of
any of the KCa2.1, KCa2.2, or KCa2.3 channels being present in rat thyroid tissues. Additionally, no literature confirming either the presence or the absence of these channels in rat thyroid tissues was uncovered, therefore the presence of SK channels in rat thyroid tissue must be confirmed before this hypothesis can be examined. Another limitation for this project was streptavidin labelling KCa3.1-BLAP at the basolateral membrane when put onto the apical membrane, due to an incomplete epithelial monolayer, leading to false detection of KCa3.1 at the apical membrane, as shown in Figure 4.1. This limiting factor was minimised in the SNX27 and SNX1 experiment by measuring the apical membrane population of KCa3.1 in both the control and the SNX diminished cells, however this was not controlled for in the SNX4 experiment, and time was not permitting for this to be repeated.

Furthermore, it would have been prudent to reduce the amount of apical labelling of KCa3.1 in the sidedness experiments (Figure 4.1). This could have been completed in two ways. The first would have been to alter the original number of cells seeded onto the Transwell filters. By increasing the original number of cells onto the Transwell filter, cells will require less time to grow in order to form a confluent monolayer, ensuring that there were no gaps in the epithelial monolayer for streptavidin to move through. While this may have generated a confluent monolayer, seeding a higher number of cells may have reduced the cellular transfection efficiency as cells will have more surface area in contact with surrounding cells, ergo less contact with the surrounding media, which limits the ability of cells to take up the siRNA transfection. The second strategy would be similar to the first strategy; changing the cellular growth time. By increasing the time between seeding cells and cellular lysis, the cells will have more time to grow and ergo more likely to form a confluent monolayer. The final approach would be to use cells of a lower passage, as cells of a higher passage did not perform as well. However, by increasing growth time or initial seeding densities, the risk of overgrowing cells increases. FRT cells were observed forming domes by growing vertically once a confluent monolayer has been formed. The resulting cells may not be polarised, meaning that KCa3.1 is not localised to the basolateral membrane and would be able to be labelled at the apical membrane.

Finally, a major limitation for this project was the deterioration of the currents seen in the control traces between experiments. This can best be seen between the control traces between figures 4.6A and 4.8A. It is unknown why there was such variation in the control current, as under ideal conditions, the control current would have been identical each time. In order to minimise the problems this may cause, during analysis, the knockdown current was normalised to the control, allowing for any changes to be seen more accurately. It is possible that using DCEBIO, a stronger KCa3.1 channel opener that 1-EBIO, would have resulted in greater changes in current, allowing for more accurate results to be obtained.
Aside from these specific limitations, there were also more general limitations, such as background fluorescence in the immunoblots and oxidation occurring in the electrodes used for the Ussing chamber. Background fluorescence was minimised by using smaller amounts of Lumilight solution, which made excess Lumilight easier to drain off by touching the edges of the PVDF membrane to a paper towel before fluorescence was detected. While this reduced the prevalence of excess background fluorescence, one had to be careful to ensure that the whole PVDF membrane was covered in Lumilight solution in order to ensure that the experiment was accurate. The oxidation seen on the electrodes of the Ussing chamber was minimised in two ways. The first way was to ensure that the agar used to plug the end of the electrode was fresh when new electrodes were made, so that it would form an effective plug. The second way was to create new electrodes regularly, as the agar plugs in the electrodes degraded over time and with use. This helped to prevent electrodes from oxidising in the middle of an experiment, leading to electrodes being required to be remade, and extra, unnecessary errors being present.

Another limitation to this project was the use of only one cell line; Fischer rat thyroid cells. It is possible that results could vary if a different cell line was utilised, however due to time constraints, this was not possible. If time were not an issue, the use of multiple cell lines to confirm that findings were consistent would have been ideal.

5.5 Future directions

This study has left two main questions which need to be answered in order to completely understand the results gained. The first question is regarding the trend towards a significant increase in the apical membrane population of KCa3.1 in cells with less SNX27. As mentioned above, the possibility of KCa3.1 missorting to the apical membrane needs to be examined. This could be done in two parts; firstly using fluorescently tagged KCa3.1 to determine if any KCa3.1 is located in the apical membrane when SNX27 is diminished, and secondly performing immunoprecipitation experiments to determine if SNX27 and KCa3.1 interact. One problem experienced with this project regarding immunoprecipitation experiments was the inability to transfect cells with the KCa3.1-HA construct. I believe that this can be avoided by utilising the already available KCa3.1-BLAP present in FRT-KCa3.1-BLAP cells. By lysing the cells prior to labelling the membrane bound KCa3.1 with streptavidin, then incubating the lysis in the streptavidin solution, the intracellular KCa3.1-BLAP would be labelled. This would allow for any intracellular interactions between KCa3.1 and the Retromer proteins to be detected, even if the interaction has ceased when KCa3.1 gets to the membrane.

The second question I believe needs to be answered is regarding the increased change in 1-EBIO sensitive current compared to the change in the clotrimazole sensitive current. As mentioned
above, it appears that transfecting cells with any of the three SNX siRNAs used for this project resulted in an unknown protein being decreased, which lead to a significant decrease in the 1-EBIO sensitive current. I believe a strong contender for this is the KCa2.3 channel, which is related to KCa3.1, and is opened by 1-EBIO (Pedrazzani et al., 2001). KCa2.3 is present in human thyroid tissue (Fagerberg et al., 2014), suggesting that it would be present in FRT cells, however no data has been published regarding this. I believe it would be prudent to examine if KCa2.3, or either of the other two small conductance calcium activated potassium channels (KCa2.1 or KCa2.2), are present in FRT-KCa3.1-BLAP cells. If any of these channels are present, it would be wise to inspect if the trafficking of these channels are affected by changes in retromer components, specifically the sorting nexin proteins used in this project.

In future, I believe that it would be beneficial to perform immunoblots measuring the cell surface levels of the β2-AR as a positive control to confirm that the retromer pathway has been interrupted. The β2-AR was not used in this project due to time constraints surrounding the ability to measure cell surface β2-AR. Additionally, the McDonald laboratory had previously shown measurable changes in ENaC when components of the Retromer complex were knocked down. This suggested that, not only were the individual components of the Retromer pathway were knocked down, but that the overall trafficking pathway was being interrupted.

Another experiment that I believe would be beneficial to perform in future is to look at the effect of Senicapoc; a KCa3.1 channel inhibitor, on the effect of KCa3.1 trafficking. Senicapoc has been proposed as a potential treatment for Sickle Cell Anaemia (Ataga et al., 2008). I believe it would be interesting to investigate if treating cells with Senicapoc, combined with Retromer knockdowns, could have an effect on surface levels of KCa3.1.

Aside from these experiments, which investigate the questions unanswered thus far by this project, I believe it would be beneficial to investigate several other factors. Primarily, it would be prudent to examine if decreasing the intracellular levels of multiple SNX proteins affects the basolateral membrane population of KCa3.1. Some Retromer proteins may be able to perform multiple roles if other proteins are knocked down, which would decrease any effects seen by knocking down that protein. In this project, SNX1 was knocked down, however, SNX2 plays a similar role to SNX1, and forms a complex with the same proteins as SNX1. Therefore, SNX2 may blunt the potential effects of knocking down SNX1. If both SNX1 and SNX2, or multiple other Retromer proteins were simultaneously knocked down, a change in the basolateral membrane population of KCa3.1 may emerge. However it would be important to follow these experiments with immunoprecipitation experiments. By immunoprecipitating KCa3.1 with the protein(s) knocked
down, it can be determined whether or not KCa3.1 has a direct interaction with these proteins, or if a detected change is due to a contaminating factor.

5.6 Conclusion

This project studied the effects of three sorting nexin proteins, SNX1, SNX4, and SNX27, on the membrane population of the intermediate conductance Ca\(^{2+}\) activated K\(^+\) channel. SNX1, SNX4, and SNX27 were selected for this project as each of these sorting nexins had unique functions, however, are all linked closely to the Retromer pathway. Primarily, this project was the first to reveal endogenous expression of both SNX1 and SNX27 in Fischer Rat Thyroid cells, and was the first to present that the intracellular protein levels of SNX1 and SNX27 could be reduced by transfecting these FRT cells with either SNX1 or SNX27 siRNA. In order to measure the changes in the basolateral membrane population of KCa3.1 when SNX1, SNX4, or SNX27 protein levels were decreased, both immunoblot and Ussing chamber experiments were utilised. This proved my first hypothesis, that SNX1, SNX4, and SNX27 would be knocked down when FRT-KCa3.1-BLAP cells were transfected with SNX1, SNX4, or SNX27 siRNA, to be correct.

While my first hypothesis was correct, my second and third hypotheses; which stated that both the basolateral membrane population of KCa3.1 (second hypothesis) and the functionality of KCa3.1 as determined by the 1-EBIO and clotrimazole sensitive currents (third hypothesis) would be significantly reduced when one of SNX1, SNX4, or SNX27 were not proven correct. It was found that the basolateral membrane population of KCa3.1 was not significantly changed when cells were transfected with any of SNX1, SNX4, or SNX27 siRNA.

When the intracellular protein levels of either SNX1, SNX4, or SNX27 were reduced by siRNA transfection, a significant decrease in the 1-EBIO sensitive current was observed. This would suggest that the functional expression of KCa3.1 is reduced, however none of these transfections lead to a significant, or trended towards a significant decrease in the clotrimazole sensitive currents. This suggests that another factor was responsible for the change in the 1-EBIO sensitive current. I hypothesise that another member, or members of the KCNN gene family may be responsible for this. As mentioned earlier, the small conductance calcium activated K\(^+\) channel KCa2.3 has been shown to be recycled in epithelial cells (Gao et al., 2010; Lin et al., 2012). These results are consistent with previous results suggesting the KCa3.1 is not recycled in nonmigratory cells (Gao et al., 2010; Lin et al., 2012). Additionally, these results suggest that none of SNX1, SNX4, or SNX27 are involved in the anterograde trafficking of KCa3.1 to the basolateral membrane.

As it appears that neither SNX1, SNX4, nor SNX27 are involved in the trafficking of KCa3.1 to the basolateral membrane, some specific trafficking routes seem less likely to be utilised by KCa3.1.
Both SNX1 and SNX4 form unique sorting tubules (Traer et al., 2007), which transport proteins to specific locations. As the basolateral membrane population of KCa3.1 did not significantly change when either SNX1 or SNX4 were downregulated, it is unlikely that KCa3.1 is trafficked by either the SNX1 or SNX4 sorting tubules. Furthermore, the possibility of KCa3.1 being transported through a sorting tubule by bulk flow through a SNX4 sorting tubule is also unlikely, as there would be fewer tubules when SNX4 was downregulated (Cohen & Pintavirooj, 2004). While there is no evidence that SNX27 forms sorting tubules, it appears unlikely that KCa3.1 is trafficked by either SNX27 or Fam21. Lee and collaborators (2016) found that SNX27 and Fam21 form a close interaction. In systems where the SNX27/Fam21 dimer are trafficking cargo, the cargo is sent along the lysosomal degradation pathway when SNX27 is removed (Lee et al., 2016). As there was no significant change in the basolateral membrane population of KCa3.1 when the intracellular levels of SNX27 were reduced, it is unlikely that Fam21 is involved in the trafficking of KCa3.1.

While these results appear conclusive, I believe that more research must be conducted on two areas; the effect of SNX27 on KCa3.1 missorting to the apical membrane, and determining the reason why downregulating each of SNX1, SNX4, and SNX27 lead to a significant decrease in the 1-EBIO sensitive current but not in the clotrimazole sensitive current. If SNX27 is indeed responsible, or partially responsible for the basolateral localisation of KCa3.1, then SNX27 could increase the number of therapeutic targets for diseases involving KCa3.1 dysfunction. Due to the prevalence of KCa3.1 in several disease states (Section 1.4.4), it is vital to understand exactly how KCa3.1 is trafficked both to and from the plasma membrane. By understanding exactly how KCa3.1 is trafficked to the plasma membrane, the number of channels present in the plasma membrane can be more accurately controlled in cells. Additionally, by knowing how KCa3.1 is trafficked from the plasma membrane, it may become apparent that KCa3.1 can be “rescued” from degradatory pathways, and recycled to the plasma membrane. Alternatively, understanding how KCa3.1 is trafficked from the plasma membrane may lead to therapies revolving around increasing how long KCa3.1 can remain in the plasma membrane.

As these results suggest that the Retromer pathway is not involved in the trafficking of KCa3.1 to the basolateral membrane, this project is inconsequential for clinical situations involving KCa3.1. Furthermore, as the Retromer pathway is still largely not understood, any therapeutic remedies involving Retromer must be intensively studied to ensure that no unforeseen trafficking side effects occur. In the search for novel medicines to treat diseases caused by KCa3.1, other trafficking routes must be investigated, however routes involving the Retromer pathway can be discounted.
References

