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ABSTRACT 

In New Zealand ship rats (Rattus rattus) are one of the major threats to endemic fauna and 

flora. Rural ship rat populations have been implicated in the ongoing decline and extinction 

of many species of endemic wildlife. The role ship rats have in structuring urban ecosystems, 

directly through predation, and indirectly through food and habitat competition is poorly 

understood in New Zealand. Understanding the role of ship rats in the urban environment is 

impeded by a lack ofinfonnation on their distribution and robust estimates of their density. 

Rat presence and distribution across different urban habitats was determined by the 

identification of genus-specific bite marks on wax blocks. The results from the wax block 

survey suggest that rats are either absent from, or at very low densities within the housed 

residential sites sampled in this study. In urban bush fragments rats were detected 

infrequently using wax blocks. High rates of non-target species interference may obscure the 

rate of rat detection in urban areas. 

Density is a fundamental biological parameter, however unbiased density estimation can be 

extremely difficult for certain species. Ship rats are nocturnal and highly dispersed, which 

makes them particularly difficult to sample using conventional techniques. Currently the most 

accurate and reliable estimates of absolute ship rat density are obtained through cage-trapping 

and spatially explicit capture-recapture analysis. This sampling method is both laborious and 

intrusive. Invasive sampling methods are also not always suitable for use in urban areas. 

This study describes the application of a non-invasive genetic technique for the estimation of 

urban ship rat density. Individual genotyping of ship rats was facilitated by analysing nine 

microsatellite loci amplified from the tissue of ship rat hair follicles. Hair samples were 

collected using hair-snag tubes (220 mm lengths of 65 mm PVC down pipe). Hair samples 

were retained on adhesive coated rubber bands that partly occluded the opening at both ends 

of the hair tubes. Hair tubes were baited with peanut butter and set in a known array. Ship rat 

density was estimated using spatially explicit capture-recapture analysis (DENSITY 4.1 ). 

Maximum likelihood was used to fit a range of candidate models to the spatial dimensions of 

hair tube re-visitation data. 
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The efficacy of the hair tube methodology was initially verified in the Orongorongo Valley on 

a well studied population of ship rats. In the Orongorongo Valley the density estimate of 1.17 

± 0.42 (SE) rats/ha was in accordance with recent cage-trapping estimates from the same 

sampling grid. 

Very low densities (0.26 ± 0.10 (SE) ha) of ship rats were found in Dunedin urban bush 

fragments. The overall effect of ship rats as predators on urban birdlife is inferred to be much 

less than in rural areas, where higher ship rat densities exist. If rats exist in high densities 

within urban Dunedin it seems likely they do so within small pockets of favourable habitat i.e. 

areas that are not frequently controlled, where food is abundant or where domestic cat 

densities are low. 

Systematic sampling and genetic profiling of ship rat hair for spatially explicit density 

estimation requires fewer human resources than cage-trapping and provides robust estimates 

of absolute density, but involves increased costs in laboratory analysis. 
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operations may be implemented if effort is targeted at habitat fragments with increased risk of rat 

infestation (Traweger & Slotta-Bachmayr 2005). Habitat suitability modelling using GIS has 

successfully been used to predict Norway rat infestation in Salzburg (Traweger & Slotta­

Bachmayr 2005). Investigating the level of genetic relatedness of ship rat populations from 

different urban forest fragments may elucidate the degree to which ship rats disperse between 

discontinuous urban habitats. (Abdelkrim et al. 2009) found very little genetic stmcture in a ship 

rat population in Puketi Forest Conservation Reserve. However, ship rat populations m 

fragmented urban landscapes may contain high levels of genetic stmcture. Recognition of 

migration corridors, by the observation of genetic stmcture, would provide valuable infonnation 

for the management of urban ship rat populations. 

4.6.2 Habitat preference 

Ship rats in urban areas may have a preference for living in buildings as opposed to in residential 

gardens. Of the properties infested with Norway rats in an English House Condition Survey, 

Langton et al. (2001) found a greater prevalence of Norway rats living in the outdoors (87.6%) 

compared with living indoors (12.4%) (n = 202). However, food, shelter and protection from 

predators may be more readily obtained for rats that live indoors. In both Morgan et al. 's (2009) 

and this study wax blocks were placed in residential gardens and not in or under houses. 

Additional research is necessary to detennine whether rats are commonly found in housed 

residential areas and whether they prefer to live indoors or in residential gardens (Morgan et al. 

2009). Although no rats were detected in the residential site sampled in this study, a number of 

residents mentioned that their cats often brought home rats. GPS-tracking of household cats may 

help detennine exactly where rats are being caught i.e. indoors, in residential gardens or within 

urban forest fragments. 

4.6.3 High detection rates of non-target species 

Extremely high levels of non-target species interference on the wax blocks in the residential site 

may have masked the presence of rats. House mice and possum were detected regularly in all 

three study sites. High detection rates of mice may be predictive of low ship rat densities and 

vice versa. Innes et al. (1995) and Miller and Miller (1995) found that in non-urban areas 
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measured mouse abundance increased rapidly following large-scale poison operations targeted at 

ship rats. Likewise, Brown et a!. (1996) recorded a significant increase in tracking tunnel use by 

mice after reducing rat abundance using snap traps. Brown et a!. (1996) suggests that mice were 

detened from entering tracking tunnels while rats existed in high densities, and a reduction in rat 

density meant the rate of mice detection increased. In urban Dunedin, high detection rates of 

mice may therefore be the result of low rat densities. Alternatively the neophilic nature of mice 

(Wolff & Shennan 2007), may have meant rats had less of an opportunity to chew wax blocks 

when mice were present. Rats were, however, detected in both McGouns Creek and the Wallace 

block where similar levels of non-target interference were recorded by possum. 

4.7 Density of rats in urban Dunedin 

Extremely low rat densities were recorded in urban Dunedin bush fragments. The pooled 

estimate of ship rat density, 0.26 rats/ha, is lower than any published estimate from New Zealand 

mainland forests, except those areas that have been actively controlled (Table 4.1). One of the 

initial aims of this study was to determine whether ship rat density varied between different areas 

within the urban environment. However, with such low all round detection rates, no conclusions 

could be drawn with regard to whether ship rat densities were higher or lower in inner-urban bush 

fragments versus peri-urban bush fragments. The density estimates reported in this study were 

recorded during different seasons. Using snap-trap indices Efford et al. (2006) found that 

seasonal variation in ship rat density less than two-fold on average, perhaps because rats unlike 

mice often live for more than one year. It is therefore unlikely that substantially different results 

would have been obtained by sampling in other seasons. 

In most non-urban environments food availability is likely to be the limiting factor that 

detennines ship rat canying capacity (Harper 2005; Latham 2006). However, in urban areas this 

assertion may not be true. In residential areas household cats can reach extremely high densities, 

for example in urban Britain Sims et al. (2008) recorded between 132 and 1580 cats per square 

kilometre. Human provisioning of food means cat population densities are independent of prey 

availability. Household cats have huge potential to influence the density and distribution of rats 

in Dunedin city. In Dunedin an estimated 35% of all households own a cat (Y. van Heezik, 
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unpubl. data). Individual cats vary widely in the number of prey they catch, with most taking 

very few prey, or none at all (Churcher & Lawton 1987). However, collectively household cats 

are likely to be responsible for killing huge numbers of prey each year in urban areas (Baker eta!. 

2005). In Dunedin it is estimated that household cats may kill approximately 28,366 rats per 

annum (Y. van Heezik, unpubl. data). Even if the rate of secondary predation on rats was low, 

such high cat densities may result in an overall reduction in rat numbers. In Bristol, Baker et a!. 

(2003) suggests that decreased mouse abundance in areas of increasing urbanisation are probably 

due to higher household cat densities. If rats exist in housed residential areas, it seems likely they 

do so in locations where cat density is low, or where there is sufficient refuge or cover from cats. 

The extremely low rat densities within urban bush fragments indicated by both hair tubes and 

wax blocks may be due to a combination of high cat density, intennittent pest control or food and 

habitat limitations. Non-target interference by mice on wax blocks and hair tubes was frequently 

recorded. In the sites sampled mice appear to be present in higher densities than rats. Teeth 

marks of mice were found on imitation eggs placed in artificial nests in Dunedin gardens and 

bush fragments (van Heezik et a!. 2008b ). Further research could aim to quantify mouse 

densities in urban areas and the rate of mice predation on urban tree-nesting bird species. 

4. 7.1 The detection of Norway rats 

The results from this study suggest that Quarantine Island is free of ship rats but appears to 

harbour Norway rats. The presence of Norway rats was initially suspected after finding active 

burrows, typical of Norway rats (Innes 1990b ). Microsatellite results also show that the rat 

sampled on Quarantine Island was unlikely to be a ship rat because there were lower allele base­

pair lengths at the D11Mgh5 and Dl9Mit2 loci (R. Howitt, pers. comm.). The microsatellite 

results also show that a single rat from Woodhaugh Gardens was potentially a Norway rat. 

Figure 4.1 illustrates this by plotting the D 19Mit2 base-pair lengths of all the samples collected in 

this study, against Dl9Mit2 base-pair lengths from known Norway and ship rats (S. Miller, 

unpubl. data). The two rats recorded in this study (Rat 10, Quarantine Island; and Rat 6, 

Woodhaugh Gardens) had base-pair lengths which lay within the range for Norway rats. All 

other rats sampled in this study had distinct base-pair lengths from the known Norway rats, at the 

D 19Mit2 locus. It is therefore inferred that all other rats sampled in this study were ship rats. 
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In this study Quarantine Island was sampled because it was a peri-urban site in which cats were 

absent. It was hypothesised that household cats suppressed the density of ship rats in urban 

Dunedin. Therefore if household cats were absent it was infened that ship rat densities may have 

been high. However, after a month of sampling no ship rats were detected on Quarantine Island. 

A single Norway rat was detected; Norway rats are therefore either present in very low densities, 

or exhibited extreme neophobia. Norway rats exhibit neophobia most often when an unfamiliar 

object is placed in a stable, familiar environment (Innes 2001). Taylor and Thomas (1989) 

detected no evidence of neophobia in an isolated island population of non-commensal Norway 

rats. However, after hair tubes were left on Quarantine Island for one month, only three samples 

from a single rat were collected. Bunows 60-90 mm in diameter were commonly observed 

under rocks and the base of tree roots and no other bunowing animal is present on the island. 

The number of bunows indicates Norway rat density may be a lot higher than hair tube results 

suggest, unless the burrows are old and vacant. Norway rats may not have visited hair tubes for 

other reasons, such as a lack of attraction to peanut butter, or reluctance to mn through the 65 mm 

diameter hair tubes. 

Norway rats are a threat to ground-based fauna such as lizards, invertebrates and seabirds; they 

also may affect the regeneration of trees and shmbs (e.g. Allen et al. 1994; Wilson et al. 2003a; 

Clayton eta!. 2008). The presence of Norway rats should be taken into careful consideration in 

future management of Quarantine Island. Predation pressure on tree-nesting bird species may be 

substantially reduced on Quarantine Island in comparison with nearby mainland urban areas, 

where ship rats and household cats are present. Further work could aim to quantify the breeding 

success of tree-nesting birds on Quarantine Island versus the breeding success of birds in urban 

areas in which ship rats and household cats are present. Wild populations of Norway rat in New 

Zealand are almost always found in close association with water (Innes 1990a). In the city of 

Salzburg, Traweger et al. (2006) found that the occunence of Norway rats was positively 

associated with habitats that were within close proximity to water. It is therefore no surprise that 

the Norway rat from Woodhaugh Gardens (Rat 6) was detected on the banks of the Leith Stream, 

which, consisted of natural soils and rocks, sunounded by vegetation. These characteristics 

provide ideal habitat for Norway rats (Traweger et al. 2006). 
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Figure 4.1: Comparison of allele base pair lengths (at the Dl9Mit2 locus) between rats sampled in this study (open triangles) (n = 19) versus samples from 
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4.8 Conclusions 

This study has described a reliable non-invasive protocol for estimating ship rat density 

without the use of cage trapping. The validity of the hair tube methodology was confirmed in 

the Orongorongo Valley. The density estimate obtained from the Orongorongo Valley was 

low but comparable to recent cage-trapping estimates from the same sampling grid. 

Wax block results suggest that ship rats are either absent from, or at very low densities within 

the housed residential sites sampled in this study. In urban bush fragments ship rats were 

detected infrequently using either wax blocks or hair tubes, and density was also inferred to 

be low. Ship rats were not detected on Quarantine Island, but after hair tubes were left on the 

island for a month a single Norway rat was detected. The efficacy of the hair tube approach 

to estimate Norway rat density was not tested. Neophobia in Norway rats, or inherent 

reluctance to enter the hair tubes, could compromise the efficacy of hair tubes. 

The density of ship rats in Dunedin bush fragments appears to be much lower than the density 

of ship rats in non-urban forests. Low ship rat densities may be due to the combined effects 

of household cat predation and intermittent council pest control. Predation pressure by ship 

rats on native birds is likely to be minimal in Dunedin city in comparison to non-urban areas. 

This study has demonstrated the feasibility and utility of applying polymorphic microsatellite 

loci for genetic profiling of ship rats. Given the difficulties associated with sampling elusive 

animals, genetic data from DNA extracted from hair follicles allows previously difficult-to­

sample species, like ship rats, to be studied more easily. The collection of hair samples is less 

laborious and intrusive than trapping, anaesthetising, ear-tagging, releasing and recapturing 

ship rats. While immediate field identification of individuals is not possible using non­

invasive genetic sampling, genetic sampling does enable researchers to carry out an array of 

population genetic analyses. 

Non-invasive genetic sampling can be reliable and worthwhile in studies investigating 

population structure, providing strict guidelines are followed to reduce potential sources of 

error. Non-invasive genetic techniques will not be suitable for all situations given the 

relatively expensive laboratory work required. However, as the cost of genotyping continues 
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to drop, non-invasive genetic sampling will become more readily available and will 

undoubtedly become increasingly applied in conservation management. The techniques 

described in this study should be beneficial to managers who wish to deal with robust 

estimates of absolute density, rather than rely on index-based estimates of relative density. 

The hair tube approach to sampling may also be useful to managers who wish to validate 

index -based measures of relative density. 

Further work is necessary to determine how hair tubes perform in sampling dense populations 

of ship rats. Trap saturation and mixed samples have the potential to compromise the results 

of genetic studies. Likewise, further research is necessary over a greater time scale to 

determine the degree to which ship rat density fluctuates in Dunedin bush fragments. If rats 

exist in high densities within urban Dunedin, it seems likely they do so within small pockets 

of favourable habitat. Additional sampling in Dunedin may confirm the presence of high 

density populations, or alternatively add support for the assertion of overall low ship rat 

density. Sampling within different New Zealand cities may also help confirm whether low 

ship rat density is a phenomenon common to all urban areas. 
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