Advanced Meta-analysis in Surgical Research

Mohammad Ashraf Rashad Amer

A thesis submitted for the degree of Doctor of Philosophy

University of Otago, Dunedin, New Zealand
May 2019
Abstract

The continuous development and refinement of techniques is a key attribute of the discipline of surgery. Robust evidence derived from randomised clinical trials and subsequent synthesis using meta-analysis methods is therefore an indispensable tool in modern evidence-based surgical practice. This thesis aimed to address two challenges to the development of this evidence, namely the synthesis of trial data where multiple treatment comparisons exist, and the influence of sources of bias on the results of surgical randomised trials.

Research synthesis typically employs pairwise meta-analysis methods to summarise trial data. However, there are more than two treatment options available for most conditions, meaning that data pertaining to all treatments cannot be incorporated using pairwise methodology. Network meta-analysis allows for the simultaneous comparison of multiple treatments and enables their ranking in terms of benefit and harm. This thesis used two different examples to explore this method’s utility in surgical research synthesis.

Firstly, network meta-analysis methodology was used to investigate the efficacy of preoperative carbohydrate loading for patients undergoing elective surgery. None of the previously published pairwise meta-analyses had been able to account for the different doses and control treatments used in trials. This network meta-analysis represents the most comprehensive synthesis of the available evidence, and showed that carbohydrate loading confers a small reduction in length of stay when compared to fasting, but no significant difference when compared to water or placebo, and no other clinically important effect on postoperative outcomes.

Secondly, all described anti-reflux operations were assessed and ranked using network meta-analysis methods to summarise the entirety of available randomised trial data, to determine the optimal procedure for the treatment of gastro-oesophageal reflux disease. This had remained an unresolved question despite numerous pairwise meta-analyses. The results showed that a posterior partial fundoplication provides the best balance of long-term, durable reflux control with less dysphagia, compared to other treatments.

The second half of this thesis explored the effect of non-blinding and other methodological deficiencies on surgical trials. Recent pooled studies have provided empirical evidence that
these potential sources of bias significantly influence reported trial results by exaggerating the effect estimate of the studied treatment. Surgical randomised trials have important differences to drug trials, and it is important to determine whether this effect also applies to them. A study using meta-epidemiological methods at an individual trial level was conducted to determine how lack of bias-minimisation measures including blinding affects the reported outcomes of surgical randomised trials, using data from over 300 trials. The results showed that trials that did not use blinding or adequate random sequence generation reported a significantly greater difference between treatment groups compared to trials that used such measures.

This thesis has demonstrated the utility of network meta-analysis in surgical research synthesis, and produced definitive evidence-based answers to two questions. Many more clinically relevant questions can be answered in future using the same methods. This thesis has also empirically proven the importance of implementing blinding in surgical trials, which is relevant for appraising published trials and designing future randomised trials.
Acknowledgements

Whoever does not thank others, does not thank God – Hadith.

During the course of a five year project such as this with its highs and lows, there is a risk of losing track of all the people one is indebted to. The following words are not meant to be exhaustive, but my hope is that they will go some way towards documenting my real sense of gratitude and appreciation to everyone who has helped, supported and encouraged me on this incredible journey.

I would not have even embarked on this project without Professor John McCall’s sincere encouragement. I will never forget that afternoon in late 2012 when we sat down to discuss potential topics, and Prof enthusiastically took to the whiteboard with a marker and drew out a network map, telling me that if he was in my shoes he would be definitely doing this project. I think he said this only because my reticence at the time was unfortunately obvious, and I cannot express how grateful I am for his sincerity, and for agreeing to be my primary supervisor. But that was only the beginning. Before this PhD journey I had heard from many colleagues about different supervisor styles and levels of support, but Prof has been nothing short of phenomenal and his support has been well beyond anything I have heard or expected. Always available. Always honest and sincere. Always happy to chat. Always bending over backwards to help, no matter how busy he might be. Always concerned about my personal wellbeing just as much as about the project. The list goes on and on and on. I feel truly privileged to have been supervised by Prof McCall, and I hope he does not mind me continuing to call upon him as a highly regarded mentor.

When Mr Mark Smith told me at the start of my PhD that he had never co-supervised a PhD student before, I wasn’t sure what to make of it. Having worked for him clinically though, I knew that his standards were very high. What I had not realised however was the extent to which he was prepared to go out of his way to fulfil his supervisory role. Despite having to go through considerable challenges, he maintained the same level of support and supervision throughout the duration of my PhD, with exceptional clarity, wit and foresightedness. His response to my first email outlining this project, quipping that it was enough work to keep me busy for a decade, was a typical gem, and as usual, proved correct. His heartfelt messages after the terrible event on 15 March also stood out for me from among the dozens I received. I am
truly grateful for all of Mark’s support and advice, and am humbled to be able to count him among my senior colleagues.

To say that Professor Peter Herbison’s co-supervision, patient teaching, gentle guidance and expert statistical support was indispensable to this project would be an understatement. The Health Research Council funds he held made sure I did not have to worry about securing funds for this PhD beyond my stipend. Prof was always just an email away, and even when I felt that I had managed to come up with the worst possible way to explain a statistical problem, his responses were always quick, to the point and delightfully easy to follow.

No work of this magnitude would be possible without the help of research assistants. I really don’t know how I could have finished this project without the assistance of Sam Grainger, Choo Khoo and Peter McCall. Their tireless hard graft and meticulous attention to detail were exemplary.

Any busy workplace like the Department of Surgical Sciences needs an efficient, organised, approachable and highly conscientious administrator in order to ensure all matters run smoothly. Pauline Ellwood is not just a great example of such a capable secretary, she also has the rare ability to make administrative matters seem simple and intuitive. I genuinely lost count of the number of times she did a favour for me (usually at ridiculously short notice), but one instance I will never forget: securing the required signatures on a Royal Australasian College of Surgeons scholarship application one day before it was due in the College offices in Melbourne, realising this was the case and calling the College office to check that they will accept the application even though it may arrive a day after it was due, arranging an urgent international courier to pick up the application within half an hour, then casually informing me later that it was all sorted. That application was successful, and I am truly grateful for Pauline’s efforts which were truly above and beyond that afternoon, and on every other occasion I arrived unannounced at her office with a problem that needed sorting.

I suspect that my departmental advisory committee, which included Associate Professor Mark Thompson-Fawcett (chair) and Mr John Woodfield in addition to my supervisors, did not expect to have to hold regular progress meetings for five years when first approached by Prof McCall. Arranging Skype meeting at a time that suited everyone meant that they all had to compromise a bit, and often attend these meetings after hours, which I am grateful for. MTF’s realistic take on timelines and progress was always grounding, and John’s inquisitive, probing
approach to discussion opened up new perspectives on the methods and results on a regular basis.

I would like to acknowledge the financial support I received through PhD scholarships from the Royal Australasian College of Surgeons and the Dunedin School of Medicine. I am also very grateful to the New Zealand Board in General Surgery for their unwavering support, even as the requests for extensions and interruption of training kept coming.

I am grateful to Glenys Taylor, the Department’s Finances administrator, for her help in preparing and deciphering accounting gobbledygook in grant applications and all costing and funding matters.

My thanks to Dr Vanessa Jordan and Richard German for their expert assistance in checking and refining the search strategies developed as part of this project. I am also very grateful to the Interloans staff at the University of Otago Library and the staff at the RACS Library for retrieving increasingly obscure and impossible-to-find papers for me from all corners of the globe, in all languages. It is testimony to their dedication and expertise that the total number of articles excluded from any of the reviews in this thesis because they could not be retrieved was zero. Simply amazing.

I would also like to thank Matthew Versteeg, Dr Kate Thomas, Soo Lee and Annie Stevenson with whom I shared our office (439) in the Department, for the many interesting conversations, and for putting up with my impromptu office meetings and Skype calls. I am also grateful to all the rest of the Department of Surgical Sciences for their genuine interest and stimulating discussion of this work in seminars and presentations.

I returned to full-time clinical work in June 2017 with some trepidation, as I had no idea whether my clinical colleagues would help me find enough time during and after the working day to continue making solid progress on this project. I need not have worried. All the registrars and consultant supervisors I have worked with in Dunedin and Christchurch Hospitals’ Departments of General Surgery over the last five years have been very understanding and genuinely supportive. To each and every one of them – thank you.

I sometimes joke that I have a chronic family history of medicine, given that both my parents and all my siblings are also medical doctors in various specialties. One advantage though is
that they all understand first-hand the nature and stresses of clinical practice, as well as the demands of research. Their support through this project, just as much as it was before and will be in future, has been incredible. They have all helped pick me up in the lows when there seemed to be no end in sight, and celebrated my milestones and awards as if they were their own. My sincere gratitude, appreciation and thanks to my father Ashraf, and my siblings Aya, Mahmoud and Mostafa.

But of all the people I am grateful to, there are certainly none I am more indebted to than my mother Mona. In the course of my life, and particularly over the last five eventful years, she has remained my unflinching rock. There have been numerous times when things became “a bit much” (the last five years have seen me go through a marriage, the birth of my son, a divorce, two house moves, a move to Christchurch, and the loss of several friends and acquaintances in a mass shooting), and it is only because of God’s Grace, then her loving support, sage advice, words of wisdom and enveloping warmth that I have been able to pick myself up each time and keep going. I will remain completely unable to repay any of her favours upon me, and I pray for her health and happiness.
List of Awards, Grants and Presentations

The following awards, grants and presentations all relate directly to the author and the work completed within this thesis. Published Journal articles are listed separately in Appendix A.

Awards

2019 - General Surgery Section Prize, Royal Australasian College of Surgeons 88th Annual Scientific Congress, Bangkok, Thailand.
Best research paper presented in the General Surgery Section. Value: AUD$500.

2018 - The Louis Barnett Prize, Royal Australasian College of Surgeons New Zealand Annual Scientific Meeting, Queenstown, New Zealand.
Best research abstract and presentation by a New Zealand based trainee or fellow. Value: NZ$2500.

- Travel Grant Award, Royal Australasian College of Surgeons 55th Surgical Research Society Meeting, Sydney, Australia.
For oral presentation. Value: AUD$750.

- Best Oral Presentation by a Trainee Enrolled in a Higher Degree, New Zealand Association of General Surgeons Conference, Paihia, New Zealand.
Value: NZ$700.

- Commendation, 245th Meeting of the Otago Medical School Research Society, Dunedin, New Zealand.
For oral presentation.

- Best Oral Presentation by a Registrar, General Surgical Study Day, Christchurch, New Zealand.
Value NZ$500.

2015 - The Young Investigator Award, 52nd Surgical Research Society Meeting, Royal Australasian College of Surgeons, Sydney, Australia.
Best oral presentation. Value: AUD$4,000 to go towards sponsorship to attend and present at the Association of Academic Surgeons/Society of University
Surgeons Academic Surgical Congress in Las Vegas, Nevada, USA, February 2017.

Grants

2016 - **Dean Bequest Funds Grant, Dunedin School of Medicine, University of Otago.** Grant used for research costs, including salaries for two part-time research assistants. Value: NZ$10,335.

2015 - **Dunbar Research Scholarship, Dunedin School of Medicine, University of Otago.**
PhD stipend scholarship for 2016. Value: NZ$55,000.

2014 - **Foundation for Surgery New Zealand Scholarship, Royal Australasian College of Surgeons.**
PhD stipend scholarship for 2015. Value: AU$66,000.

2013 - **Dunbar Research Scholarship, Dunedin School of Medicine, University of Otago.**
PhD stipend scholarship for 2014. Value: NZ$55,000.

Published Conference Abstracts, and Oral Presentations

International

National

Regional/Local

A total of eleven Departmental presentations and seminars were also delivered between 2014 and 2018, covering various components of this thesis, to the Department of Surgical Sciences, Dunedin School of Medicine; the Department of Women’s and Children’s Health, Dunedin School of Medicine; the Dunedin Hospital Medical Forum; and the Department of General Surgery, Christchurch Hospital.
Table of Contents

Title .. i
Abstract ... iii
Acknowledgements .. v
List of Awards, Grants and Presentations ... ix
Table of Contents ... xiii
List of Tables .. xvi
List of Figures ... xvii
Abbreviations .. xx

1. Introduction – Evidence-based practice, research synthesis and trial design 1
 1.1 Evidence-based practice ... 2
 1.1.1 A brief history .. 2
 1.1.2 The Cochrane Collaboration ... 3
 1.1.3 Systematic reviews and meta-analysis ... 3
 1.1.4 Limitations of pairwise meta-analysis ... 4
 1.1.5 Network meta-analysis .. 5
 1.1.6 Important considerations in NMA .. 6
 1.1.7 Applying NMA to surgical questions ... 9
 1.2 Bias in clinical trials ... 10
 1.2.1 The placebo effect ... 11
 1.2.2 Common sources of bias .. 12
 1.2.3 Meta-epidemiology ... 13
 1.2.4 Considerations in surgical trials ... 14
 1.3 Aims .. 16

2. Systematic review and network meta-analysis of the effect of preoperative carbohydrate loading on recovery after elective surgery .. 17
 2.1 Chapter summary .. 17
 2.2 Introduction ... 18
 2.3 Methods .. 19
 2.3.1 Search strategy and selection criteria ... 19
 2.3.2 Outcome measures .. 20
4.3.2 Outcome measures .. 124
4.3.3 Data extraction and quality assessment ... 125
4.3.4 Statistical analysis ... 126
4.4 Results ... 127
4.4.1 Search results and study characteristics .. 127
4.4.2 Length of stay .. 141
4.4.3 Complications ... 149
4.4.4 Secondary outcomes .. 157
4.5 Discussion ... 181
4.6 Conclusion .. 183

5. Conclusions .. 185
5.1 Summary ... 185
5.2 Future directions ... 186

References ... 189

Appendix A – Published papers ... 227
A1 Network meta-analysis of the effect of preoperative carbohydrate loading on recovery after elective surgery ... 227
A2 Registered review protocol – Surgical management of gastro-oesophageal reflux disease (GORD) in adults: a systematic review and network meta-analysis 238
A3 Network meta-analysis of gastro-oesophageal reflux disease in adults 244

Appendix B – Preoperative carbohydrate loading systematic review and NMA – additional material .. 255
B1 Search strategies .. 255
B2 Data extraction form ... 258

Appendix C – Anti-reflux surgery systematic review and NMA – additional material 263
C1 Search strategies .. 263
C2 Data extraction form ... 266

Appendix D – Bias in surgical trials – additional material .. 275
D1 Cochrane Library search ... 275
D2 Data extraction form ... 276
D3 Included studies .. 280
List of Tables

Table 2.1 Details of included studies ... 24
Table 2.2 Network meta-analysis results .. 32

Table 3.1 Summary of included trials ... 55
Table 3.2 Characteristics of included studies ... 57
Table 3.3 Data available for each outcome follow-up time point 68
Table 3.4 Network meta-analysis results – Health-related quality of life scores 73
Table 3.5 Network meta-analysis results – Gastrointestinal/reflux specific quality of life scores ... 74
Table 3.6 Network meta-analysis results – Reflux rate 77
Table 3.7 Network meta-analysis results – Reflux scores 78
Table 3.8 Network meta-analysis results – Dysphagia rate 84
Table 3.9 Network meta-analysis results – Dysphagia scores 86
Table 3.10 Network meta-analysis results – Oesophageal acid exposure scores ... 92
Table 3.11 Network meta-analysis results – Total oesophageal acid exposure time 95
Table 3.12 Network meta-analysis results – Dilatation for dysphagia rate 100
Table 3.13 Network meta-analysis results – Reoperation rate 103
Table 3.14 Network meta-analysis results – Postoperative complications 107
Table 3.15 Network meta-analysis results – Gas bloat rate 111
Table 3.16 Network meta-analysis results – Gas bloat scores 111

Table 4.1 Selected procedures ... 128
Table 4.2 Review update strategies .. 129
Table 4.3 Review update study selection process .. 131
Table 4.4 Included trials with bias-minimisation measures 138
List of Figures

Figure 1.1 Schematic representation of network meta-analysis .. 7
Figure 2.1 Systematic search and study selection flowchart ... 23
Figure 2.2 Risk of bias assessment summary figure ... 28
Figure 2.3 Risk of bias assessment by individual study .. 29
Figure 2.4 Network map for evidence for length of postoperative stay 30
Figure 2.5 Composite forest plot of comparisons for length of postoperative stay 31
Figure 2.6 Meta-regression (Bubble Plot) for length of postoperative stay 35
Figure 2.7 Cumulative meta-analysis (length of postoperative stay) 36
Figure 2.8 Comparison-adjusted funnel plot (length of postoperative stay) 38

Figure 3.1 Systematic search and study selection flowchart ... 54
Figure 3.2 Risk of bias assessment summary figure ... 69
Figure 3.3 Risk of bias assessment by individual study .. 70
Figure 3.4 Network map of direct evidence for health-related quality of life scores 71
Figure 3.5 Network map of direct evidence for gastrointestinal/reflux specific quality of life scores .. 72
Figure 3.6 Network map of direct evidence for reflux rate ... 75
Figure 3.7 Network map of direct evidence for reflux scores ... 76
Figure 3.8 Rankogram of fundoplications according to reflux rate 79
Figure 3.9 Rankogram of fundoplications according to reflux scores 81
Figure 3.10 Network map of direct evidence for dysphagia rate .. 82
Figure 3.11 Network map of direct evidence for dysphagia scores 83
Figure 3.12 Rankogram of fundoplications according to dysphagia rate 88
Figure 3.13 Rankogram of fundoplications according to dysphagia scores 89
Figure 3.14 Comparison-adjusted funnel plots for dysphagia and reflux 90
Figure 3.15 Network map of direct evidence for oesophageal acid exposure scores 91
Figure 3.16 Rankogram of fundoplications according to oesophageal acid exposure scores 93
Figure 3.17 Network map of direct evidence for total oesophageal acid exposure time 94
Figure 3.18 Rankogram of fundoplications according to total oesophageal acid exposure time .. 97
Figure 3.19 Network map of direct evidence for dilatation for dysphagia rate 99
Figure 3.20 Rankogram of fundoplications according to dilatation for dysphagia rate 101
Figure 3.21 Network map of direct evidence for reoperation rate .. 102
Figure 3.22 Rankogram of fundoplications according to reoperation rate ... 105
Figure 3.23 Network map of direct evidence for postoperative complications 106
Figure 3.24 Network map of direct evidence for gas bloat rate ... 109
Figure 3.25 Network map of direct evidence for gas bloat scores ... 110
Figure 3.26 Clustered ranking plots of main treatments at different time points, according to efficacy of reflux control and incidence of dysphagia ... 112

Figure 4.1 Search for eligible procedures .. 127
Figure 4.2 Review update search and study selection flowchart .. 130
Figure 4.3 Appendicectomy eligible trial selection ... 133
Figure 4.4 Cholecystectomy eligible trial selection .. 134
Figure 4.5 Colonic resection eligible trial selection .. 134
Figure 4.6 Donor nephrectomy eligible trial selection .. 135
Figure 4.7 Fundoplication eligible trial selection .. 135
Figure 4.8 Gastric bypass eligible trial selection ... 136
Figure 4.9 Inguinal hernia eligible trial selection ... 136
Figure 4.10 Rectal resection eligible trial selection .. 137
Figure 4.11 Rectopexy eligible trial selection ... 137
Figure 4.12 Length of stay forest plot – meta-regression of patient blinding .. 142
Figure 4.13 Length of stay forest plot – meta-regression of healthcare staff blinding 143
Figure 4.14 Length of stay forest plot – meta-regression of data collector blinding 144
Figure 4.15 Length of stay forest plot – meta-regression of outcome assessor blinding 145
Figure 4.16 Length of stay forest plot – meta-regression of any blinding ... 146
Figure 4.17 Length of stay forest plot – meta-regression of random sequence generation 147
Figure 4.18 Length of stay forest plot – meta-regression of allocation concealment 148
Figure 4.19 Complications forest plot – meta-regression of patient blinding .. 150
Figure 4.20 Complications forest plot – meta-regression of healthcare staff blinding 151
Figure 4.21 Complications forest plot – meta-regression of data collector blinding 152
Figure 4.22 Complications forest plot – meta-regression of outcome assessor blinding 153
Figure 4.23 Complications forest plot – meta-regression of any blinding ... 154
Figure 4.24 Complications forest plot – meta-regression of random sequence generation 155
Figure 4.25 Complications forest plot – meta-regression of allocation concealment 156
Figure 4.26 Time to recovery forest plot – meta-regression of patient blinding 158
Figure 4.27 Time to recovery forest plot – meta-regression of healthcare staff blinding ...
Figure 4.28 Time to recovery forest plot – meta-regression of data collector blinding
Figure 4.29 Time to recovery forest plot – meta-regression of outcome assessor blinding
Figure 4.30 Time to recovery forest plot – meta-regression of random sequence generation
Figure 4.31 Time to recovery forest plot – meta-regression of allocation concealment
Figure 4.32 Short-term pain forest plot – meta-regression of patient blinding
Figure 4.33 Short-term pain forest plot – meta-regression of healthcare staff blinding
Figure 4.34 Short-term pain forest plot – meta-regression of data collector blinding
Figure 4.35 Short-term pain forest plot – meta-regression of outcome assessor blinding ..
Figure 4.36 Short-term pain forest plot – meta-regression of random sequence generation
Figure 4.37 Short-term pain forest plot – meta-regression of allocation concealment
Figure 4.38 Long-term pain forest plot – meta-regression of patient blinding
Figure 4.39 Long-term pain forest plot – meta-regression of random sequence generation
Figure 4.40 Long-term pain forest plot – meta-regression of allocation concealment
Figure 4.41 Return of intestinal function (time to first passage of flatus) forest plot – meta-
regression of outcome assessor blinding ..
Figure 4.42 Return of intestinal function (time to first passage of flatus) forest plot – meta-
regression of random sequence generation ...
Figure 4.43 Return of intestinal function (time to first passage of bowel motion) forest plot –
meta-regression of random sequence generation ...
Figure 4.44 Return of intestinal function (time to first passage of flatus) forest plot – meta-
regression of allocation concealment ..
Figure 4.45 Return of intestinal function (time to first passage of bowel motion) forest plot –
meta-regression of allocation concealment ..
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>90° or 90 deg</td>
<td>90 degree fundoplication</td>
</tr>
<tr>
<td>APF</td>
<td>Anterior partial fundoplication</td>
</tr>
<tr>
<td>ASA</td>
<td>American Society of Anesthesiologists</td>
</tr>
<tr>
<td>BM IV</td>
<td>Belsey Mark IV</td>
</tr>
<tr>
<td>CABG</td>
<td>Coronary artery bypass grafting</td>
</tr>
<tr>
<td>CENTRAL</td>
<td>Cochrane Central Register of Controlled Trials</td>
</tr>
<tr>
<td>CHO</td>
<td>Carbohydrate</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>CLEAR</td>
<td>Critical Literature Evaluation and Research</td>
</tr>
<tr>
<td>CONSORT</td>
<td>Consolidated Standards of Reporting Trials</td>
</tr>
<tr>
<td>Cont</td>
<td>Continuous (score) data</td>
</tr>
<tr>
<td>Dich</td>
<td>Dichotomous (rate) data</td>
</tr>
<tr>
<td>DMS</td>
<td>DeMeester score (oesophageal acid exposure)</td>
</tr>
<tr>
<td>DSMD</td>
<td>Difference in standardised mean differences</td>
</tr>
<tr>
<td>ERAS</td>
<td>Enhanced recovery after surgery</td>
</tr>
<tr>
<td>FND 360°</td>
<td>Fixed ‘non-deformable’ 360° fundoplication</td>
</tr>
<tr>
<td>GBS</td>
<td>Gas bloat syndrome</td>
</tr>
<tr>
<td>GORD</td>
<td>Gastro-oesophageal reflux disease</td>
</tr>
<tr>
<td>GQOL</td>
<td>Gastrointestinal, or reflux disease-specific quality of life score</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>Homeostatic model assessment of insulin resistance</td>
</tr>
<tr>
<td>IV</td>
<td>Intravenous</td>
</tr>
<tr>
<td>MA</td>
<td>Meta-analysis</td>
</tr>
<tr>
<td>MD</td>
<td>Mean difference</td>
</tr>
<tr>
<td>MHWC</td>
<td>Mesh hiatoplasty with cardiophrenicopexy</td>
</tr>
<tr>
<td>NF</td>
<td>Nissen fundoplication</td>
</tr>
<tr>
<td>NMA</td>
<td>Network meta-analysis</td>
</tr>
<tr>
<td>NR</td>
<td>Not reported</td>
</tr>
<tr>
<td>NS</td>
<td>Not specified</td>
</tr>
<tr>
<td>NSGVD</td>
<td>Nissen with short gastric vessel division</td>
</tr>
<tr>
<td>NSGVP</td>
<td>Nissen with short gastric vessel preservation</td>
</tr>
<tr>
<td>pH<4</td>
<td>Total oesophageal acid exposure time (percentage time pH < 4)</td>
</tr>
<tr>
<td>PPI</td>
<td>Proton pump inhibitors</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>PPF</td>
<td>Posterior partial fundoplication</td>
</tr>
<tr>
<td>QOL</td>
<td>Quality of life score</td>
</tr>
<tr>
<td>RACS</td>
<td>Royal Australasian College of Surgeons</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomised clinical trial</td>
</tr>
<tr>
<td>REY</td>
<td>Roux-en-Y</td>
</tr>
<tr>
<td>ROR</td>
<td>Ratio of odds ratios</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SGVD</td>
<td>Short gastric vessel division</td>
</tr>
<tr>
<td>SGVP</td>
<td>Short gastric vessel preservation</td>
</tr>
<tr>
<td>SMD</td>
<td>Standardised mean difference</td>
</tr>
<tr>
<td>SUCRA</td>
<td>Surface under the cumulative ranking curve</td>
</tr>
</tbody>
</table>
CHAPTER ONE
Introduction – Evidence-based practice, research synthesis and trial design

1.1 Evidence-based practice
The development of surgical practice and expansion of its boundaries over the past 50 years has been extraordinary (Barkun et al., 2009; Meakins, 2009). Today, there are more major surgical operations performed than childbirths worldwide (Ashrafian et al., 2009), and surgery is a substantial contributor to improved health and wellbeing. Doing so efficiently and reliably requires practice that is informed by robust scientific evidence (Meakins, 2006; Rothenberger, 2004).

Evidence-based practice aims to provide patients with the best treatment, based on scientific data derived from clinical trials. The randomised clinical trial (RCT) is the gold standard method of assessing the benefits and harms of healthcare interventions (Gattellari et al., 2001; Hrobjartsson et al., 2012), as it is the only trial design that accounts for unknown confounders (Lombardi, 2014). High quality evidence derived from these trials can guide health policy and clinical decision-making, and provide a high standard of care for patients (Potter et al., 2014), by recommending the best available interventions and treatments (Vecht et al., 2009).

The evaluation of a new procedure or treatment however may not be complete after just one or two RCTs. Different patient populations, healthcare environments and standard (control) therapies need to be accounted for by conducting multiple RCTs assessing the same treatments in different settings. The results of these trials are often variable due to factors including the setting, patient numbers, the control treatment, the outcomes of interest and the follow-up period. This leads to the publication of many papers addressing the same or a similar question with the same trial design (RCT), but with different results and conclusions. It can therefore become difficult, if not impossible, to assimilate these findings to derive an objective, evidence-based summary and recommendation without further statistical synthesis (Mant, 1999). This problem is compounded by the contemporary ‘epidemic of evidence’ (Jackson, 2018), the number of novel interventions being assessed at any one time and the rapid pace of development.
1.1.1 A brief history

The need for an objective, structured approach to synthesis of trial results to guide evidence-based practice and enable prompt introduction of proven treatments was recognised decades ago, as individual clinicians do not have the time or resources required to do this themselves (Rothenberger, 2004; Sackett et al., 1996; Sauerland et al., 1999). Archibald Cochrane (1909 – 1988), a Scottish epidemiologist, penned this need in the form of a challenge facing the medical profession in his seminal work *Effectiveness and Efficiency, Random reflections on health services* (Cochrane, 1972). He and others argued that this need was urgent because of the difficulties clinicians faced in remaining up-to-date with a burgeoning number of clinical trials, which meant that proven effective treatments were not being adopted quickly enough while less effective or less safe treatments continued to be used (Abraham, 2006). There were also increasing calls for the need to honour the very reasonable expectation of clinical trial participants, that their contribution to medical knowledge is not wasted (Chalmers et al., 2013; Naylor, 1997).

Prenatal steroid administration to premature infants to accelerate foetal lung maturation is perhaps one of the best examples of the need for prompt synthesis of accumulating RCT data, in order to achieve timely dissemination and implementation of evidence into clinical practice. An Auckland Professor of Obstetrics, Graham Liggins, began investigating preterm labour in sheep in 1959. He co-incidentally found that in-utero corticosteroid administration accelerated lung maturation (Reynolds and Tansey, 2005) and subsequently conducted an RCT on human babies in collaboration with a Paediatrician, Ross Howie, which showed a significant reduction in respiratory distress syndrome in preterm infants who received prenatal steroids (Liggins and Howie, 1972). Despite this, uptake of this simple and effective treatment was virtually non-existent, as most research at the time was focussed on preventing preterm labour, rather than managing it (Reynolds and Tansey, 2005). Subsequent RCTs published by other groups showed similar results, and these were included in reviews as early as 1981 (Crowley, 1981). However, even by 1990 less than 20% of preterm infants outside Australia and New Zealand were receiving prenatal steroids. Routine administration in the UK only became a reality in the late 1990s (Reynolds and Tansey, 2005), almost three decades after the first RCT and more than fifteen years after the first narrative review promoting its use. A cumulative meta-analysis (Sinclair, 1995) around this time demonstrated that the RCTs published after the initial studies had not changed the overall effect estimate or the confidence intervals to any major extent. Thus, these additional
trials were unnecessary, and thousands of infants were needlessly randomised to placebo instead of receiving a proven treatment. Timely synthesis and dissemination of the accumulating RCT evidence would have profoundly decreased premature infant mortality rates worldwide.

1.1.2 The Cochrane Collaboration

These calls and examples led to the founding of an international body to champion healthcare research synthesis, standardise the methodology, and promote the timely dissemination and implementation of high quality evidence into clinical practice.

In 1992, a group of Oxford clinicians and epidemiologists led by Sir Iain Chalmers established the Cochrane Centre to prepare and promote systematic reviews on obstetric healthcare, and named in honour of Archibald Cochrane who had died four years earlier. A year later, the Cochrane Collaboration was launched, and it is now the largest international organisation of its kind (Green and McDonald, 2005). Its logo incorporates a meta-analysis of the first seven RCTs investigating steroid administration to premature babies (Reynolds and Tansey, 2005), as a poignant reminder of the importance of research synthesis and evidence-based practice. The Collaboration now has over 38,000 contributors from more than 130 countries (Cochrane.org, 2018a), working in 50 review groups responsible for preparing and maintaining systematic reviews within specific healthcare areas, and supported by Methods groups, Cochrane Centres and Fields (Higgins and Green, 2011). The Collaboration maintains the Cochrane Library including the Cochrane Database of Systematic Reviews, which is one of the most widely used evidence-based practice resources worldwide. The freely available Cochrane Handbook (Higgins and Green, 2011), and RevMan (Nordic Cochrane Centre, Copenhagen), a review management and meta-analysis software package, are also produced by the Collaboration.

1.1.3 Systematic reviews and meta-analysis

A systematic review collates all empirical evidence in order to answer a specific research question. It uses explicit systematic methods designed to incorporate all relevant data and minimise bias, thus providing findings from which conclusions can be drawn, and evidence-based recommendations and decisions made (Oxman and Guyatt, 1993). The key characteristics of a well-designed systematic review include predefined eligibility criteria for studies, a systematic search of databases and trial repositories for all potentially relevant studies, explicit and
reproducible methods, an assessment of the quality of available evidence, and finally a systematic presentation and synthesis of the findings of the included studies, usually using meta-analysis (MA) methodology if appropriate (Higgins and Green, 2011).

Pairwise MA is the statistical combination of results from two or more separate studies (Glass, 1976) comparing an experimental intervention with a control, or comparing two experimental interventions (Higgins and Green, 2011). This provides a more precise estimate of the effects of a healthcare intervention by pooling the study population and therefore increasing power. MA also allows the consistency of effects across studies to be investigated, as well as the heterogeneity or differences between them, thereby helping settle controversies arising from apparently conflicting studies (Higgins and Green, 2011; Lau et al., 2006). MA is therefore a powerful tool that can help answer the research question posed in a systematic review (Salanti et al., 2008a). International guidelines groups have produced consensus statements detailing the appropriate conduct and reporting of systematic reviews and meta-analyses of healthcare interventions (Moher et al., 2009; Shamseer et al., 2015).

It is important to note that pairwise MA, like any statistical method, can be misused, leading to invalid or clinically meaningless results. Statistically combining the results of primary studies may not always be possible or appropriate, such as in the presence of considerable population, methodological or statistical heterogeneity, or when there is evidence of significant publication or reporting bias in the primary studies (Higgins and Green, 2011). This highlights the importance of combining specific subject and methodological expertise for the conduct of MA.

1.1.4 Limitations of pairwise meta-analysis

Pairwise MA is used to combine studies comparing two interventions, but for many healthcare interventions there may be more than two treatment options; each with a unique profile of risks and benefits. Research synthesis should ideally incorporate all available data pertaining to all available treatments (Song et al., 2009), but this cannot be achieved with pairwise MA where only two interventions (or one intervention and placebo) can be analysed simultaneously (Brown et al., 2014).
Systematic reviewers have traditionally tried to circumvent this problem by employing one of two strategies (Salanti et al., 2008a). The first is to select two interventions for a given condition, subject the relevant RCTs to MA, then compare the findings with other MAs that have investigated the other available interventions. This frequently produces confusing conclusions as each MA uses different study selection criteria, outcome measures and follow-up time points. One such example is encapsulated in the title of an overview of antipsychotic drugs: “Why olanzapine beats risperidone, risperidone beats quetiapine, and quetiapine beats olanzapine” (Heres et al., 2006). Another example is a review of different methods of earwax removal, which reported that “…cerumol, sodium bicarbonate, olive oil and water are all more effective than no treatment, triethanolamine polypeptide is better than olive oil, wet irrigation is better than dry irrigation, sodium bicarbonate drops followed by irrigation by nurse is more effective than sodium bicarbonate drops followed by self-irrigation, softening with triethanolamine polypeptide and self-irrigation is more effective than self-irrigation only, and endoscopic de-waxing is better than microscopic de-waxing” (Clegg et al., 2010). The aim of research synthesis is to produce succinct, clinically applicable conclusions based on available data; which cannot be easily achieved by examining multiple pairwise MAs. Another strategy is to pool the multiple interventions into two groups and perform a pairwise MA comparing them. Examples include grouping surgical or medical interventions together (Ma et al., 2012; Peters et al., 2009), or combining placebo with no intervention (Awad et al., 2013). Although the conclusions of such reviews appear more succinct than those produced by the alternate strategy discussed earlier, this approach risks “combining apples with oranges” (Higgins and Green, 2011) as there is an assumption that different interventions can be regarded as identical. The results are therefore clinically less meaningful, and important differences in effect within each group are obscured.

An alternate statistical method that simultaneously compares multiple interventions is therefore needed, in order for research synthesis to remain clinically relevant, and evidence-based practice to remain a realistic goal (Caldwell et al., 2005).

1.1.5 Network meta-analysis

Network meta-analysis (NMA) (Lumley, 2002), also called mixed treatment comparison meta-analysis or multiple treatments meta-analysis (Salanti, 2012), is an extension of the standard pairwise (A vs. B) meta-analysis to a structure that includes multiple treatments (A vs. B vs. C).
and all the possible direct and indirect comparisons within (Figure 1.1), while fully respecting randomisation (Caldwell et al., 2005; Lu and Ades, 2004). A major advantage of NMA over pairwise MA is the ability to simultaneously compare multiple treatments for a given condition, and rank those treatments in terms of their benefit and harm (Caldwell et al., 2012; Lu and Ades, 2004; Riley et al., 2017). This is particularly useful in situations where there is not enough direct evidence available (Song et al., 2009), where all possible comparisons have not been made in RCTs (Mills et al., 2013) or where RCTs have used different control treatments (Higgins and Welton, 2015). NMA also increases the precision of the effect estimate of each comparison within the network by incorporating indirect evidence, and therefore more data (Caldwell et al., 2005).

Formulae for NMA have been developed and validated using both Bayesian and frequentist statistical approaches (Caldwell et al., 2005; Franchini et al., 2012; Hutton et al., 2014; Lu and Ades, 2004). The resulting routines have become available across multiple software platforms (Bafeta et al., 2014; Brown et al., 2014; Efthimiou et al., 2016; Viechtbauer, 2010). The routine package developed by Georgia Salanti and co-workers (Chaimani et al., 2013; Chaimani and Salanti, 2015) based on Stata (StataCorp LP., College Station, Texas) utility commands (Harris et al., 2008; White, 2009, 2011) is widely used. It is also one of the packages recommended for use by the Cochrane Methods Group (Cochrane.org, 2018b). As with pairwise MA, there are international consensus guidelines on the conduct and reporting of systematic reviews which include NMA (Hutton et al., 2015).

1.1.6 Important considerations in NMA
As NMA can be considered an extension of pairwise MA (Jansen et al., 2008), the underlying principles of MA apply, but to a greater extent (Song et al., 2009). There is an assumption that RCTs of different treatment comparisons are essentially similar in all ways other than the interventions being compared (Higgins and Green, 2011). All included RCTs should therefore have sufficient methodological, population and statistical similarity to allow for a valid synthesis (Mills et al., 2013). The influence of any potentially significant differences should be checked and tested using subgroup, or sensitivity (exclusion of those studies) analysis (Donegan et al., 2010).
Figure 1.1 Schematic representation of network meta-analysis

In Box 1, two treatments for a given condition (A and B) have been compared in RCTs (A v B trials). The solid arrow between them represents a standard head-to-head, or pairwise MA, which summarises the effect estimate of treatment A compared to treatment B, as reported in those RCTs. Such methodology would be unable to simultaneously include a third available treatment C, (Box 2), which has been compared to treatment A in other RCTs (A v C trials), but would summarise this comparison separately (solid arrow). NMA on the other hand, allows inferences about the relationship between treatments B and C to be drawn (vertical dashed arrow), using the common comparator treatment A, even if there have been no B v C trials. This can also be expressed as:

\[C - B = (C - A) - (B - A) \]

NMA also uses the indirect evidence available in the network (diagonal dashed arrows) to increase the precision of the effect estimate for each of the included treatments, and to incorporate the totality of available RCT data.
The degree of connectedness of the various treatments through RCT head-to-head comparisons, or the ‘geometry’ of the network is a key consideration (Bafeta et al., 2014; Salanti et al., 2008a). For example, a ‘star-shaped’ network where all treatments have been compared to placebo only but not one another is too heavily reliant on indirect evidence which may introduce excess heterogeneity (Salanti et al., 2008b). The results of such NMAs should be interpreted with caution and should guide future trials by identifying missing evidence (Mills et al., 2013).

Another important principle in NMAs is the transitivity assumption (Efthimiou et al., 2016; Salanti, 2012). This is the premise that patients who were randomised to the different treatments in the included RCTs are similar, and that any patient can potentially receive any of the treatments compared in the network (Salanti et al., 2008a). Another way to consider this is whether each of the included network treatments could hypothetically make up one arm of a multi-group RCT (Salanti, 2012). Furthermore, each treatment within the network must be similar across all the studies that included it as a comparison (Chaimani et al., 2017). The network therefore becomes invalid if some of the included treatments are not clinically possible to administer to a subgroup of patients in the network, or if the administration of an included treatment was considerably different (Chaimani and Salanti, 2012; Donegan et al., 2010). This is an extension of the same principle in pairwise MA where the included RCTs compare identical treatment groups to which a sample patient population with the same clinical condition were randomised (Baker and Kramer, 2002).

As mentioned earlier, one of the strengths of NMA is the ability to draw on indirect evidence to increase the precision of the effect estimate and provide a comparison, even when no direct evidence is available. However, such indirect comparisons are not randomised and may suffer the biases of observational studies such as confounding (Jansen et al., 2008). They should therefore be used to supplement rather than supersede or replace direct evidence, although they can be more reliable in cases where direct evidence is only available from low quality RCTs (Donegan et al., 2010; Salanti et al., 2008a; Song et al., 2009). Testing for significant differences between the direct and indirect evidence for a given comparison within the network, termed inconsistency or incoherence, is an important step (Lumley, 2002; Riley et al., 2017; White et al., 2012). A statistical test for this is available within most packages (Chaimani et al., 2013), usually through the calculation of an inconsistency factor (Dias et al., 2010) or the difference between the direct
and indirect evidence within a ‘closed’ loop, or a loop formed by three (or four) treatments with direct and indirect comparisons between all of them (Efthimiou et al., 2016; Higgins et al., 2012). In addition, a manual comparison of the direct and indirect results should be performed (Chaimani et al., 2017) as lack of statistical evidence of inconsistency does not necessarily imply consistency (Bafeta et al., 2014). Statistical inconsistency should be investigated both qualitatively, by examining the contributing RCTs for heterogeneity, and quantitatively, using sensitivity analysis, before deciding on whether to include the indirect (and combined) evidence (Jansen et al., 2008; Salanti, 2012).

The included RCTs in any MA are not identical and clinical and methodological diversity inevitably leads to heterogeneity (Naylor, 1997). Testing for the degree of between-study statistical heterogeneity, or the differences between studies in terms of their treatment effect estimates is an integral component of pairwise MA through the calculation of the I² statistic (Higgins and Green, 2011). This describes the percentage of the between-study variability in effect estimates that is attributable to heterogeneity as opposed to chance or a sampling error. This is used along with a qualitative assessment to assess whether the heterogeneity in the included RCTs is significant or not (Mills et al., 2013). There is no direct equivalent to the I² statistic in NMA as there are multiple sources (direct and indirect) for each effect estimate (Caldwell et al., 2012), but calculation of predictive intervals (Bafeta et al., 2014) or the range within which any future RCT’s effect estimate is likely to lie for that comparison (Chaimani et al., 2013) is a useful proxy (Salanti et al., 2014). Wide predictive intervals indicate that the contributing RCTs’ results are heterogeneous, meaning that the NMA effect estimate for that comparison should be interpreted with caution (Chaudhry et al., 2015).

As discussed earlier, any statistical methodology is prone to misuse if not applied correctly and NMA is no exception (Salanti, 2012; Song et al., 2009). Guidelines groups recommend both expert statistical support and subject expertise to facilitate the preparation, conduct and reporting of NMA (Higgins and Green, 2011; Hutton et al., 2015; Salanti et al., 2014).

1.1.7 Applying NMA to surgical questions
Surgical practice, like all medical practice, is constantly changing. As new treatments, techniques and procedures become available, their potential benefits and harms need to be compared to
existing interventions (Potter et al., 2014). As discussed earlier, NMA synthesis has clear advantages over standard MA when more than two treatment options are being compared (Chaudhry et al., 2015). However, comparing drug treatments using NMA is more straightforward than comparing procedural interventions. This may explain why the uptake of NMA methodology has been quickest in medical disciplines where drug therapy is the mainstay, such as psychiatry (Cipriani et al., 2011; Cipriani et al., 2018a; Cipriani et al., 2018b; Cipriani et al., 2016; Davies et al., 2018; Miura et al., 2014) and cardiology (Palmer et al., 2015; Siontis et al., 2015; Wu et al., 2018). A recent review of all published NMAs found that 83% assessed pharmacological interventions (Bafeta et al., 2014).

A small number of NMAs addressing surgical interventions have been published, using relatively simple network constructs and variable statistical rigour (Bracale et al., 2012; Mazaki et al., 2015; Padwal et al., 2011; Simillis et al., 2015). Advanced NMA methods are well suited to answering many surgical questions where multiple options are available and have been compared in RCTs. Surgical RCTs are more methodologically heterogeneous than drug trials, so it is possible that this would lead to wide confidence intervals in a complex surgical NMA, and therefore uncertain effect estimates and rankings and clinically less meaningful conclusions.

The first part of this thesis utilises advanced NMA to address two practical surgical questions; carbohydrate loading prior to elective surgery, and anti-reflux surgery. These examples demonstrate different applications of NMA methodology, and in both examples the results provide new information and conclusions that were not evident from existing published MAs.

1.2 Bias in clinical trials

Although RCTs are the gold standard method for assessing the benefits and harms of healthcare interventions, their results are only valid if they are well designed and conducted (Sinha et al., 2009). RCT validity has two main components, referred to as external validity (whether the RCT question is appropriate and clinically meaningful) and internal validity (whether the RCT answers the question in a manner that is free from bias) (Juni et al., 2001). Factors that affect external validity vary depending on the subject matter and will not be discussed further here.
Bias is defined as systematic distortion of a statistical result (Fowler and Fowler, 2011). This can lead to either an under- or over-estimation of the true treatment effect in an RCT (Wood et al., 2008), leading to false positive or false negative results, particularly with respect to subjective outcomes (Hrobjartsson et al., 2014). Such bias often arises unintentionally from subconscious tendencies (Day and Altman, 2000) including the so-called placebo effect.

1.2.1 The placebo effect
The word placebo is defined as a medicine or procedure prescribed for psychological, rather than physiological effect (Fowler and Fowler, 2011). Meaning “I shall please” in Latin, the term was introduced into medicine in the late 18th century to mean a treatment that is given to please, placate or console rather than benefit the patient (Bernstein and Brown, 2017; de Craen et al., 1999; Sonawalla and Rosenbaum, 2002). The placebo effect relates to our psychological predisposition to hope and positive expectation, and is well known to influence our judgement of the efficacy of a treatment (Beecher, 1955; Feys et al., 2014). Optimism bias, a term borrowed by Sir Iain Chalmers from the psychology literature, refers to the tendency for patients to assume that novel treatments are an advance on currently available ones (Chalmers, 1997; Chalmers and Matthews, 2006).

Observer bias, also known as ascertainment or detection bias (Hrobjartsson et al., 2012), can be thought of as the equivalent phenomenon affecting the treatment administrator (or assessor), resulting from the interaction between the observer’s predispositions and the subjectivity of the outcome being assessed (Hrobjartsson et al., 2014). This is particularly influential when investigators have strong convictions regarding the evaluated treatment, leading to intervention preoccupation (overrating the intervention group) (Hrobjartsson et al., 2012) or compliant responses from patients (Beecher, 1955; Spanos et al., 1992).

The ‘bias blind spot’ is a term coined by Emily Pronin, a social psychologist at Princeton University, to describe the natural tendency of recognising the impact of biases on the judgement of others while failing to see the impact of biases on one’s own judgement (Pronin et al., 2002). One of her group’s findings in a study of 600 US residents was that more than 85% believed they were less biased than the average American, and only one participant thought they were more biased than average.
The placebo effect and bias blind spot are just two examples of a range of factors that can introduce bias in an RCT, significantly altering the results. This in turn can affect the conclusions of subsequent synthesis (Goodman and Dickersin, 2011; Moher et al., 1998) and lead to erroneous recommendations for clinical practice (Detsky et al., 1992). Classifying and controlling for potential sources of bias is therefore critical to the validity of healthcare intervention RCTs.

1.2.2 Common sources of bias

The Cochrane Collaboration’s tool for assessing the risk of bias in RCTs (Higgins et al., 2011) employs a useful classification into selection, performance, detection, attrition and reporting bias, with definitions for each (Higgins and Green, 2011). A brief outline of this follows, along with strategies to effectively minimise the influence of these biases as recommended by the Cochrane Collaboration and guidelines groups (Higgins and Green, 2011; Schulz et al., 2010).

Selection bias is used to describe systematic differences between the baseline characteristics of study groups. It is avoided by effective randomisation, which has two essential components, namely the generation of an allocation (or randomisation) sequence that is based on chance and strict implementation of that random sequence by concealment, meaning that it is impossible to know which group the next trial participant will be allocated to (Odgaard-Jensen et al., 2011).

Systematic differences between the groups in the provided care or in exposure to factors other than the intervention of interest is referred to as performance bias. The risk of such bias is minimised by blinding (Savovic et al., 2012), or ensuring that study participants do not know which group they were allocated to. Blinding of study investigators additionally ensures that all participants, regardless of the group they were allocated to, receive identical treatment apart from the trial interventions. Outcome differences between the groups are therefore more likely to reflect differences in intervention effect (Hall, 2010). This is particularly important in instances where there are prevalent preconceptions about a particular therapy.

Detection bias refers to systematic variation between the groups in the way outcomes are assessed and recorded, and is particularly problematic when evaluating subjective outcomes. Paradoxically, some conscientious assessors may overcompensate for an expected subconscious bias in favour of
the intervention by consciously favouring the control (Hrobjartsson et al., 2013). Detection bias is countered by blinding the outcome assessors (Wood et al., 2008). Other strategies such as the use of correlation coefficients to assess inter-observer agreement are not effective (Hrobjartsson et al., 2013).

Systematic disparity between the groups in study withdrawals and exclusions is referred to as attrition bias, and leads to non-random missing outcome data. This can be because data of some trial participants have been intentionally excluded from the analyses or are not available to the investigators (Wood et al., 2008). Performing an intention-to-treat (or as per randomisation) instead of an as-treated (or per protocol) analysis can minimise this risk of bias (Juni et al., 2001).

Finally, reporting bias (or selective reporting bias) refers to systematic differences between the reported and unreported findings of a study (Chalmers, 1990; Higgins and Green, 2011; McGauran et al., 2010). This usually manifests as preferential reporting of results with statistically significant differences. There are other potential sources of reporting bias such as the use of different time-points, outcome assessment instruments or analyses to show a statistically significant difference (Chalmers et al., 2013). The risk of reporting bias is minimised by determining a priori how the data will be analysed and reported, publishing a trial protocol including a detailed statistical analysis plan and publishing all the results (Schulz et al., 2010).

Other biases and factors may affect the results of RCTs. These include contamination (where participants of a drug versus placebo trial decide to mix and evenly distribute the trial drugs so each participant has an equal chance of receiving the active treatment) and co-intervention (where study controls are provided non-study interventions by well-meaning carers) (Dechartres et al., 2013; Sackett, 2007; Shun-Shin and Francis, 2013). However, the classification described above covers the common sources of bias. The effect of these biases on the results of RCTs can be examined in methodological studies using meta-epidemiology techniques.

1.2.3 Meta-epidemiology
A meta-epidemiological study analyses MAs with respect to a particular methodological or other study-level characteristic in the included RCTs (Sterne et al., 2002). In brief, the difference in the pooled effect estimate (such as the odds ratio or mean difference) between studies that contain that
characteristic (such as blinding) and those that do not is calculated within each meta-analysis. These differences (or ratios) are then combined across the meta-analyses into what is also called a meta-meta-analysis (Higgins and Green, 2011). The result is a quantitative estimate of the effect of that study-level characteristic on the RCTs’ results.

Recent meta-epidemiological studies have provided empiric evidence that the potential sources of bias discussed earlier significantly influence the results of RCTs by exaggerating the effect estimate of the studied treatment (Savovic et al., 2012; Schulz et al., 1995; Wood et al., 2008). Selection, performance and detection bias have been found to be particularly influential, with a combined exaggerated treatment effect of up to 37% (Moher et al., 1998; Wood et al., 2008). A recent editorial clearly demonstrated this cumulative bias effect using trials assessing renal artery denervation for the treatment of hypertension as an example (Shun-Shin et al., 2014).

The methodological studies performed to date have pooled data from trials across several medical disciplines with RCTs of pharmacological interventions constituting the vast majority. Surgical RCTs have important differences to drug trials (Barkun et al., 2009; Love, 1975; Solomon and McLeod, 1995) and these differences influence susceptibility to various forms of bias (Stirrat et al., 1992).

1.2.4 Considerations in surgical trials

The impossibility of blinding the operating surgeon, and the difficulties in blinding patients and carers to surgical procedures, are well recognised (Boutron et al., 2004; Hill et al., 2002; Schulz and Grimes, 2002). There is ample evidence that the placebo effect of procedures is even greater than for drugs (Kaptchuk et al., 2000; McRae et al., 2004). Some authors have argued that blinding in surgical trials is not possible, and should not be considered (Patel et al., 2013; Pham et al., 2009; Vinuela et al., 2012). A review of orthopaedic trauma trials reported that outcome assessment had not been blinded in 90% of trials (Karanicolas et al., 2008), even though that was possible (Bingener et al., 2015; McCulloch et al., 2002). Such widespread non-blinding is likely to influence the results and interpretation of many surgical RCTs (Penninga et al., 2014).

Surgical RCTs are affected by surgeon and patient preference in procedure selection and patient eligibility (Jack et al., 1990; Lassen et al., 2005), with greater optimism bias. This may persist
even after blinded evaluation shows no benefit in the novel procedure (Freed et al., 2001; Wartolowska et al., 2014). Procedures such as laparoscopic cholecystectomy spread rapidly due to surgeon and patient enthusiasm before RCT evaluation (Cuschieri, 1989; Cuschieri et al., 1990; Russell, 1995). Optimism bias can also lead to cross-over of enrolled patients between treatment groups, which may significantly influence the results in an intention-to-treat (or as randomised) analysis (Cunningham, 2011).

Expert opinion can sometimes suggest that surgical RCTs are impractical or inappropriate (Kenny et al., 1997), which may or may not be justified (Gattellari et al., 2001; McCulloch et al., 2002; Meakins, 2006). The influence of selection bias may therefore increase in surgical trials if appropriate generation of the randomisation sequence and allocation concealment is not employed.

Multiple other factors contribute to the added complexity of surgical RCTs compared to drug trials, such as the difficulty of standardising interventions and procedures (Neugebauer et al., 1991; Sinha et al., 2009; Solomon and McLeod, 1995) and the timing of an RCT for a novel intervention with respect to the learning curve (Ergina et al., 2009; McCulloch et al., 2002).

One of the conclusions of the Balliol Colloquia, a series of meetings between 2007 and 2009 at the eponymous College in Oxford, held to discuss the advancement of surgical research (Waxman, 2016), was that none of these challenges were beyond the design of a clinical trial (Lancet, 2009). Indeed, some of the earliest high quality RCTs were designed and conducted by surgeons (Cobb et al., 1959; Dimond et al., 1960; Livingston, 1953), with John Goligher’s RCT on duodenal ulcer surgery being an excellent early example that included random sequence generation, allocation concealment, blinded outcome assessment and >99% follow-up (Goligher et al., 1964). Surgical RCTs can therefore be held to the same high standards as other trials (Horton, 1996; Stirrat et al., 1992).

The question of whether blinding and other sources of bias significantly influence the results of surgical RCTs is important for two reasons. Firstly, there are implications for the interpretation of published surgical RCTs that form the basis of current evidence-based surgical practice. Secondly, this information will help guide future surgical RCT design. Although difficult to incorporate and therefore seldom attempted, blinding should be considered in the design of future
surgical trials if shown to have a significant impact on outcome measures. The second part of this thesis reports on a meta-epidemiological study that specifically examined this question.

1.3 Aims

The aims of this thesis are:

1. To apply network meta-analysis techniques to specific surgical questions.
2. To determine the effect of blinding, and other bias-minimisation strategies, on the results of surgical randomised clinical trials

Chapter Two uses NMA methods to investigate the efficacy of preoperative carbohydrate loading for patients undergoing elective surgery. A number of published pairwise meta-analyses reported conflicting conclusions, as they were unable to account for the different doses, and control treatments, used in the RCTs.

NMA methodology is used in Chapter Three to determine which anti-reflux operation provides the best balance of benefit and risk for the treatment of gastro-oesophageal reflux disease (GORD). This has remained an unresolved question despite dozens of RCTs and numerous pairwise MAs.

Chapter Four uses meta-epidemiological methods to quantify the effect of lack of blinding and other methodological deficiencies that pose a risk of bias, on surgical RCT results. It draws on individual trial level data from over 300 RCTs of laparoscopic versus open surgical procedures.
CHAPTER TWO

Systematic review and network meta-analysis of the effect of preoperative carbohydrate loading on recovery after elective surgery

Published in the British Journal of Surgery (Appendix A1):

Co-author affiliations:
1. Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
2. Department of Preventive and Social Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
3. Department of Surgery, School of Medicine, University of Auckland, Auckland, New Zealand

My contribution to this chapter
This project was conceived jointly by myself and my supervisors (JLM, GPH and MDS). It builds on earlier work published by them and other co-authors (Smith et al., 2014). I updated the systematic search, selected and extracted data from additional eligible trials (with co-author duplication) and performed all of the analysis with guidance from GPH and MDS. All drafts and the final manuscript of the resulting publication were written by myself, with revisions in conjunction with my supervisors and journal reviewers. This chapter is adapted from the published paper (Amer et al., 2017).

2.1 Chapter summary
Recent MAs have summarised the results of RCTs investigating the effects of preoperative carbohydrate (CHO) administration on clinically relevant postoperative outcomes in adult patients undergoing elective surgery. However, these MAs could not account for the different doses of CHO administered and the different controls used. NMA allows for robust synthesis of all available evidence in these situations. Article databases were systematically searched for RCTs comparing preoperative carbohydrate administration with water, a placebo drink or fasting. A four
treatment NMA was performed comparing two CHO dose groups (low: 10–44g; high: >45g) with two control groups (fasting; water or placebo). Primary outcomes were length of hospital stay and the postoperative complication rate. Secondary outcomes included postoperative insulin resistance, vomiting and fatigue. Forty three trials involving 3110 participants were included. Compared to fasting, preoperative low dose and high dose CHO administration decreased postoperative length of stay by 0.4 days (95% confidence interval (CI) 0.03 – 0.7) and 0.2 days (95% CI 0.04 – 0.4) respectively. There was no significant decrease in length of stay compared to water or placebo. There was no significant difference in the postoperative complication rate or in most of the secondary outcomes between the CHO and control groups. These results show that preoperative CHO administration is safe, but does not provide a clinically relevant benefit over water or a flavoured drink.

2.2 Introduction
Enhanced recovery after surgery (ERAS), or fast-track recovery, is a set of perioperative principles and strategies brought together in an integrated pathway to optimise patients’ operative journeys and minimise morbidity. ERAS is now in widespread use across many surgical disciplines internationally, as it has been shown to reduce complications, facilitate recovery and hasten discharge (Gouvas et al., 2009).

However, the evidence supporting the use of some individual components of ERAS is variable, meaning their routine inclusion in ERAS remains debatable (Lubowski, 2014). An example of this is the preoperative administration of a CHO load, usually as an oral solution, promoted as a counter to postoperative hyperglycaemia (Ljungqvist et al., 2002).

Surgery, as a form of stress, is known to induce peripheral insulin resistance which can lead to hyperglycaemia, which in turn may lead to postoperative complications and prolonged recovery (Nygren, 2006). Studies have shown that a preoperative CHO load large enough to stimulate a prompt insulin response decreases postoperative insulin resistance by around 50% (Ljungqvist et al., 2002). Over 30 RCTs have investigated whether this effect results in improved postoperative outcomes. These have been summarised in several recent MAs (Awad et al., 2013; Li et al., 2012; Smith et al., 2014).
However, these MAs arrived at variable conclusions. This variability is partly due to different inclusion and exclusion criteria, meaning different RCTs were included in each MA. More importantly however, a standard pairwise MA cannot account for the different CHO doses and different controls used in the included RCTs. As a result, these MAs either combined different control groups (such as fasting, water and placebo) into one treatment arm (Awad et al., 2013; Smith et al., 2014) or performed several different head-to-head MAs (Li et al., 2012; Smith et al., 2014), thereby limiting their interpretability. Thus, there remains a need for an inclusive, methodologically sound analysis of all the available evidence to resolve ongoing uncertainty around the true clinical benefits of CHO loading (Zargar-Shoshtari and Hill, 2008).

NMA offers a validated method of synthesis in instances such as this, as detailed in Chapter 1. This chapter reports the results of a systematic review and NMA to determine the effects of preoperative CHO administration on clinically relevant postoperative outcomes in adult patients undergoing elective surgery.

2.3 Methods

2.3.1 Search strategy and selection criteria
A systematic review of RCTs of preoperative CHO administration for elective surgical patients was performed using the same process and outcomes described in the Cochrane review on the same topic (Smith et al., 2014). In brief, article databases and trial registries were searched to June 2016 using a structured sensitivity maximising search strategy (Appendix B1) and no language restrictions. All citations were in English, as translated by the databases. Abstracts and full texts in French, German and Japanese were able to be translated by the data extractors. Studies in other languages were translated using Google translate (Jackson et al., 2019). Two authors independently screened all titles and abstracts for eligibility, and trial authors were contacted when further information was required to decide on eligibility.

All randomised and quasi-randomised trials comparing the preoperative administration of at least 10g CHO (either orally or intravenously) within 4 hours of surgery start time with fasting, water or placebo, to adults undergoing any type of elective surgical procedure were included. Studies
that co-administered other substances (such as glutamine) were included as long as the dose of CHO was greater than 10g. Studies that did not administer CHO within four hours prior to surgery and studies that included patients undergoing emergency surgery (defined as within 24 hours of first physician contact) were excluded.

2.3.2 Outcome measures
All trials that reported any of the following outcomes were included.

Primary outcomes:
1. Length of postoperative stay (in days).
2. Postoperative complication rate (as defined by trial authors).

Secondary outcomes:
1. Aspiration pneumonitis rate (defined as observed regurgitation or vomiting in association with abnormal chest imaging).
2. Vomiting within the first 24 hours postoperatively (measured as an incidence count).
3. Insulin resistance (measured by the Homeostatic model assessment of insulin resistance (HOMA-IR) method).
4. Insulin sensitivity (measured by the hyperinsulinaemic-euglycaemic clamp method).
5. Nausea at 24 hours postoperatively (measured on ordinal, visual analogue or composite scales).
6. Postoperative general well-being (measured on ordinal, visual analogue or composite scales).
7. Postoperative fatigue (measured on ordinal, visual analogue or composite scales).
8. Return of intestinal function (number of postoperative days to first passage of flatus, and first passage of bowel motion).

2.3.3 Data extraction and quality assessment
For studies that were also included in the Cochrane review (Smith et al., 2014), data already extracted were used. For the additional studies included in this review, the same structured paper form used in the Cochrane review was employed to collect extracted data (Appendix B2). Extracted data included study characteristics, patient characteristics, intervention details and outcome measures. Study authors were contacted to request missing data necessary for NMA.
Missing standard deviations were calculated from standard errors or confidence intervals (Higgins and Green, 2011), or from ranges or interquartile ranges (Hozo et al., 2005). When standard deviations could not be calculated, and attempts to contact the study authors were exhausted, they were imputed using the median of reported standard deviations from other similar trials.

The methodological quality of all included trials was assessed using the Cochrane Risk of Bias tool (Higgins et al., 2011) across the following domains: random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting and other potential sources of bias (such as baseline imbalances or differential diagnostic activity). Each domain was assessed as high risk, low risk or unclear risk.

2.3.4 Statistical analysis

A random-effects NMA was performed using the suite of Stata (StataIC 13, StataCorp LP., College Station, Texas) routines developed specifically for this purpose (Chaimani et al., 2013; Chaimani and Salanti, 2015; White, 2015). The main analysis comprised four treatment groups (nodes): low dose CHO (10g – 44g), high dose CHO (≥45g), water/placebo and fasting. Fasting was allocated as the reference treatment in the network. Comparisons between the water/placebo group and the fasting group are not reported as this review does not include all RCTs that compared preoperative fasting with water only. CHO arms of multiple-group RCTs where those arms received the same amount of carbohydrate (with or without additives such as glutamine) were combined. A network map was produced to provide a visual summary of the network of evidence available.

The results for continuous data were summarised as a mean difference (MD) or standardised mean difference (SMD) as appropriate, with 95% confidence intervals (CI). An SMD was used if studies assessing the same outcome used different measures or the results for that outcome were substantially different due to study population differences. Categorical data were summarised as an odds ratio with 95% CI. Where an SMD was appropriate, the original result in standard deviations (SD) is reported as well as the back-transformed approximations to the initial unit (Higgins and Green, 2011).

For primary outcomes with statistically significant differences between the groups, the probability of each treatment group ranking as the best, second, third or worst treatment in the network was
calculated and presented as a rankogram if one treatment was clearly superior (>90% probability of ranking best) (Dias et al., 2012).

A meta-regression analysis for outcomes with statistically significant differences between the groups was also performed to further evaluate any relationship with CHO dose. The network meta command (Chaimani et al., 2013) was run, and the resulting effect estimate and standard error for each study were used to run metareg (Harbord and Higgins, 2008). Both the R² value and ‘bubble plot’ (regression line of best fit) were inspected to determine whether a dose–response relationship existed. Three-arm trials (where two different carbohydrate doses were used) were dealt with by using the two effect estimates derived from them as two separate entries into metareg. A sensitivity analysis was performed for this by assuming they were two different studies then serially excluding each entry.

Cumulative pairwise MA for the outcome of length of postoperative stay was also performed. This was undertaken with R (Version 3.3.1, R Foundation for Statistical Computing, Vienna) using the meta package (Schwarzer, 2016). High-dose carbohydrate was compared with placebo, water or fasting, with studies being sequentially added by date of publication.

Subgroup analyses by type of surgery for outcomes where there were sufficient data to allow for this were performed. Major surgery was defined as all procedures with a reported mean length of postoperative stay of two or more days, and minor surgery as all procedures with a reported mean length of postoperative stay of less than two days.

Several sensitivity analyses were performed. First, the influence of imputed versus reported data was assessed by excluding studies where data were imputed. Second, the transitivity assumption was tested by splitting the ‘water or placebo’ node within the network. Third, blinded trials were analysed as a separate node within the network to assess the influence of un-blinded studies.
heterogeneity) were also tested for by calculating the difference between the two (the inconsistency factor) in each closed loop (Dias et al., 2010).

To investigate publication bias a comparison-adjusted funnel plot was visually inspected, which accounted for the fact that the included studies estimated treatment effects for different comparisons (Chaimani et al., 2013).

2.4 Results

2.4.1 Search results and study characteristics

The database search and study selection process is summarised in Figure 2.1. Forty-three RCTs fulfilled the inclusion criteria, involving 3110 patients (Table 2.1).

Figure 2.1 Systematic search and study selection flowchart
<table>
<thead>
<tr>
<th>Reference</th>
<th>Country</th>
<th>Type of elective surgery</th>
<th>CHO dose and route*†</th>
<th>Control†</th>
<th>No. of patients</th>
<th>ASA grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>(An et al., 2008)</td>
<td>China</td>
<td>Colonic cancer resection</td>
<td>50g, oral</td>
<td>Fasting</td>
<td>51</td>
<td>NR</td>
</tr>
<tr>
<td>(Aronsson et al., 2009)</td>
<td>Sweden</td>
<td>Hip replacement</td>
<td>25g, oral</td>
<td>Flavoured water</td>
<td>28</td>
<td>NR</td>
</tr>
<tr>
<td>(Asakura et al., 2015)</td>
<td>Japan</td>
<td>Body surface surgery‡</td>
<td>45g, oral§</td>
<td>Fasting</td>
<td>91</td>
<td>I–II</td>
</tr>
<tr>
<td>(Bisgaard et al., 2004)</td>
<td>Denmark</td>
<td>Laparoscopic cholecystectomy</td>
<td>50g, oral</td>
<td>Placebo¶</td>
<td>86</td>
<td>I–II</td>
</tr>
<tr>
<td>(Braga et al., 2012)</td>
<td>Italy</td>
<td>Pancreaticoduodenectomy</td>
<td>50g, oral</td>
<td>Low energy drink#</td>
<td>36</td>
<td>NR</td>
</tr>
<tr>
<td>(Breuer et al., 2006)</td>
<td>Germany</td>
<td>CABG or valve replacement</td>
<td>50g, oral</td>
<td>Placebo¶; fasting</td>
<td>160</td>
<td>III–IV</td>
</tr>
<tr>
<td>(Canbay et al., 2014)</td>
<td>Turkey</td>
<td>Open radical prostatectomy</td>
<td>50g, oral</td>
<td>Fasting</td>
<td>50</td>
<td>I–II</td>
</tr>
<tr>
<td>(Chen et al., 2014)</td>
<td>China</td>
<td>Open gastrectomy for cancer</td>
<td>50g, oral</td>
<td>Water; fasting</td>
<td>36</td>
<td>NR</td>
</tr>
<tr>
<td>(Chen et al., 2015)</td>
<td>China</td>
<td>Open gastrectomy for cancer</td>
<td>50g, oral</td>
<td>Fasting</td>
<td>35</td>
<td>NR</td>
</tr>
<tr>
<td>(Dock-Nascimento et al., 2012)</td>
<td>Brazil</td>
<td>Laparoscopic cholecystectomy</td>
<td>25g, oral</td>
<td>Water; fasting</td>
<td>48</td>
<td>I–II</td>
</tr>
<tr>
<td>(Faria et al., 2009)</td>
<td>Brazil</td>
<td>Laparoscopic cholecystectomy</td>
<td>25g, oral</td>
<td>Fasting</td>
<td>21</td>
<td>I–II</td>
</tr>
<tr>
<td>(Feguri et al., 2012)</td>
<td>Brazil</td>
<td>CABG</td>
<td>25g, oral</td>
<td>Water</td>
<td>40</td>
<td>NR</td>
</tr>
<tr>
<td>(Harsten et al., 2012)</td>
<td>Sweden</td>
<td>Hip replacement</td>
<td>50g, oral</td>
<td>Placebo¶</td>
<td>60</td>
<td>I–III</td>
</tr>
<tr>
<td>(Hausel et al., 2005)</td>
<td>Sweden</td>
<td>Laparoscopic cholecystectomy</td>
<td>50g, oral</td>
<td>Placebo¶; fasting</td>
<td>172</td>
<td>I–II</td>
</tr>
<tr>
<td>(Henriksen et al., 2003)</td>
<td>Denmark</td>
<td>Bowel resection</td>
<td>50g, oral</td>
<td>Fasting</td>
<td>48</td>
<td>NR</td>
</tr>
<tr>
<td>(Itou et al., 2012)</td>
<td>Japan</td>
<td>Mixed**</td>
<td>12.5g, oral</td>
<td>Fasting</td>
<td>274</td>
<td>I–II</td>
</tr>
<tr>
<td>(Jarvela et al., 2008)</td>
<td>Finland</td>
<td>CABG</td>
<td>50g, oral</td>
<td>Fasting</td>
<td>101</td>
<td>NR</td>
</tr>
<tr>
<td>Reference</td>
<td>Country</td>
<td>Type of elective surgery</td>
<td>CHO dose and route*†</td>
<td>Control†</td>
<td>No. of patients</td>
<td>ASA grade</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------</td>
<td>---</td>
<td>----------------------</td>
<td>-----------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>(Karlsson et al., 2016)</td>
<td>Sweden</td>
<td>Laparoscopic Roux-en-Y gastric bypass</td>
<td>50g, oral††</td>
<td>Water</td>
<td>51</td>
<td>NR</td>
</tr>
<tr>
<td>(Kaska et al., 2010)</td>
<td>Czechia</td>
<td>Colorectal surgery</td>
<td>50g, oral; 25g, IV</td>
<td>Fasting</td>
<td>221</td>
<td>I–II</td>
</tr>
<tr>
<td>(Lauwick et al., 2009)</td>
<td>Belgium</td>
<td>Thyroidectomy</td>
<td>50g, oral</td>
<td>Water</td>
<td>200</td>
<td>I–II</td>
</tr>
<tr>
<td>(Lidder et al., 2013)</td>
<td>UK</td>
<td>Colorectal surgery</td>
<td>50g, oral</td>
<td>Placebo‡</td>
<td>120</td>
<td>NR</td>
</tr>
<tr>
<td>(Ljunggren and Hahn, 2012)</td>
<td>Sweden</td>
<td>Hip replacement</td>
<td>50g, oral; fasting</td>
<td>Water</td>
<td>57</td>
<td>I–III</td>
</tr>
<tr>
<td>(Ljunggren et al., 2014)</td>
<td>Sweden</td>
<td>Hip replacement</td>
<td>50g, oral</td>
<td>Flavoured water</td>
<td>22</td>
<td>I–III</td>
</tr>
<tr>
<td>(Ljungqvist et al., 1994)</td>
<td>Sweden</td>
<td>Open cholecystectomy</td>
<td>250g, IV‡‡</td>
<td>Fasting</td>
<td>12</td>
<td>NR</td>
</tr>
<tr>
<td>(Mathur et al., 2010)</td>
<td>New Zealand</td>
<td>Colorectal or liver resection</td>
<td>50g, oral</td>
<td>Placebo¶</td>
<td>142</td>
<td>I–III</td>
</tr>
<tr>
<td>(Meisner et al., 2008)</td>
<td>Germany</td>
<td>Laparoscopic gynaecological surgery</td>
<td>30g, oral§§</td>
<td>Fasting</td>
<td>42</td>
<td>I–II</td>
</tr>
<tr>
<td>(Noblett et al., 2006)</td>
<td>UK</td>
<td>Colorectal surgery</td>
<td>47.5g, oral</td>
<td>Water; fasting</td>
<td>35</td>
<td>Median II</td>
</tr>
<tr>
<td>(Ozdemir et al., 2011)</td>
<td>Turkey</td>
<td>Hysterectomy¶¶ or inguinal hernia repair##</td>
<td>50g, oral</td>
<td>Water; fasting</td>
<td>90</td>
<td>I–II</td>
</tr>
<tr>
<td>(Perrone et al., 2011)</td>
<td>Brazil</td>
<td>Cholecystectomy*** or inguinal hernia repair</td>
<td>54g, oral</td>
<td>Water</td>
<td>17</td>
<td>I–II</td>
</tr>
</tbody>
</table>
Table 2.1 continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Country</th>
<th>Type of elective surgery</th>
<th>CHO dose and route*†</th>
<th>Control†</th>
<th>No. of patients</th>
<th>ASA grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Pexe-Machado et al., 2013)</td>
<td>Brazil</td>
<td>Laparotomy for gastrointestinal malignancy†††</td>
<td>67g, oral</td>
<td>Fasting</td>
<td>22</td>
<td>I–III</td>
</tr>
<tr>
<td>(Raksakietisak et al., 2014)</td>
<td>Thailand</td>
<td>Unilateral total knee joint replacement</td>
<td>40g, oral</td>
<td>Fasting</td>
<td>98</td>
<td>I–III</td>
</tr>
<tr>
<td>(Rapp-Kesek et al., 2007)</td>
<td>Sweden</td>
<td>CABG</td>
<td>50g, oral</td>
<td>Fasting</td>
<td>18</td>
<td>NR</td>
</tr>
<tr>
<td>(Sada et al., 2014)</td>
<td>Kosovo</td>
<td>Colorectal resection or open cholecystectomy‡‡‡</td>
<td>50g, oral</td>
<td>Placebo¶; fasting</td>
<td>138</td>
<td>I–II</td>
</tr>
<tr>
<td>(Singh et al., 2015)</td>
<td>India</td>
<td>Laparoscopic cholecystectomy</td>
<td>25g, oral</td>
<td>Flavoured water; fasting</td>
<td>120</td>
<td>NR</td>
</tr>
<tr>
<td>(Soop et al., 2001)</td>
<td>Sweden</td>
<td>Hip replacement</td>
<td>50g, oral</td>
<td>Placebo¶</td>
<td>15</td>
<td>NR</td>
</tr>
<tr>
<td>(Soop et al., 2004)</td>
<td>Sweden</td>
<td>Hip replacement</td>
<td>50g, oral</td>
<td>Placebo¶</td>
<td>14</td>
<td>I–II</td>
</tr>
<tr>
<td>(Tran et al., 2013)</td>
<td>Canada</td>
<td>CABG or spinal surgery with fusion</td>
<td>50g, oral</td>
<td>Fasting</td>
<td>38</td>
<td>NR</td>
</tr>
<tr>
<td>(Wang et al., 2010)</td>
<td>China</td>
<td>Open colorectal cancer surgery</td>
<td>50g, oral</td>
<td>Placebo¶; fasting</td>
<td>48</td>
<td>NR</td>
</tr>
<tr>
<td>(Yang et al., 2012)</td>
<td>China</td>
<td>Open radical distal gastrectomy</td>
<td>50g, oral</td>
<td>Sweetened water§§§</td>
<td>48</td>
<td>NR</td>
</tr>
<tr>
<td>(Yildiz et al., 2013)</td>
<td>Turkey</td>
<td>Laparoscopic cholecystectomy</td>
<td>50g, oral</td>
<td>Fasting</td>
<td>60</td>
<td>I–II</td>
</tr>
<tr>
<td>(Yilmaz et al., 2013)</td>
<td>Turkey</td>
<td>Laparoscopic cholecystectomy</td>
<td>50g, oral</td>
<td>Fasting</td>
<td>40</td>
<td>I–II</td>
</tr>
</tbody>
</table>
Table 2.1 continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Country</th>
<th>Type of elective surgery</th>
<th>CHO dose and route*†</th>
<th>Control†</th>
<th>No. of patients</th>
<th>ASA grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Yuill et al., 2005)</td>
<td>UK</td>
<td>Open major abdominal surgery¶¶¶</td>
<td>50.4g, oral</td>
<td>Placebo¶</td>
<td>65</td>
<td>NR</td>
</tr>
<tr>
<td>(Zelic et al., 2012)</td>
<td>Croatia</td>
<td>Colorectal cancer surgery</td>
<td>50g, oral</td>
<td>Fasting</td>
<td>40</td>
<td>I–II</td>
</tr>
</tbody>
</table>

*CHO dose administered within 4h of surgery start time, calculated using reported volumes and concentrations. †Multiple groups separated by semicolon. ‡Across multiple disciplines, as reported by the study authors; most patients underwent transperineal prostate brachytherapy. §The study included a treatment group of patients who were given a 2.5% oral CHO solution, to be consumed from the night before to 2h before surgery; this group was excluded as the amount of CHO received within 4h of surgery start time was less than 10g. ¶A specially formulated oral solution, reported to be indistinguishable from the CHO solution. #Oral drink containing orange juice, starch, sodium, saccharine and colours. **Patients underwent otorhinolaryngeal, orthopaedic, plastic, gynaecological, breast, thyroid or thoracic surgery. ††The study included a treatment group of patients who were given a protein-rich solution containing 2.8g CHO, 2h before surgery; this group was excluded as the amount of CHO was less than 10g. ‡‡Calculated approximation; patients received an IV glucose infusion at 5mg/kg/min from within 1h after the last meal on the night before surgery (approximately 06.00 hours), to within 30–60 min before induction of anaesthesia the following morning (between 08.30 and 12.30 hours). §§Patients were allowed an unlimited intake of an oral CHO drink; the reported average intake was 250 ml (30 g). ¶¶Abdominal approach. †††Procedures included subtotal gastrectomy, hemicolectomy and anterior resection. §§§CHO-free. ¶¶¶Procedures included liver resection, pancreatic resection and gastrectomy. ASA, American Society of Anesthesiologists; CHO, carbohydrate; IV, intravenous; NR, not reported; CABG, coronary artery bypass grafting.
One trial (Aronsson et al., 2009) could not be included in the NMA as the only relevant reported outcome was the aspiration pneumonitis rate, which was zero across all groups in all RCTs. Another trial (Singh et al., 2015) reported nausea as a mean incidence rate which could not be included in the NMA but is included in the qualitative synthesis.

Patients in the included RCTs underwent a wide variety of open and laparoscopic surgical procedures for benign and malignant pathology including colorectal and upper gastrointestinal surgery, endocrine surgery, orthopaedic surgery, cardiothoracic surgery and gynaecological surgery. The majority of RCTs were conducted in Europe and involved the administration of high dose CHO preoperatively (mostly 45 – 55g). Two studies administered CHO intravenously (Kaska et al., 2010; Ljungqvist et al., 1994) and only one study directly compared low and high dose CHO (Kaska et al., 2010).

The risk of bias assessment of the included trials is presented in Figures 2.2 and 2.3. Of the 43 included trials, only six were judged as adequately blinded with low risk of performance or detection bias (Bisgaard et al., 2004; Lidder et al., 2013; Mathur et al., 2010; Soop et al., 2001; Soop et al., 2004; Yuill et al., 2005). There was evidence of selection bias in the majority of the included studies. Only two trials (Lidder et al., 2013; Mathur et al., 2010) were judged as low risk of bias across all domains.

![Figure 2.2 Risk of bias assessment summary figure](image-url)
Figure 2.3 Risk of bias assessment by individual study

- green circle: denotes low risk;
- yellow question mark: denotes unclear risk;
- red circle: denotes high risk of bias, for each given domain, as judged by the authors.
2.4.2 Length of postoperative stay

Length of postoperative stay was the most commonly reported outcome and was therefore used for the sensitivity analyses and funnel plot. Figure 2.4 summarises the network of direct evidence available for this outcome. This was reported by twenty five studies involving 1890 participants (An et al., 2008; Asakura et al., 2015; Braga et al., 2012; Breuer et al., 2006; Canbay et al., 2014; Dock-Nascimento et al., 2012; Feguri et al., 2012; Harsten et al., 2012; Hausel et al., 2005; Kaska et al., 2010; Lidder et al., 2013; Ljunggren and Hahn, 2012; Mathur et al., 2010; Noblett et al., 2006; Ozdemir et al., 2011; Perrone et al., 2011; Pexe-Machado et al., 2013; Raksakietisak et al., 2014; Sada et al., 2014; Soop et al., 2001; Soop et al., 2004; Tran et al., 2013; Yang et al., 2012; Yildiz et al., 2013; Yuill et al., 2005).

Figure 2.4 Network map for evidence for length of postoperative stay

The size of each circle (node) is proportional to the number of patients who received the treatment. The width of the lines represents the number of RCTs that directly compared the connected pair of treatments. The values in parentheses denote the number of RCTs that investigated the associated comparison, followed by the combined number of patients in those RCTs.

CHO = Carbohydrate.
Mean length of postoperative stay in the included studies ranged from one day to seventeen. NMA results are presented in Figure 2.5 and Table 2.2. Compared to fasting, patients administered CHO preoperatively were discharged earlier (high dose CHO 0.2 SD earlier [SMD, 95% CI 0.04 – 0.4], low dose CHO 0.4 SD earlier [SMD, 95% CI 0.03 – 0.7]). On back-transformation into days, high dose CHO administration decreased length of stay for patients undergoing major surgery (mean length of stay >2 days) by 0.7 days (95% CI 0.1 – 1.4), and for patients undergoing minor surgery (mean length of stay <2 days) by 0.07 days (95% CI 0.01 – 0.1). When compared to water or placebo, no significant benefit was shown for either low or high dose CHO with respect to time to hospital discharge. No statistically significant difference was found between the two CHO groups in the network. None of the treatments was clearly superior on calculation of ranking probabilities for this outcome.

![Composite forest plot of comparisons for length of postoperative stay](image)

Figure 2.5 Composite forest plot of comparisons for length of postoperative stay

Boxes and horizontal lines represent the standardised mean difference and 95% confidence intervals for each comparison, respectively.

SD = Standard deviation. SMD = Standardised mean difference.
Table 2.2 Network meta-analysis results

<table>
<thead>
<tr>
<th>Length of postoperative stay</th>
<th>vs Fasting</th>
<th>vs Water/Placebo</th>
<th>vs Low dose CHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>High dose CHO</td>
<td>0.2 SD (-0.4, -0.04) †</td>
<td>-0.2 SD (-0.4, 0.02)</td>
<td>0.1 SD (-0.2, 0.5)</td>
</tr>
<tr>
<td>Low dose CHO</td>
<td>0.4 SD (-0.7, -0.03) †</td>
<td>-0.3 SD (-0.7, 0.05)</td>
<td></td>
</tr>
</tbody>
</table>

Back-Transformation‡

<table>
<thead>
<tr>
<th>Major Surgery§</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>High dose CHO</td>
<td>-0.7 days (-1.4, -0.1) †</td>
<td>-0.7 days (-1.4, 0.07)</td>
<td>0.3 days (-0.7, 1.7)</td>
</tr>
<tr>
<td>Low dose CHO</td>
<td>-1.4 days (-2.4, -0.1) †</td>
<td>-1.0 days (-2.4, 0.2)</td>
<td></td>
</tr>
</tbody>
</table>

Minor Surgery¶

| High dose CHO | -0.07 days (-0.1, -0.01) † | -0.07 days (-0.1, 0.01) | 0.04 days (-0.07, 0.2) |
| Low dose CHO | -0.1 days (-0.2, -0.01) † | -0.1 days (-0.2, 0.02) | |

Subgroup Analysis#

Major Abdominal Surgery

| High dose CHO | -1.0 days (-3.2, -0.1) † | -1.4 days (-2.7, -0.1) † | 0.2 days (-3.1, 3.6) |
| Low dose CHO | -1.9 days (-5.2, 1.5) | -1.6 days (-5.1, 1.9) | |

Minor Abdominal Surgery

| High dose CHO | 0.0 days (-0.4, 0.2) | -0.05 days (-0.4, 0.05) | -0.02 days (-0.4, 0.4) |
| Low dose CHO | -0.07 days (-0.5, 0.4) | 0.02 days (-0.4, 0.4) | |

Orthopaedic Surgery

| High dose CHO | -0.2 days (-2.3, 1.0) | -0.3 days (-2.2, 0.4) | -0.7 days (-3.2, 1.9) |
| Low dose CHO | 0.0 days (-2.0, 2.0) | 0.3 days (-2.2, 0.9) | |
Table 2.2 continued

<table>
<thead>
<tr>
<th></th>
<th>vs Fasting</th>
<th>vs Water/Placebo</th>
<th>vs Low dose CHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of postoperative stay (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac Surgery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High dose CHO</td>
<td>-0.5 days (-3.4, 2.3)</td>
<td>0.4 days (-3.1, 3.9)</td>
<td>2.4 days (-2.5, 7.2)</td>
</tr>
<tr>
<td>Low dose CHO</td>
<td>-2.9 days (-7.8, 2.0)</td>
<td>-2.0 days (-5.4, 1.5)</td>
<td></td>
</tr>
<tr>
<td>Postoperative complication rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High dose CHO</td>
<td>1.0 (0.6, 2.0)</td>
<td>0.8 (0.6, 1.2)</td>
<td>1.0 (0.4, 2.5)</td>
</tr>
<tr>
<td>Low dose CHO</td>
<td>1.0 (0.4, 2.5)</td>
<td>0.8 (0.3, 2.0)</td>
<td></td>
</tr>
<tr>
<td>Vomiting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High dose CHO</td>
<td>1.4 (0.7, 3.2)</td>
<td>1.2 (0.6, 2.4)</td>
<td>1.4 (0.6, 3.4)</td>
</tr>
<tr>
<td>Low dose CHO</td>
<td>1.0 (0.6, 1.7)</td>
<td>0.9 (0.3, 2.1)</td>
<td></td>
</tr>
<tr>
<td>Insulin resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High dose CHO</td>
<td>-2.2 (-4.3, -0.09) †</td>
<td>-2.5 (-4.9, -0.2) †</td>
<td>-0.8 (-4.5, 2.9)</td>
</tr>
<tr>
<td>Low dose CHO</td>
<td>-1.4 (-4.9, 2.1)</td>
<td>-1.8 (-5.2, 1.7)</td>
<td></td>
</tr>
<tr>
<td>Insulin sensitivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High dose CHO</td>
<td>1.2 ml/kg/min (-1.0, 3.4)</td>
<td>0.2 ml/kg/min (-0.7, 1.0)</td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High dose CHO</td>
<td>-0.6 (-1.4, 0.07)</td>
<td>-0.7 (-1.1, -0.2) †</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.2 continued

<table>
<thead>
<tr>
<th></th>
<th>vs Fasting</th>
<th>vs Water/Placebo</th>
<th>vs Low dose CHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postoperative well-being</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High dose CHO</td>
<td>0.1 (-0.2, 0.4)</td>
<td>-0.01 (-0.3, 0.2)</td>
<td>0.06 (-0.6, 0.7)</td>
</tr>
<tr>
<td>Low dose CHO</td>
<td>0.06 (-0.6, 0.7)</td>
<td>-0.01 (-0.8, 0.6)</td>
<td></td>
</tr>
</tbody>
</table>

Postoperative fatigue

| | | | |
| High dose CHO | -0.08 (-0.7, 0.5) | 0.1 (-0.3, 0.5) | |

Return of intestinal function (time to first bowel motion)

| | | | |
| High dose CHO | -0.5 days (-1.6, 0.6) | -0.8 days (-2.0, 0.3) | |

*Standardised mean difference (unit is standard deviations). †P < 0.05. ‡The standardised mean difference was converted back to a mean difference in days, using the standard deviations reported in the included trials. §The mean standard deviation (3.4 days) of all trials reporting major surgery (mean length of stay greater than 2 days) was used in this calculation, the mean length of stay in this group was 8.1 days. ¶The mean standard deviation (0.4 days) of all trials reporting minor surgery (mean length of stay less than 2 days) was used in this calculation, the mean length of stay in this group was 1.1 days. #Mean difference. **Odds ratio. ††No low dose CHO data available for this outcome.

CHO = Carbohydrate. SD = Standard deviation.
Meta-regression also demonstrated no relationship between CHO dose and length of postoperative stay (Figure 2.6), with none of the heterogeneity in the model explained by the dose of carbohydrate administered ($R^2 = 0$) (Harbord and Higgins, 2008). Cumulative meta-analysis of high dose CHO versus control showed that further studies are unlikely to significantly change this effect estimate (Figure 2.7).

Figure 2.6 Meta-regression (Bubble Plot) for length of postoperative stay

The circles represent the effect estimate from each study, sized according to the precision of each estimate. The line of best fit (regression line) is almost horizontal, suggesting no relationship between CHO dose and length of postoperative stay.

CHO = Carbohydrate.
Trials comparing high dose carbohydrate loading with fasting, water or placebo.

Figure 2.7 Cumulative meta-analysis (length of postoperative stay)

Testing for inconsistency between the direct and indirect evidence for this analysis yielded low inconsistency factors for all evidence loops, ranging from 0.06 to 0.4. There were also no significant differences between the results obtained using the direct evidence alone, the indirect evidence alone, and the combined network. All predictive intervals for the comparisons in this
analysis included zero, indicating moderate between-study heterogeneity. All sensitivity analyses showed similar results to the main analysis.

Subgroup analysis results are presented in Table 2.2. Except for two comparisons within the major abdominal surgery subgroup (defined as a mean length of postoperative stay of more than two days), none of the other subgroup comparisons showed a statistically significant difference. Inconsistency between the direct and indirect evidence for the major abdominal surgery subgroup was high (inconsistency factor of 2.4, with 95% CI up to 11.0), and all the predictive intervals in this subgroup included zero.

Visual inspection of a comparison-adjusted funnel plot for this outcome (Figure 2.8) suggests the presence of publication bias towards studies reporting a significant difference between the CHO groups and the controls.

2.4.3 Postoperative complications

This outcome was reported by seventeen studies, involving 1094 participants (Braga et al., 2012; Dock-Nascimento et al., 2012; Faria et al., 2009; Hausel et al., 2005; Kaska et al., 2010; Lidder et al., 2013; Mathur et al., 2010; Noblett et al., 2006; Perrone et al., 2011; Pexe-Machado et al., 2013; Soop et al., 2001; Soop et al., 2004; Tran et al., 2013; Yang et al., 2012; Yilmaz et al., 2013; Yuill et al., 2005; Zelic et al., 2012). All NMA comparisons for this outcome showed no statistically significant difference (Table 2.2).

Sensitivity analysis showed that exclusion of one trial with a much higher complication event rate than the other studies (Tran et al., 2013) did not significantly alter the results. Inconsistency analysis showed no evidence of a significant difference between the direct and indirect evidence for this outcome (inconsistency factors ranging from 0.3 to 0.96).
Figure 2.8 Comparison-adjusted funnel plot (length of postoperative stay)
The zero central line represents the null hypothesis that the study-specific effect sizes do not differ from the comparison-specific pooled estimates. Different coloured points on the plot represent the different comparisons, as in the key.
CHO = Carbohydrate.

2.4.4 Secondary outcomes

Aspiration pneumonitis

There were no aspiration pneumonitis events reported in any of the nineteen studies that reported this outcome (Aronsson et al., 2009; Bisgaard et al., 2004; Canbay et al., 2014; Dock-Nascimento et al., 2012; Itou et al., 2012; Jarvela et al., 2008; Lidder et al., 2013; Mathur et al., 2010; Meisner et al., 2008; Noblett et al., 2006; Perrone et al., 2011; Raksakietisak et al., 2014; Soop et al., 2001;
Soop et al., 2004; Tran et al., 2013; Wang et al., 2010; Yang et al., 2012; Yildiz et al., 2013; Yuill et al., 2005) therefore NMA was not performed.

Vomiting

Eight studies (Bisgaard et al., 2004; Faria et al., 2009; Feguri et al., 2012; Hausel et al., 2005; Itou et al., 2012; Jarvela et al., 2008; Raksakietisak et al., 2014; Yang et al., 2012) reported the rate of postoperative vomiting, involving 820 participants. NMA results are summarised in Table 2.2. There were no statistically significant differences between the groups in the network. Inconsistency for this analysis was low (inconsistency factor of up to 0.4).

Insulin resistance

Thirteen studies (Canbay et al., 2014; Chen et al., 2014, 2015; Dock-Nascimento et al., 2012; Faria et al., 2009; Feguri et al., 2012; Mathur et al., 2010; Perrone et al., 2011; Pexe-Machado et al., 2013; Rapp-Kesek et al., 2007; Tran et al., 2013; Wang et al., 2010; Yang et al., 2012) measured insulin resistance using the HOMA-IR method, involving 503 participants. Table 2.2 shows the NMA results for all the comparisons in this network. High dose CHO administration resulted in a statistically significant decrease in insulin resistance compared to fasting, and water or placebo, but with wide confidence intervals approaching non-significance. One study (Wang et al., 2010) reported very different numerical results compared to all other trials, despite reporting the same methodology and formulae. Sensitivity analysis excluding this study showed no statistically significant differences between any of the groups. Inconsistency in this network was high (inconsistency factors of 2.4 and 4.8).

Insulin sensitivity

Four studies (Ljunggren et al., 2014; Ljungqvist et al., 1994; Soop et al., 2001; Soop et al., 2004) involving 62 participants measured insulin sensitivity using the hyperinsulinaemic-euglycaemic clamp method. No low dose CHO studies were available for this outcome. NMA showed no significant difference in any of the comparisons (Table 2.2).

Nausea

This was reported by four studies (Hausel et al., 2005; Karlsson et al., 2016; Mathur et al., 2010; Sada et al., 2014) with data available on 423 participants. All used a visual analogue scale. NMA
showed that administration of high dose CHO resulted in a moderate reduction in nausea (0.7 SD [SMD, 95% CI 0.2 – 1.1]) compared with water or placebo, but no statistically significant difference when compared with fasting (Table 2.2). All predictive intervals for this analysis included zero (no significant difference). Sensitivity analysis (reported vs imputed data) showed that exclusion of one study (Sada et al., 2014) resulted in no statistically significant findings between high dose CHO and either control treatment node.

A further study (Singh et al., 2015) reported this outcome at various postoperative time points in a three-arm RCT comparing preoperative fasting, oral placebo and oral low dose CHO. This could not be incorporated in the NMA as the authors reported only a mean incidence count at each time point. They found no statistically significant difference at time points beyond 12h after surgery.

Postoperative well-being

This was reported by six studies (Asakura et al., 2015; Bisgaard et al., 2004; Henriksen et al., 2003; Ljunggren and Hahn, 2012; Mathur et al., 2010; Meisner et al., 2008), most using a visual analogue scale, with data available on 443 participants. NMA found no significant difference between the groups in any of the comparisons (Table 2.2). The inconsistency factor for this analysis was low (0.2).

Postoperative fatigue

Six studies (Bisgaard et al., 2004; Harsten et al., 2012; Henriksen et al., 2003; Lauwick et al., 2009; Mathur et al., 2010; Yildiz et al., 2013) reported postoperative fatigue scores using a visual analogue or ten-point ordinal scale, with data available on 576 patients. None of the studies investigating low dose CHO reported this outcome. There were no significant differences in any of the comparisons within the network (Table 2.2).

Return of intestinal function

Two studies (An et al., 2008; Noblett et al., 2006) reported time to passage of flatus, so there were insufficient data to perform NMA. One (An et al., 2008), involving 51 patients, reported a reduction of 0.4 days in the time to postoperative passage of flatus in patients given high dose CHO compared to patients who were fasted before surgery. The other study (Noblett et al., 2006)
was a three-arm trial (high dose CHO, water and fasting) that found no significant difference between the groups.

Two studies (Noblett et al., 2006; Ozdemir et al., 2011) reported time to passage of first bowel motion, with one (Ozdemir et al., 2011) reporting the outcome for patients undergoing major and minor abdominal surgery separately. Both studies investigated high dose CHO administration compared with fasting and water in a three-arm design. NMA showed no significant differences between the three groups (Table 2.2).

2.5 Discussion

This NMA shows that administration of a preoperative CHO load within four hours of surgery start time led to a small reduction in length of postoperative stay when compared to fasting, but no significant effect compared to allowing patients water or a placebo drink before surgery. Heterogeneity analysis for this outcome using predictive interval calculations showed moderate between study heterogeneity, and evidence of publication bias was suggested on examination of the comparison-adjusted funnel plot. Further, sensitivity analysis splitting the water/placebo node, then the placebo subgroup into blinded and un-blinded studies showed no significant difference between any of the placebo groups and the CHO groups. In addition, cumulative MA of this outcome also suggests that future studies are unlikely to show a larger effect than in this review.

SMD was used for length of postoperative stay to account for the wide variety in expected length of stay between the different procedures. Procedures with differing expected lengths of stay cannot be directly compared using MD as any effect of CHO administration could be expected to be proportional to the actual length of stay. SMD can be interpreted using rules of thumb (Higgins and Green, 2011) where an SMD of 0.4 SD or less is considered to indicate a small effect, suggesting that the difference found between the CHO and fasting groups was small. The back-transformation results support this conclusion, showing a reduction in length of stay of approximately 10% in both CHO groups compared to fasting. It is important not to conclude from the subgroup analysis that the effect of preoperative CHO loading on major abdominal surgery is larger than on other procedures as the relative reduction in length of stay was similar between subgroups (Sun et al., 2014).
This review found no evidence that high dose CHO was more or less effective in reducing length of stay compared to low dose CHO. Available data for low dose CHO in the network were much fewer, highlighted by wider confidence intervals than the high dose CHO comparisons. Sensitivity analysis using meta-regression supported this finding, showing no evidence of a CHO dose-response relationship.

There was no significant difference in the postoperative complication rate for patients given a CHO load compared to patients who remained fasted or those who were given water or a placebo drink. Although high dose CHO conferred a reduction in nausea scores at 24 hours compared to water or placebo, this was based on a small number of studies and there was no statistically significant difference in the incidence of vomiting between the groups. No other significant differences were found between the CHO and control groups in any of the other clinical secondary outcomes investigated. The confidence intervals for some of these outcomes were wide however, reflecting a relative paucity of available data and heterogeneity. No instances of aspiration pneumonitis were reported in any of the trials.

The effect of CHO loading on postoperative insulin resistance was investigated as it is this effect in particular that provided the rationale for introducing preoperative CHO loading (Ljungqvist et al., 2002; Nygren et al., 1998). There was no statistically significant difference in insulin sensitivity (measured by the gold standard hyperinsulinaemic-euglycaemic clamp method) in this NMA. This may however be a type II error (false negative finding) as only four studies were available to assess insulin sensitivity. Further, a statistically significant difference in insulin resistance (measured by homeostatic modelling) between high dose CHO and both control treatment groups was found, though with high inconsistency, and sensitivity analysis suggesting this finding was influenced by the reported results of a single study (Wang et al., 2010). A reduction in postoperative insulin resistance per se may not be clinically important unless it in turn leads to improved postoperative outcomes.

Three previous MAs have investigated the effect of preoperative CHO loading (Awad et al., 2013; Li et al., 2012; Smith et al., 2014). The findings of this present review are broadly consistent with the largest and most recent of these (Smith et al., 2014), which included 27 trials and found a small
decrease (0.4 days) in length of postoperative stay for patients given a CHO load (high dose) only when compared to fasting, an increase in insulin sensitivity compared to the control treatments and a shorter time to passage of flatus by less than half a day. No other significant differences were found for an identical set of outcomes as this review.

This is the first review on this subject to use NMA methodology. This has allowed the incorporation of more data than all previous reviews and the use of all the direct and indirect evidence available, thereby increasing the precision of the effect estimates. The fasting, water/placebo and CHO dosing regimens were also analysed simultaneously as separate groups in a manner that fully respects randomisation (Caldwell et al., 2005), unlike subgroup analysis (Sun et al., 2014), thus eliminating an important source of clinical heterogeneity and bias in previous MAs. This increases the external validity and applicability of these results. The review process and quality assessment were conducted in accordance with the Cochrane Collaboration’s recommended standard methodology (Higgins and Green, 2011) and the PRISMA guidelines for NMA (Hutton et al., 2015).

There are some potential limitations to this study. Firstly, the validity of the results of any MA is dependent to a large degree on the quality of included trials, and most trials were of low to moderate quality with the risk of performance and selection bias being of particular concern. A lack of well-designed, placebo controlled trials in particular led to the combination of placebo and water into one group for the main analysis. This issue was addressed through sensitivity analysis by splitting the groups, which did not show significantly different results. Secondly, there was evidence of moderate statistical heterogeneity and inconsistency between the direct and indirect evidence for some outcomes. This is to be expected given the heterogeneity in trial design, endpoints measured and clinical settings. Nevertheless, subgroup and sensitivity analyses to explore this heterogeneity did not reveal significantly different results. Thirdly, comparisons involving low dose CHO administration for some outcomes were informed by only one or two head-to-head RCTs, with the majority of data derived from indirect evidence. Although this may affect the power and reliability of those effect estimates (Mills et al., 2013), all the results for high dose CHO administration were comparable, suggesting that the true effect of low dose CHO administration is likely to be similar to this review’s estimates.
Current anaesthetic guidelines recommend allowing patients clear fluids up to two hours before surgery (American Society of Anesthesiologists, 2011; Smith et al., 2011), based on the established safety of this practice in patients who are not at high risk of aspiration (Brady et al., 2003). Recently published ERAS guidelines strongly recommend the routine use of oral carbohydrate loading before a variety of elective procedures including colonic resection (Gustafsson et al., 2013), rectal/pelvic surgery (Nygren et al., 2013), gastrectomy (Mortensen et al., 2014), pancreaticoduodenectomy (Lassen et al., 2012) and radical cystectomy (Cerantola et al., 2013). This is despite an acknowledgement that the evidence supporting this recommendation is of low to moderate quality, and for some procedures only by extrapolation (Cerantola et al., 2013; Lassen et al., 2012; Mortensen et al., 2014). This review, incorporating the results of over 40 RCTs and involving over 3000 patients, shows that the administration of preoperative CHO within four hours of surgery start time is safe but may not provide a clinically relevant benefit over water or a flavoured drink with no calories. This needs to be considered when developing elective ERAS protocols, particularly given the costs involved in routine CHO loading. Future trials investigating preoperative loading should focus on the potential role of other additives in selected patients.

2.6 Conclusion

This review represents the most comprehensive synthesis of the available evidence to date, and demonstrates the utility of NMA in synthesising surgical RCT data when different control treatments have been used. It shows that CHO loading before elective surgery confers a small reduction in length of stay when compared to fasting, but no significant difference when compared to water or placebo. No other clinically relevant effect on post-operative outcomes was found.

Therefore, current RCT evidence does not support routine preoperative CHO loading for adults undergoing elective surgery. This is acknowledged in the latest ERAS guidelines by the Society of American Gastrointestinal and Endoscopic Surgeons, and the American Society of Colon and Rectal Surgeons (Carmichael et al., 2017), which reference this study.
CHAPTER THREE
Systematic review and network meta-analysis of surgical management of gastro-oesophageal reflux disease in adults

Review protocol registered with PROSPERO (Appendix A2)
Published in the British Journal of Surgery (Appendix A3):
Amer, M.A., Smith, M.D.\(^1\), Khoo, C.H.\(^1\), Herbison, G.P.\(^2\), and McCall, J.L.\(^1\) (2018). Network meta-analysis of surgical management of gastro-oesophageal reflux disease in adults. BJS 105, 1398-1407

Co-author affiliations:
1. Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
2. Department of Preventive and Social Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand

My contribution to this chapter
This project was conceived by my supervisors (JLM, MDS and GPH) with contributions from myself. I designed the search strategy, drafted and completed the registered version of the review protocol (Amer et al., 2014) with revisions in conjunction with my supervisors. I performed the systematic search, selected and extracted data from eligible trials (with co-author duplication by CHK and MDS) and performed all of the analysis with expert advice from GPH. All drafts and the final manuscript of the resulting publication were written by myself, with revisions in conjunction with my supervisors and journal reviewers. This chapter is adapted from the published paper (Amer et al., 2018).

3.1 Chapter summary
Proton pump inhibitors (PPI) are the mainstay of treatment for GORD, but are associated with ongoing cost and side effects. Anti-reflux surgery is cost-effective, and is preferred by many patients. A total (360° or Nissen) fundoplication is the traditional procedure, but other variations including partial fundoplications are also commonly performed, with the aim of achieving durable reflux control with minimal dysphagia. Many RCTs and some pairwise MAs have compared some of these procedures but there is ongoing uncertainty about which, if any, is superior. NMA allows
for multiple simultaneous comparisons and robust synthesis of the available evidence in these situations. An NMA comparing all anti-reflux procedures was performed, to identify which has the most favourable outcomes at short (3 – 12 months), medium (1 – 5 years) and long-term (6 – 10 years, and > 10 year) follow-up. Article databases were systematically searched for all eligible RCTs. Primary outcomes were quality of life measures and dysphagia. Secondary outcomes included reflux symptoms, pH studies and complications. NMA was performed using Stata 13.1 routines. Fifty one RCTs were included, involving 5357 patients, and fourteen different treatments. Posterior partial fundoplication (PPF) ranked best in terms of control of reflux symptoms, and caused less dysphagia compared to most other interventions including Nissen fundoplication. This was consistent across all time-points and outcome measures. This study shows that PPF provides the best balance of long-term, durable reflux control with less dysphagia, compared to other treatments. PPF should be considered the standard intervention for the surgical management of GORD in adults.

3.2 Introduction

GORD affects up to 20% of the population in the Western world (Dent et al., 2005). PPI therapy has been the mainstay of treatment for GORD for the last twenty years, with surgery reserved mainly for patients with refractory GORD (Wileman et al., 2010). However the cost, inconvenience and potential side effects of long-term acid suppression mean many patients prefer surgery (Broeders et al., 2010; Grant et al., 2013), and several recent RCTs have confirmed the long-term cost-effectiveness of surgical intervention compared with continued medical therapy (Anvari et al., 2011; Faria et al., 2013; Goeree et al., 2011; Grant et al., 2013). Surgical procedures for GORD largely involve a fundoplication, or the creation of a flap valve and higher pressure zone, by wrapping the gastric fundus around the gastro-oesophageal junction (Mackay et al., 2010). Several variations of this are commonly performed including a total (360° or Nissen) fundoplication (NF) (Nissen, 1956), and partial fundoplications positioned either posterior or anterior to the oesophagus as it enters the abdomen via the oesophageal hiatus of the diaphragm. The aim of partial wraps is to reduce the incidence of dysphagia and other obstructive side effects following fundoplication, but the potential down-side is poorer reflux control (Stefanidis et al., 2010).
More than fifty RCTs have compared various fundoplication procedures, involving thousands of patients and years of follow-up data. Although many have been pooled in pairwise MAs, all these MAs have inherent limitations as they have either combined different fundoplication techniques together to allow a head-to-head analysis (Broeders et al., 2011; Ma et al., 2012; Memon et al., 2015; Varin et al., 2009), or compared only two techniques in isolation (Broeders et al., 2010; Broeders et al., 2013; Shan et al., 2010; Tan et al., 2011). It therefore remains difficult more than 40 years after the first RCT was published (Demeester et al., 1974), to determine which fundoplication technique is superior both in terms of reflux control and potential harms (Fuchs et al., 2014). Some calls have been made for even more RCTs (Thompson and Watson, 2015), while others have suggested that the choice of procedure should be left to the surgeon as it is not possible to determine which technique is best (Daud et al., 2015; Stefanidis et al., 2010).

NMA allows for simultaneous comparison and ranking of multiple different treatments for a given condition, as explained in Chapter 1. This chapter details the results of a systematic review and NMA comparing all anti-reflux procedures subjected to RCT evaluation in adults with GORD, to identify which technique has the most favourable outcome profile in terms of reflux control and side effects such as dysphagia. As the degree of reflux control and prevalence of dysphagia can change considerably over time following surgery, data from four different follow-up time points (3-12 months, 1-5 years, 5-10 years and over 10 years) were analysed separately.

3.3 Methods

This study was conducted in accordance with the Cochrane Collaboration’s recommended methodology (Higgins and Green, 2011) and PRISMA guidelines (Moher et al., 2009), including those specifically concerning NMA (Hutton et al., 2015). The study protocol was prepared and published *a priori* (Amer et al., 2014).

3.3.1 Search strategy and selection criteria

All randomised and quasi-randomised clinical trials that compared surgical procedures (laparoscopic or open) for the treatment of GORD or a surgical procedure with best medical treatment with PPIs were included.
Studies that enrolled adult participants with an established diagnosis of GORD based on symptoms and an objective measure such as endoscopy or pH manometry, and who were deemed appropriate for surgical management, were included. Studies that included patients with established Barrett's or extra-oesophageal symptoms only were excluded.

Trials assessing endoscopic treatment of GORD were excluded. Non-fundoplication procedures, including those discontinued because of safety concerns (Kmiot et al., 1991) were included, but subjected to sensitivity analysis. Interventions with other variations such as different wrap lengths, omission of a hiatalplasty or fixation to the right hiatal pillar as part of the procedure, were permitted, but such variations were noted. Interventions involving fundoplication in combination with another procedure (such as Heller's myotomy for achalasia) were excluded. Authors of published trials were contacted for clarification when randomisation status was not clear.

The following article databases and grey literature sources were searched, using a structured search strategy (Appendix C1), to identify eligible trials:

1. The Cochrane Central Register of Controlled Trials (CENTRAL), to March 2017

No language, publication status or year of publication restrictions were applied. All citations were in English, as translated by the databases. Abstracts and full texts in French, German and Japanese were able to be translated by the data extractors. Studies in other languages were translated using Google translate (Jackson et al., 2019). The search strategy was developed in consultation with an expert health librarian using a combination of subject headings and free text terms relating to the surgical treatment of GORD. The Cochrane sensitivity maximising search strategy was used to search for RCTs in MEDLINE (Higgins and Green, 2011). The British Medical Journal's EMBASE Randomised Controlled Trial Strategy was used to search for RCTs in EMBASE (BMJ, 2017).
The reference lists of all eligible studies and of reviews of the topic were also hand-searched to identify any additional studies. Experts in the field were contacted to identify any unpublished research or ongoing trials.

In addition, the World Health Organisation's International Clinical Trials Registry Platform and clinicaltrials.gov were searched to identify ongoing trials. Contact authors were then approached by letter or email requesting any available information to date.

The results of searches from both the electronic databases and other resources were combined in a spreadsheet. Duplicate citation records and publications were excluded. Multiple publications of the same trial were retained in case different outcome data were reported in each. Two authors independently screened all titles and abstracts for eligibility. The full text of potentially eligible trials were subsequently obtained and reviewed against the pre-defined inclusion criteria. Any exclusions at this point were independently recorded (together with the reason for exclusion) before a final list of included trials was drawn up. Disagreements were resolved by discussion and consensus, and arbitration by a third author when required.

3.3.2 Outcome measures

Trials that reported any of the following outcomes were included.

Primary outcomes:

1. General/health-related quality of life scores, measured on an appropriate validated tool. A higher value indicated better quality of life.
2. GORD/gastrointestinal-specific quality of life scores, measured on an appropriate validated tool. A higher value indicated better quality of life.
3. Dysphagia, measured either as a dichotomous variable or on a validated scale (such as Dakkak). A higher scale value indicated less dysphagia (as per Dakkak’s original description (Dakkak and Bennett, 1992)).

Secondary outcomes:

1. Reflux symptoms, measured as a dichotomous variable or on a patient-reported scale. A higher scale value indicated more reflux.
2. Oesophageal acid exposure, measured as a DeMeester score or similar. A higher value indicated more acid exposure.

3. Total oesophageal acid exposure time (as a percentage) on pH monitoring. A higher value indicated a longer acid exposure time.

4. Dilatation for dysphagia rate, defined as the need for oesophageal dilatation for symptomatic dysphagia postoperatively.

5. Reoperation rate, defined as the number of patients who required revision surgery for ongoing symptoms, severe dysphagia and/or objective findings of persistent GORD during follow-up.

6. Postoperative complications as defined by the trial authors.

7. Gas bloat syndrome (Walker et al., 1992), measured as a dichotomous variable or on a patient-reported scale. A higher value indicated more gas bloat. Data on hyper-flatulence, epigastric pain or abdominal bloating in isolation were not considered indicative of gas bloat syndrome and were not included.

For each of these outcomes, different scales with an opposite direction of severity were inverted by subtracting the mean from the maximum possible value for the scale, to ensure all scales point in the same direction (Higgins and Green, 2011).

Composite patient satisfaction scores (such as Visick) were not used as these do not specify which symptom patients are suffering from, and so cannot be used to assess reflux or dysphagia, and are not validated quality of life assessment tools. Similarly, gastrointestinal symptom rating scale scores were only used when subscores for reflux were reported separately.

3.3.3 Data extraction and quality assessment

A structured, pre-piloted data extraction form based on the Cochrane Collaboration's Data Collection Form Template (Cochrane, 2013) was used by two authors to independently extract and record data, including study design, patient and intervention characteristics and outcome data (Appendix C2). Continuous (score) and dichotomous (rate) data for each outcome were both included and recorded separately. For all primary outcomes and all secondary outcomes except postoperative complications data were collected and analysed separately in four groups according to follow-up time, where enough data were available to make this meaningful:

1. From 3 months, up to and including 1 year.
2. From over 1 year, up to and including 5 years.
3. From over 5 years, up to and including 10 years.
4. Over 10 years.

Where one trial reported the same outcome for different follow-up time points, data were included in the appropriate groups ensuring that duplication was avoided. Where trials reported two sets of data for the same outcome within the same time point (such as three years and four years), the most recent data (four years in this example) were included.

Discrepancies were resolved by discussion with arbitration by a third author when required. Requests for further data were made when required by emailing the contact author of the relevant trial, where an email address was available.

Where data were missing or not available, study authors were contacted to request this, where an email address was available. Missing statistics such as standard deviations were calculated from reported data where possible (Higgins and Green, 2011; Hozo et al., 2005). When standard deviations could not be calculated and attempts to contact study authors were exhausted, these were imputed using the reported standard deviations from other trials that used the same measure/scale where possible. Sensitivity analysis was performed to explore the effect of imputed versus reported data.

Where trials used a combination of different surgical techniques (i.e. more than one type of fundoplication) in one arm, individual patient data were sought where this was not reported. If this was not available, the trial was excluded. The review protocol had stated that such trials would be included in the analysis if more than 80% of patients in the affected arm of the study underwent the same single procedure, but no such instances were encountered.

The methodological quality of each included study was independently assessed by two authors as part of the data extraction process. This was based on the Cochrane Collaboration's Risk of Bias tool (Higgins et al., 2011), using the following domains: random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective outcome reporting, and any other potential sources of bias (such as
baseline imbalances or differential diagnostic activity). Each domain was assessed as low risk, high risk, or unclear. Disagreements were resolved by discussion and arbitration by a third author where consensus could not be reached.

3.3.4 Statistical analysis

A random-effects NMA was performed using the suite of specific Stata (StataIC 13, StataCorp LP., College Station, Texas) routines available for this (Chaimani et al., 2013; Chaimani and Salanti, 2015; White, 2015). The main analysis comprised up to 14 treatment groups representing the treatments for which data were available for that outcome and follow-up time point, with PPI allocated as the reference treatment. Fundoplications were divided into groups as follows:

1. Total (360°) or Nissen fundoplication (with or without the division of the short gastric arteries, and with or without the use of a bougie).
2. 90° fundoplication.
3. Anterior partial fundoplication (APF, 120° or more).
4. Posterior partial fundoplication (PPF, 180° or more).

Where no data for PPI were available, a fundoplication technique (90°, APF, PPF) was instead allocated as the reference, in that order. Network maps for each outcome were produced to provide a visual summary of the network of evidence available.

For outcome time points with data available from five RCTs or more, and statistically significant differences between the treatments, the probability of each fundoplication technique (and PPI, as the reference) ranking as the best, second, third, fourth or worst treatment in the network was calculated, and presented as a rankogram. Rankings were otherwise not calculated to avoid over-interpretation (Dias et al., 2012). Where enough data were available, the ranking scores (surface under the cumulative ranking curve (SUCRA)) for the most commonly reported effectiveness (reflux) and adverse (dysphagia) outcomes were then combined by time point into clustered ranking plots, to enable a simultaneous comparison of benefit and harm between the treatments.

For each comparison between different techniques, continuous data were summarised as an MD (with units) or SMD (expressed as SD), as appropriate, with 95% CI. An SMD was used when studies assessing the same outcome used different measures or scales which were not possible to
compare directly. Categorical data were summarised as odds ratios with 95% CI. An intention-to-treat analysis was used.

The following sensitivity analyses were performed for all individual outcome time point analyses where possible. Firstly, the analysis was rerun excluding all non-fundoplication procedures (but including PPI as the reference treatment where possible). Secondly, the Nissen node in the fundoplication/PPI analysis (above) was split into up to four nodes according to whether a bougie was used or not and whether the short gastric vessels were preserved or divided, to address the heterogeneity of that node. Studies that used Nissen fundoplication but did not specify these variables were excluded from this analysis, whereas studies that compared two such Nissen variations (and were therefore excluded from the main analysis) were included. Thirdly, the influence of imputed versus reported data was assessed by excluding studies where data were imputed and comparing the results with the main analysis. Post-hoc sensitivity analysis was also performed for the dysphagia and reflux networks by serially excluding trials that included a PPF arm, to assess whether one trial significantly influenced the results, and by moving 120 degree fundoplication from the APF node to the 90° fundoplication node. Sensitivity analysis results were reported if they were significantly different from the main analysis results.

Statistical heterogeneity was assessed by calculating predictive intervals (Chaimani et al., 2013). Inconsistency in the evidence structure was also assessed (Dias et al., 2010) by calculating the difference between the direct and indirect estimates (the inconsistency factor) in each closed loop formed by the network of trials. Any significant inconsistencies were investigated further to determine possible causes, where enough data were available. Publication bias was assessed by visual inspection of comparison-adjusted funnel plots (Chaimani et al., 2013) for primary outcomes with sufficient data.

3.4 Results

3.4.1 Search results and study characteristics

The database search and study selection process is summarised in Figure 3.1. Fifty one RCTs (reported in 77 papers with eligible data) were included, involving 5357 patients, and 13 different
surgical procedures in addition to PPIs (Table 3.1). The most common comparison was NF versus PPF, and NF was compared to every other fundoplication in at least three RCTs.

Table 3.2 details the characteristics and relevant outcomes of each included RCT, and Table 3.3 summarises the number of trials and patients for which data were available for each outcome and follow-up time point.

![Systematic search and study selection flowchart](image)

Figure 3.1 Systematic search and study selection flowchart

* Includes duplicate publications, and papers reporting results for an included trial with no additional relevant data

** No data currently available from contacted trial investigators
Trials*	Patients†	Publication year‡		Trial Location		
			Europe	Americas	Oceania	Asia/Africa
Nissen vs. PPF	19	2153	1989 – 2015	14	2	3
Nissen vs. APF	6	530	2004 – 2016	3	1	2
Nissen vs. 90\degree fundoplication	3	225	1989 – 2012	1	2	
Nissen vs. PPI	3	803	2008 – 2011	2	1	
PPF vs. APF	4	339	2007 – 2017	3	1	
PPF vs. 90\degree fundoplication	1	32	1989	1		
Nissen vs. Other§	7	706	1974 – 2015	4	3	
PPF vs. FND 360\degree	1	252	2012	1		
NSGVD vs. NSGVP	6	438	1999 – 2009	4	1	1
Bougie vs. no bougie¶	1	171	2000	1		
BM IV vs. Hill repair	1	30	1974	1		

*The number of trials reporting this comparison. Three arm trials are therefore included three times in this table, to account for all three direct pairwise comparisons in them. †The total number of patients randomised to each comparison. The number for whom data were reported for different outcomes at different time-points varies. Patients recruited in three-arm trials are counted twice to account for the two direct
comparisons each patient was involved in. ‡Year each trial’s index paper was published. Subsequent follow-up papers were included in this review, but are not included in this column. §Single trial comparisons. ‘Other’ included the following procedures: Belsey Mark IV; Roux-en-Y duodenal diversion; cardia calibration with posterior gastropexy; Nissen with mesh hiatoplasty; Nissen with fascial graft; fixed ‘non-deformable’ 360 degree fundoplication; mesh hiatoplasty and cardiophrenicopexy. ¶Nissen with, and without a bougie for calibration. APF = Anterior partial fundoplication. BM IV = Belsey Mark IV. FND 360° = Fixed ‘non-deformable’ 360° fundoplication. NSGVD = Nissen with short gastric vessel division. NSGVP = Nissen with short gastric vessel preservation. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.
<table>
<thead>
<tr>
<th>Trial references</th>
<th>Country</th>
<th>Interventions</th>
<th>Reported outcomes* - and time points†</th>
<th>Patients‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Anvari et al., 2006, 2011)</td>
<td>Canada</td>
<td>Nissen (SGVD, NB) vs. PPI</td>
<td>QOL; pH<4; Complications - 1 and 3 years</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dysphagia (cont); Reflux (cont) - 1 year</td>
<td></td>
</tr>
<tr>
<td>(Aye et al., 2012)</td>
<td>USA</td>
<td>Nissen (SGVD, B) vs. Hill repair</td>
<td>GQOL; Dysphagia (cont); DMS; pH<4; Dilatations; Reoperations; Complications - 1 year</td>
<td>111</td>
</tr>
<tr>
<td>(Baigrie et al., 2005; Broeders et al., 2012; Roks et al., 2017a)</td>
<td>South Africa</td>
<td>Nissen (SGVP, B) vs. APF</td>
<td>Dysphagia (cont and dich); Reflux (cont) - 1, 5 and 12 years</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dilatations; Reoperations - 5 and 12 years</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GBS (dich) - 12 years</td>
<td></td>
</tr>
<tr>
<td>(Blomqvist et al., 2000; Mardani et al., 2009)</td>
<td>Sweden</td>
<td>Nissen (SGVP, B) vs. Nissen (SGVD, B)</td>
<td>QOL; Dysphagia (dich); Reflux (cont and dich); GBS (dich); Complications - 1 and 10 years</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dysphagia (cont) - 10 years</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GQOL; pH<4; Reoperations - 1 year</td>
<td></td>
</tr>
<tr>
<td>(Booth et al., 2008)</td>
<td>UK</td>
<td>Nissen (SGVD, D) vs. PPF</td>
<td>Dysphagia (dich); Reflux (dich); Dilatations; Complications - 1 year</td>
<td>127</td>
</tr>
<tr>
<td>Trial references</td>
<td>Country</td>
<td>Interventions</td>
<td>Reported outcomes* - and time points†</td>
<td>Patients‡</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
<td>------------------------------------</td>
<td>---------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>(Bouillot et al., 1999)</td>
<td>France</td>
<td>Nissen (SGVD, NS) vs. PPF</td>
<td>Dysphagia (dich); Reflux (dich); Complications - 1 year</td>
<td>45</td>
</tr>
<tr>
<td>(Cao et al., 2012)</td>
<td>China</td>
<td>Nissen (SGVP, NB) vs. APF</td>
<td>Dysphagia (cont); Reflux (cont); DMS - 1, 2 and >5 years Reflux (dich); Reoperations - >5 years</td>
<td>100</td>
</tr>
<tr>
<td>(Chrysos et al., 2001)</td>
<td>Greece</td>
<td>Nissen (SGVD, B) vs. Nissen (SGVP, B)</td>
<td>Dysphagia (dich); Reflux (dich); DMS; GBS (dich); Complications - 1 year</td>
<td>56</td>
</tr>
<tr>
<td>(Chrysos et al., 2003)</td>
<td>Greece</td>
<td>Nissen (SGVP, NB) vs. PPF</td>
<td>Reflux (dich) - 5 months</td>
<td>24</td>
</tr>
<tr>
<td>(Csendes et al., 2000)</td>
<td>Chile</td>
<td>Nissen (SGVD, NS) vs. Cardia calibration with posterior gastropexy</td>
<td>pH<4; Reoperations - >1 year</td>
<td>164</td>
</tr>
<tr>
<td>Trial references</td>
<td>Country</td>
<td>Interventions</td>
<td>Reported outcomes* - and time points†</td>
<td>Patients‡</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>---------------</td>
<td>--------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>(Demeester et al., 1974)</td>
<td>USA</td>
<td>Nissen (NS, B) vs. Belsey Mark IV vs. Hill</td>
<td>Dysphagia (dich); Dilatations; Complications - 5 months</td>
<td>45</td>
</tr>
<tr>
<td>(Djerf et al., 2016)</td>
<td>Sweden</td>
<td>Nissen (NS) vs. APF</td>
<td>QOL; Dysphagia (cont); Reflux (cont); pH<4; Reoperations - 1 and 10 years</td>
<td>72</td>
</tr>
<tr>
<td>(Farah et al., 2007)</td>
<td>Brazil</td>
<td>Nissen (SGVP, NB) vs. Nissen (SGVD, NB)</td>
<td>Dysphagia (dich); Reflux (dich); Dilatations; Complications - 1 year</td>
<td>90</td>
</tr>
<tr>
<td>(Ferulano et al., 2000)</td>
<td>Italy</td>
<td>Nissen (SGVP, NS) vs. PPF</td>
<td>Dysphagia (dich); Reflux (dich); DMS; pH<4; Complications - 6 months</td>
<td>25</td>
</tr>
<tr>
<td>Fibbe (Strate et al., 2008; Zornig et al., 2002)</td>
<td>Germany</td>
<td>Nissen (SGVD, B) vs. PPF</td>
<td>Dysphagia (dich); Reflux (dich); Reoperations - 4 months and 2 years; DMS; Dilatations - 4 months</td>
<td>200</td>
</tr>
<tr>
<td>Gear (Eyre-Brook et al., 1993; Gear et al., 1984)</td>
<td>UK</td>
<td>Nissen (SGVD, B) vs. Angelchik</td>
<td>Reoperations; GBS (dich); Complications - 1 and 3 years; Dysphagia (dich); Reflux (dich) - 1 year</td>
<td>52</td>
</tr>
<tr>
<td>Trial references</td>
<td>Country</td>
<td>Interventions</td>
<td>Reported outcomes* - and time points†</td>
<td>Patients‡</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------</td>
<td>--</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>(Granderath et al., 2005)</td>
<td>Austria</td>
<td>Nissen (SGVD, NS) vs. Nissen with mesh</td>
<td>Dysphagia (dich); Reflux (dich); DMS - 1 year</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hiatalplasty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Granderath et al., 2007)</td>
<td>Austria</td>
<td>Nissen (SGVD, NS) vs. PPF</td>
<td>Dysphagia (dich); Reflux (dich); DMS; GBS (cont and dich); Complications - 3 months</td>
<td>56</td>
</tr>
<tr>
<td>(Guerin et al., 2007)</td>
<td>Belgium</td>
<td>Nissen (SGVP, B) vs. PPF</td>
<td>Dysphagia (dich); Reflux (dich); Complications - 1 and 3 years</td>
<td>140</td>
</tr>
<tr>
<td>(Engstrom et al., 2007; Hagedorn et al., 2003)</td>
<td>Sweden</td>
<td>PPF vs. APF</td>
<td>Dysphagia (dich); Reflux (dich); Reoperations - 1 and >5 years pH<4 - 1 year</td>
<td>95</td>
</tr>
<tr>
<td>(Khan et al., 2009)</td>
<td>UK</td>
<td>Nissen (SGVP, B) vs. PPF</td>
<td>Dysphagia (cont and dich); Reflux (dich); pH<4; Reoperations; Complications - 1 year</td>
<td>121</td>
</tr>
<tr>
<td>(Khan et al., 2010)</td>
<td>UK</td>
<td>PPF vs. APF</td>
<td>Dysphagia (cont and dich); Reflux (dich); pH<4; Reoperations; Complications - 1 year</td>
<td>103</td>
</tr>
<tr>
<td>Trial references</td>
<td>Country</td>
<td>Interventions</td>
<td>Reported outcomes* - and time points†</td>
<td>Patients‡</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------</td>
<td>--------------------------------</td>
<td>--------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>(Kmiot et al., 1991)</td>
<td>UK</td>
<td>Nissen (SGVD, B) vs. Angelchik</td>
<td>Dysphagia (dich); Reflux (dich); GBS (dich); Complications - 2 years pH<4; Reoperations - 1 year</td>
<td>50</td>
</tr>
<tr>
<td>(Koch et al., 2013)</td>
<td>Austria</td>
<td>Nissen (NS) vs. PPF</td>
<td>GQOL; Dysphagia (cont); Reflux (cont); DMS; GBS (cont); Reoperations - 1 year</td>
<td>125</td>
</tr>
<tr>
<td>(Kosek et al., 2009)</td>
<td>Austria</td>
<td>Nissen (SGVP, B) vs. Nissen (SGVD, B)</td>
<td>Dysphagia (dich); Reflux (dich); Dilatations - 6 months and 5 years GQOL; DMS - 5 years</td>
<td>41</td>
</tr>
<tr>
<td>(Laws et al., 1997)</td>
<td>USA</td>
<td>Nissen (SGVD, B) vs. PPF</td>
<td>Dysphagia (dich); Dilatations; Complications - 2 years</td>
<td>39</td>
</tr>
<tr>
<td>LOTUS (Galmiche et al., 2011; Hatlebakk et al., 2016)</td>
<td>Sweden</td>
<td>Nissen (SGVD, B) vs. PPI</td>
<td>pH<4 - 6 months and >5 years GQOL; Dysphagia (dich); Reflux (cont and dich) - 6 months and 3 years</td>
<td>554</td>
</tr>
<tr>
<td>Trial references</td>
<td>Country</td>
<td>Interventions</td>
<td>Reported outcomes* - and time points†</td>
<td>Patients‡</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---------</td>
<td>------------------------------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>Lundell (Hagedorn et al., 2002; Lundell et al., 1996; Lundell et al., 1991; Rydberg et al., 1999)</td>
<td>Sweden</td>
<td>Nissen (SGVD, NB) vs. PPF</td>
<td>Dysphagia (dich); Reflux (dich); Complications - 1, 3 and 12 years; pH<4 - 1 and 3 years; Reoperations - 3 and 12 years</td>
<td>137</td>
</tr>
<tr>
<td>(Luostarinen et al., 1995; Luostarinen and Isolauri, 1999; Luostarinen et al., 1996)</td>
<td>Finland</td>
<td>Nissen (SGVP, B) vs. Nissen (SGVD, B)</td>
<td>Dysphagia (dich); Reflux (dich); Dilatations - 6 months and 3 years</td>
<td>50</td>
</tr>
<tr>
<td>(Mahon et al., 2005; Mehta et al., 2006)</td>
<td>UK</td>
<td>Nissen (SGVP, NS) vs. PPI</td>
<td>DMS; pH<4; Dilatations; Reoperations; Complications - 1 year</td>
<td>217</td>
</tr>
<tr>
<td>Trial references</td>
<td>Country</td>
<td>Interventions</td>
<td>Reported outcomes* - and time points†</td>
<td>Patients‡</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>--</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>(Mickevicius et al., 2008; Mickevicius et al., 2013)</td>
<td>Lithuania</td>
<td>Nissen (SGVD, B) vs. PPF</td>
<td>Dysphagia (dich); Reflux (dich); Dilatations; GBS (dich);</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Complications - 1 and 5 years</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DMS - 1 year</td>
<td></td>
</tr>
<tr>
<td>(Mucio et al., 2012)</td>
<td>Mexico</td>
<td>Nissen (SGVD, B) vs. PPF vs. FND 360°§</td>
<td>Reoperations; Complications - 15 years</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QOL - 10 years</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dysphagia (dich) - 1 year</td>
<td></td>
</tr>
<tr>
<td>(Muller-Stich et al., 2015)</td>
<td>Germany, Switzerland</td>
<td>Nissen (SGVD, B) vs. Mesh hiatoplasty with cardiophrenicopexy</td>
<td>GQOL; Dysphagia (cont); Reflux (cont); GBS (cont); Dilatations; Reoperations - 3 years; Complications - 1 and 3 years; DMS - 1 year</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Patterson et al., 2000)</td>
<td>USA</td>
<td>Nissen (SGVD, B) vs. Nissen (SGVD, NB)</td>
<td>Dysphagia (cont and dich); Dilatations - 6 months</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Qin et al., 2013)</td>
<td>China</td>
<td>Nissen (NS) vs. PPF</td>
<td>Reflux (dich) - 5 years</td>
<td>383</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dysphagia (dich); DMS - 3 months</td>
<td></td>
</tr>
<tr>
<td>Trial references</td>
<td>Country</td>
<td>Interventions</td>
<td>Reported outcomes* - and time points†</td>
<td>Patients‡</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>(Raue et al., 2011)</td>
<td>Germany</td>
<td>Nissen (SGVD, B) vs. APF</td>
<td>GQOL; DMS; Dilatations; Reoperations; Complications - 18 months</td>
<td>64</td>
</tr>
<tr>
<td>(Roks et al., 2017b)</td>
<td>Netherlands</td>
<td>PPF vs. APF</td>
<td>Dysphagia (cont and dich); Reflux (cont and dich); pH<4; Reoperations; GBS (dich); Complications - 1 year</td>
<td>94</td>
</tr>
<tr>
<td>(Segol et al., 1989)</td>
<td>France</td>
<td>Nissen (SGVP, B) vs. PPF vs. 90°¶</td>
<td>Dysphagia (dich); Reflux (dich); DMS; Reoperations; Complications - 2 years</td>
<td>47</td>
</tr>
<tr>
<td>(Shaw et al., 2010)</td>
<td>South Africa</td>
<td>Nissen (SGVD, B) vs. PPF</td>
<td>Dysphagia (cont); Reflux (cont); GBS (cont) - 3 months and 5 years Reoperations - 5 years DMS; pH<4 - 3 months</td>
<td>100</td>
</tr>
<tr>
<td>(Hill et al., 1994; Stuart et al., 1989)</td>
<td>Ireland</td>
<td>Nissen (SGVP, NS) vs. Angelchik</td>
<td>Dysphagia (dich); Complications - 3 and 7 years pH<4 - 1 and 7 years Dilatations - 7 years GBS (dich) - 3 years</td>
<td>61</td>
</tr>
<tr>
<td>Trial references</td>
<td>Country</td>
<td>Interventions</td>
<td>Reported outcomes* - and time points†</td>
<td>Patients‡</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>(Thor and Silander, 1989)</td>
<td>Sweden</td>
<td>Nissen (SGVD, B) vs. PPF</td>
<td>Dysphagia (dich); Complications - 5 years</td>
<td>31</td>
</tr>
<tr>
<td>Walker (Baxter et al., 1996;</td>
<td>UK</td>
<td>Nissen (NS, B) vs. PPF</td>
<td>pH<4; Complications - 13 months and 10 years; Dysphagia (dich); Reflux (dich); Dilatations; GBS (dich) - 13 months</td>
<td>52</td>
</tr>
<tr>
<td>Walker et al., 2015</td>
<td></td>
<td></td>
<td>Dilatations; Reflux (dich); DMS; Complications - 4 years</td>
<td>84</td>
</tr>
<tr>
<td>(Washer et al., 1984)</td>
<td>UK</td>
<td>Nissen (NS) vs. REY duodenal</td>
<td>Dilatations; Reoperations; Complications - 5 years</td>
<td>44</td>
</tr>
<tr>
<td>Watson 1997</td>
<td>Australia</td>
<td>Nissen (SGVD, B) vs. PPF</td>
<td>Dysphagia (cont and dich); Reflux (cont and dich); Reoperations; Complications - 6 months, 5 and 10 years</td>
<td>102</td>
</tr>
<tr>
<td>(O'Boyle et al., 2002; Watson</td>
<td></td>
<td>Nissen (SGVP, B)</td>
<td>Dilatations - 5 years</td>
<td></td>
</tr>
<tr>
<td>et al., 1997; Yang et al., 2008)</td>
<td></td>
<td></td>
<td>pH<4 - 3 months</td>
<td></td>
</tr>
<tr>
<td>Trial references</td>
<td>Country</td>
<td>Interventions</td>
<td>Reported outcomes* - and time points†</td>
<td>Patients‡</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>Watson 1999 (Cai et al., 2008; Ludemann et al., 2005; Watson et al., 1999)</td>
<td>Australia</td>
<td>Nissen (SGVP, B) vs. APF</td>
<td>Dysphagia (cont and dich); Reflux (cont and dich); Reoperations; Complications - 6 months, 5 and 10 years Dilatations - 6 months</td>
<td>107</td>
</tr>
<tr>
<td>Watson 2004 (Nijjar et al., 2010; Watson et al., 2004; Woodcock et al., 2006)</td>
<td>Australia, NZ</td>
<td>Nissen (SGVD, B) vs. 90°</td>
<td>QOL; Dysphagia (cont and dich); Reflux (cont and dich); Reoperations; Complications - 1 and 5 years pH<4 - 3 months</td>
<td>112</td>
</tr>
<tr>
<td>Watson 2012 (Spence et al., 2006; Watson et al., 2012)</td>
<td>Australia</td>
<td>Nissen (SGVP, B) vs. 90°</td>
<td>Dysphagia (cont and dich); Reflux (cont and dich); Reoperations; Complications - 1 and 5 years pH<4 - 6 months</td>
<td>79</td>
</tr>
<tr>
<td>Trial references</td>
<td>Country</td>
<td>Interventions</td>
<td>Reported outcomes* - and time points†</td>
<td>Patients‡</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>-----------------------------------</td>
<td>--------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Watson 2013</td>
<td>Australia</td>
<td>PPF vs. APF</td>
<td>Dysphagia (cont and dich); Reflux (cont and dich); Complications - 1 year pH<4 - 6 months</td>
<td>47</td>
</tr>
<tr>
<td>(Daud et al., 2015)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Yigit et al., 2012)</td>
<td>Turkey</td>
<td>Nissen (NS) vs. Nissen with fascial graft</td>
<td>Dysphagia (dich) - 7 months</td>
<td>24</td>
</tr>
</tbody>
</table>

*Outcomes relevant to this review. †Follow-up time points at which trial data for eligible outcomes were reported and used in this review (except for postoperative complications, which were not split in this review by follow-up time point). Some trials reported data for more than one time point within this review’s pre-specified follow-up periods, in such instances the latter time point was used. ‡Total number of patients randomised in the trial, or number analysed if total number randomised not reported. The number of patients for whom data were reported for different outcomes at different time points varied. §Trial report also included a fourth observational PPI arm, which was excluded as not randomised. ¶This arm in the trial underwent a Lortat-Jacob procedure, which is the same in principle and technique as a 90 degree fundoplication.

90° = 90 degree fundoplication. APF = Anterior partial fundoplication. B = Bougie. Cont = Continuous data (scores). Dich = Dichotomous data (rates). DMS = DeMeester score (oesophageal acid exposure). FND 360° = Fixed ‘non-deformable’ 360 degree fundoplication. GBS = Gas bloat syndrome. GQOL = Gastrointestinal, or reflux disease specific quality of life score. NB = No bougie. NS = Short gastric vessel division and/or use of bougie use (in Nissen) not specified in methods, or left up to the individual surgeon with no further information available. pH<4 = Total oesophageal acid exposure time (percentage time pH < 4). PPI = Proton pump inhibitor therapy. PPF = Posterior partial fundoplication. QOL = Quality of life score. REY = Roux-en-Y. SGVD = Short gastric vessel division. SGVP = Short gastric vessel preservation.
<table>
<thead>
<tr>
<th>Outcome</th>
<th>3-12 months</th>
<th>>1-5 years</th>
<th>>5-10 years</th>
<th>>10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trials</td>
<td>Patients</td>
<td>Trials</td>
<td>Patients</td>
</tr>
<tr>
<td>Health-related QOL</td>
<td>3</td>
<td>259</td>
<td>2</td>
<td>205</td>
</tr>
<tr>
<td>Gastrointestinal/reflux specific QOL</td>
<td>4</td>
<td>706</td>
<td>3</td>
<td>478</td>
</tr>
<tr>
<td>Dysphagia rate</td>
<td>22</td>
<td>2708</td>
<td>16</td>
<td>1717</td>
</tr>
<tr>
<td>Dysphagia scores</td>
<td>16</td>
<td>1436</td>
<td>7</td>
<td>686</td>
</tr>
<tr>
<td>Reflux rate</td>
<td>20</td>
<td>1961</td>
<td>13</td>
<td>1806</td>
</tr>
<tr>
<td>Reflux scores</td>
<td>13</td>
<td>1565</td>
<td>8</td>
<td>1045</td>
</tr>
<tr>
<td>Oesophageal acid exposure scores</td>
<td>11</td>
<td>1283</td>
<td>4</td>
<td>280</td>
</tr>
<tr>
<td>Total oesophageal acid exposure time</td>
<td>17</td>
<td>1430</td>
<td>4</td>
<td>280</td>
</tr>
<tr>
<td>Dilatation for dysphagia rate</td>
<td>8</td>
<td>940</td>
<td>7</td>
<td>688</td>
</tr>
<tr>
<td>Reoperation rate</td>
<td>14</td>
<td>1513</td>
<td>13</td>
<td>1309</td>
</tr>
<tr>
<td>Gas bloat rate</td>
<td>5</td>
<td>360</td>
<td>5</td>
<td>333</td>
</tr>
<tr>
<td>Gas bloat scores</td>
<td>4</td>
<td>349</td>
<td>2</td>
<td>155</td>
</tr>
</tbody>
</table>

Postoperative complications are not included in this table as this outcome was not split by follow-up time point. Postoperative complications were reported by 31 trials, with data available for 2688 patients.

QOL = Quality of life score.
Figure 3.2 summarises the risk of bias assessment of the included trials, and Figure 3.3 shows the domain assessment for individual trials, categorised by comparison. Only seven trials were judged at low risk of bias across all domains. Many trials did not provide details on blinding and allocation concealment, although over a quarter were judged as well-blinded.

![Figure 3.2 Risk of bias assessment summary figure](image-url)
Figure 3.3 Risk of bias assessment by individual study

- denotes low risk; denotes unclear risk; denotes high risk of bias, for each given domain, as judged by the authors. Sorted by comparison.

90° = 90 degree fundoplication. APF = Anterior partial fundoplication. PPI = Proton pump inhibitor therapy. PPF = Posterior partial fundoplication. SGVD = Short gastric vessel division.
3.4.2 Quality of life scores

Both general (health-related) and gastrointestinal/reflux specific QOL scores were reported by a small number of trials, with all time point analyses for these two outcomes containing data from just four trials or fewer (Table 3.3). This paucity of data led to a decision, prior to analysis, to add reflux as a primary outcome, to facilitate its use as the main measure of efficacy in this review.

Figures 3.4 and 3.5 summarise the direct evidence available for these outcomes at 3-12 months, and Tables 3.4 and 3.5 report the NMA results. In general, patients who underwent surgery had significantly better QOL scores than those on PPI therapy, and those who underwent an APF or PPF had better general QOL scores than those who underwent a Nissen fundoplication, though this was not always statistically significant across all time points. Pairwise meta-analysis and all sensitivity analyses showed similar findings to the main analysis. There were not enough data to statistically test for heterogeneity or inconsistency.

Figure 3.4 Network map of direct evidence for health-related quality of life scores

3-12 month data. The size of each circle (node) is proportional to the number of patients who received the treatment. The width of the lines represents the number of RCTs that directly compared the connected pairs of treatments. The values in parentheses denote the number of RCTs that investigated the associated comparison, followed by the combined number of patients in those RCTs.

90° = 90 degree fundoplication. APF = Anterior partial fundoplication. PPI = Proton pump inhibitor.
Figure 3.5 Network map of direct evidence for gastrointestinal/reflux specific quality of life scores

3-12 month data. The size of each circle (node) is proportional to the number of patients who received the treatment. The width of the lines represents the number of RCTs that directly compared the connected pairs of treatments. The values in parentheses denote the number of RCTs that investigated the associated comparison, followed by the combined number of patients in those RCTs.

PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.
<table>
<thead>
<tr>
<th></th>
<th>3-12 months</th>
<th>1-5 years</th>
<th>5-10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90°</td>
<td>APF</td>
<td>Nissen</td>
</tr>
<tr>
<td>PPI</td>
<td>1.71 (1.11, 2.31)*</td>
<td>0.79 (0.13, 1.46)*</td>
<td>0.38 (-0.05, 0.82)</td>
</tr>
<tr>
<td>90°</td>
<td>-0.92 (-1.56, -0.27)*</td>
<td>-1.33 (-1.74, -0.92)*</td>
<td>-0.41 (-0.91, 0.08)</td>
</tr>
<tr>
<td>APF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nissen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPI</td>
<td>0.28 (-0.28, 0.83)</td>
<td>0.34 (-0.07, 0.75)</td>
<td></td>
</tr>
<tr>
<td>90°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APF</td>
<td>-0.32 (-0.90, 0.25)</td>
<td>0.15 (-0.35, 0.66)</td>
<td></td>
</tr>
<tr>
<td>PPF</td>
<td></td>
<td></td>
<td>0.47 (0.21, 0.74)*</td>
</tr>
</tbody>
</table>

*P < 0.05. Values in parentheses are 95% confidence intervals. Standardised mean difference, expressed as standard deviations. A positive value indicates that patients who underwent the treatment in the corresponding cell in the top row had better quality of life scores than patients who underwent the treatment in the corresponding cell in the left hand column, and a negative value indicates the opposite. Missing treatments/time points mean no data available at this follow-up time point.

90° = 90 degree fundoplication. APF = Anterior partial fundoplication. PPI = Proton pump inhibitor.
Table 3.5 Network meta-analysis results – Gastrointestinal/reflux specific quality of life scores

<table>
<thead>
<tr>
<th></th>
<th>PPF</th>
<th>Nissen</th>
<th>Hill</th>
<th>MHWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-12 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPI</td>
<td>0.84 (0.41, 1.27)*</td>
<td>0.56 (0.35, 0.76)*</td>
<td>0.56 (0.07, 1.04)*</td>
<td>0.50 (0.03, 0.97)*</td>
</tr>
<tr>
<td>PPF</td>
<td>-0.29 (-0.67, 0.09)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nissen</td>
<td></td>
<td></td>
<td>-0.29 (-0.87, 0.29)</td>
<td>-0.34 (-0.92, 0.23)</td>
</tr>
<tr>
<td>Hill</td>
<td>0.00 (-0.44, 0.44)</td>
<td></td>
<td></td>
<td>-0.06 (-0.48, 0.37)</td>
</tr>
<tr>
<td>1-5 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPI</td>
<td>0.39 (-0.18, 0.96)</td>
<td>0.47 (0.25, 0.70)*</td>
<td>0.52 (0.03, 1.01)*</td>
<td></td>
</tr>
<tr>
<td>APF</td>
<td>0.08 (-0.44, 0.61)</td>
<td></td>
<td>0.13 (-0.56, 0.81)</td>
<td></td>
</tr>
<tr>
<td>Nissen</td>
<td></td>
<td>0.04 (-0.39, 0.48)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*P < 0.05. Values in parentheses are 95% confidence intervals. Standardised mean difference, expressed as standard deviations. A positive value indicates that patients who underwent the treatment in the corresponding cell in the top row had better quality of life scores than patients who underwent the treatment in the corresponding cell in the left hand column, and a negative value indicates the opposite. Missing treatments/time points mean no data available at this follow-up time point.

90° = 90 degree fundoplication. APF = Anterior partial fundoplication. MHWC = Mesh hiatoplasty with cardiophrenicopexy. PPI = Proton pump inhibitor.
3.4.3 Reflux

Reflux was the most commonly reported efficacy outcome (Table 3.3). Figures 3.6 and 3.7 summarise the direct evidence available at 3-12 months, for rates and scores respectively.

![Network map of direct evidence for reflux rate](image)

Figure 3.6 Network map of direct evidence for reflux rate

3-12 month data. The size of each circle (node) is proportional to the number of patients who received the treatment. The width of the lines represents the number of RCTs that directly compared the connected pairs of treatments. The values in parentheses denote the number of RCTs that investigated the associated comparison, followed by the combined number of patients in those RCTs.

90° = 90 degree fundoplication. APF = Anterior partial fundoplication. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.
Figure 3.7 Network map of direct evidence for reflux scores

3-12 month data. The size of each circle (node) is proportional to the number of patients who received the treatment. The width of the lines represents the number of RCTs that directly compared the connected pairs of treatments. The values in parentheses denote the number of RCTs that investigated the associated comparison, followed by the combined number of patients in those RCTs.

90° = 90 degree fundoplication. APF = Anterior partial fundoplication. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.

Tables 3.6 (rate data) and 3.7 (score data) report reflux NMA results. Across all time points, rate and score data showed similar overall results and rankings, despite minor variations in the treatment effect point estimates and confidence intervals.
Table 3.6 Network meta-analysis results – Reflux rate

<table>
<thead>
<tr>
<th></th>
<th>3-12 months</th>
<th>1-5 years</th>
<th>5-10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90°</td>
<td>90°</td>
<td>PPF</td>
</tr>
<tr>
<td></td>
<td>APF</td>
<td>PPI</td>
<td>Nissen</td>
</tr>
<tr>
<td>PPI</td>
<td>0.69 (0.17, 2.85)</td>
<td>0.79 (0.22, 2.81)</td>
<td>0.47 (0.15, 1.45)</td>
</tr>
<tr>
<td>90°</td>
<td>1.14 (0.31, 4.20)</td>
<td>0.68 (0.21, 2.18)</td>
<td>0.43 (0.19, 0.97)*</td>
</tr>
<tr>
<td>APF</td>
<td>0.59 (0.30, 1.19)</td>
<td>1.14 (0.31, 4.20)</td>
<td>0.68 (0.21, 2.18)</td>
</tr>
<tr>
<td>PPF</td>
<td>0.50 (0.18, 1.38)</td>
<td>0.68 (0.21, 2.18)</td>
<td>0.43 (0.19, 0.97)</td>
</tr>
<tr>
<td>Nissen</td>
<td>0.47 (0.15, 1.45)</td>
<td>0.68 (0.21, 2.18)</td>
<td>0.43 (0.19, 0.97)</td>
</tr>
</tbody>
</table>

	5-10 years		2.09 (0.13, 34.26)
	PPF	Nissen	
APF	0.21 (0.08, 0.53)*	0.87 (0.40, 1.88)	
PPF	4.10 (1.24, 13.56)*		

*P < 0.05. Values in parentheses are 95% confidence intervals. Unit is odds ratio. A value >1 indicates that patients who underwent the treatment in the corresponding cell in the top row had a higher reflux rate than patients who underwent the treatment in the corresponding cell in the left hand column, and a value <1 indicates the opposite. Missing treatments/time points mean no data available at this follow-up time point.

90° = 90 degree fundoplication. APF = Anterior partial fundoplication. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.
Table 3.7 Network meta-analysis results – Reflux scores

<table>
<thead>
<tr>
<th>Treatment</th>
<th>3-12 months</th>
<th>1-5 years</th>
<th>5-10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90°</td>
<td>APF</td>
<td>PPF</td>
</tr>
<tr>
<td>PPI</td>
<td>-0.51 (-0.93, -0.10)*</td>
<td>-0.59 (-0.91, -0.26)*</td>
<td>-0.72 (-1.09, -0.36)*</td>
</tr>
<tr>
<td>90°</td>
<td>-0.07 (-0.46, 0.31)</td>
<td>0.35 (-0.23, 0.92)</td>
<td>-0.13 (-0.40, 0.13)</td>
</tr>
<tr>
<td>APF</td>
<td></td>
<td></td>
<td>-0.01 (-0.27, 0.24)</td>
</tr>
<tr>
<td>PPF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nissen</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

90° = 90 degree fundoplication. APF = Anterior partial fundoplication. MHWC = Mesh hiatalplasty with cardiophrenicopexy. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.

*P < 0.05. Values in parentheses are 95% confidence intervals. Standardised mean difference, expressed as standard deviations. A positive value indicates that patients who underwent the treatment in the corresponding cell in the top row had a higher reflux score (more reflux) than patients who underwent the treatment in the corresponding cell in the left hand column, and a negative value indicates the opposite. Missing treatments/time points mean no data available at this follow-up time point.
At 3-12 month follow-up, NF showed a significantly lower rate of reflux symptoms than PPI therapy or APF, and was the only fundoplication with similarly low reflux rates as Angelchik. Fundoplication rankings for reflux rate are shown in Figure 3.8, with NF and PPF ranking as the best treatments, followed by the other fundoplications and PPI respectively. Sensitivity analysis splitting the Nissen node into four groups (according to bougie use and short gastric division/preservation) showed no significant difference between Nissen fundoplication and APF. Sensitivity analysis reallocating 120° anterior partial fundoplications to 90° resulted in a statistically significant decrease in the rate of reflux with PPF in comparison with PPI or 90°, as well as the difference between Nissen and 90° becoming statistically significant. The difference between APF and Nissen was no longer statistically significant, but overall network rankings remained unchanged.

![Figure 3.8 Rankogram of fundoplications according to reflux rate](image)

Figure 3.8 Rankogram of fundoplications according to reflux rate

The probability of each included fundoplication ranking as the best, second best, third, fourth or worst treatment in the network is represented by the coloured bars. There were no significant differences at 1-5 years, and insufficient data for ranking at 5-10 years, so rankograms for those time points are not shown.

90° = 90 degree fundoplication. APF = Anterior partial fundoplication. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.
Analysis of score data at 3-12 months showed that all fundoplications had significantly lower reflux scores compared to PPI therapy, but there were no significant differences between the fundoplications. Sensitivity analysis splitting the Nissen node into four groups resulted in the difference between PPI and all partial fundoplications except PPF to become no longer statistically significant. Both NF and PPF had significantly lower reflux scores than mesh hiatalplasty with cardiophrenicopexy (MHWC). Figure 3.9 shows the fundoplication rankogram for reflux scores, with similar rankings to reflux rate.

At 1-5 year follow-up, there were no significant differences between the groups in the main analysis of rate data. Sensitivity analysis splitting the Nissen node into four groups (according to bougie use and short gastric division/preservation) revealed a significant reduction in the rate of reflux with PPF in comparison with PPI and APF, with no other significant differences between the treatments. Score data analysis showed a significant reduction in reflux scores with any fundoplication in comparison with PPI, except 90°. PPF alone showed significantly lower reflux scores compared to MHWC. Sensitivity analysis splitting the Nissen node into four groups resulted in the difference between APF and PPI to become no longer statistically significant. The fundoplication rankogram for score data is shown in Figure 3.9, with PPF ranking as the best treatment.

At long-term follow-up, PPF patients were significantly less likely to report reflux symptoms than APF or NF patients, though this was based on rate data from only three studies. Score data were only available for APF and NF, with no significant difference found. One study reported data at >10 years follow-up, with no significant difference in reflux rates shown between NF and PPF.

Apart from the 5-10 year comparisons where predictive intervals were wide (suggesting significant between-study heterogeneity), there was no evidence of significant inconsistency or heterogeneity in the analyses for this outcome.
Figure 3.9 Rankogram of fundoplications according to reflux scores

The probability of each included fundoplication ranking as the best, second best, third, fourth or worst treatment in the network is represented by the coloured bars, at each time point. Missing time points mean insufficient data available at that time point for ranking.

$90^\circ = 90$ degree fundoplication. APF = Anterior partial fundoplication. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.
3.4.4 Dysphagia

A large number of trials reported this outcome (Table 3.3). Figures 3.10 and 3.11 summarise the direct evidence available at 3-12 months, for rates and scores respectively.

Figure 3.10 Network map of direct evidence for dysphagia rate

3-12 month data. The size of each circle (node) is proportional to the number of patients who received the treatment. The width of the lines represents the number of RCTs that directly compared the connected pairs of treatments. The values in parentheses denote the number of RCTs that investigated the associated comparison, followed by the combined number of patients in those RCTs.

90° = 90 degree fundoplication. APF = Anterior partial fundoplication. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.
Figure 3.11 Network map of direct evidence for dysphagia scores

3-12 month data. The size of each circle (node) is proportional to the number of patients who received the treatment. The width of the lines represents the number of RCTs that directly compared the connected pairs of treatments. The values in parentheses denote the number of RCTs that investigated the associated comparison, followed by the combined number of patients in those RCTs.

90° = 90 degree fundoplication. APF = Anterior partial fundoplication. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.

Tables 3.8 (rate data) and 3.9 (score data) report NMA results. Both showed similar overall findings and rankings across all time points, despite some variation in the treatment effect point estimates and confidence intervals.
Table 3.8 Network meta-analysis results – Dysphagia rate

<table>
<thead>
<tr>
<th></th>
<th>3-12 months</th>
<th>1-5 years</th>
<th>5-10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90°</td>
<td>APF</td>
<td>PPF</td>
</tr>
<tr>
<td>PPI</td>
<td>1.19 (0.39, 3.62)</td>
<td>2.13 (0.78, 5.86)</td>
<td>2.15 (0.82, 5.64)</td>
</tr>
<tr>
<td>90°</td>
<td>1.79 (0.80, 4.00)</td>
<td>1.81 (0.86, 3.80)</td>
<td>4.63 (2.40, 8.93)*</td>
</tr>
<tr>
<td>APF</td>
<td>1.01 (0.61, 1.66)</td>
<td>2.58 (1.63, 4.10)*</td>
<td>2.15 (1.81, 3.62)*</td>
</tr>
<tr>
<td>PPF</td>
<td>2.56 (1.81, 3.62)*</td>
<td>8.80 (2.24, 34.66)*</td>
<td>3.44 (0.91, 12.95)</td>
</tr>
<tr>
<td>Nissen</td>
<td>0.57 (0.07, 4.27)</td>
<td>0.48 (0.07, 3.27)</td>
<td>0.10 (0.02, 0.63)*</td>
</tr>
<tr>
<td>Angelchik</td>
<td>5.51 (2.24, 13.55)*</td>
<td>15.93 (3.63, 69.96)*</td>
<td>8.89 (2.18, 36.19)*</td>
</tr>
<tr>
<td>BM IV</td>
<td>18.94 (3.81, 94.06)*</td>
<td>15.93 (3.63, 69.96)*</td>
<td>8.89 (2.18, 36.19)*</td>
</tr>
<tr>
<td>Hill</td>
<td>0.57 (0.07, 4.27)</td>
<td>0.48 (0.07, 3.27)</td>
<td>0.10 (0.02, 0.63)*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>5-10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPI</td>
<td>1.24 (0.26, 5.85)</td>
</tr>
<tr>
<td>APF</td>
<td>2.10 (0.89, 4.95)</td>
</tr>
<tr>
<td>Nissen</td>
<td>7.05 (0.75, 65.92)</td>
</tr>
<tr>
<td></td>
<td>PPF</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td>APF</td>
<td>0.87 (0.20, 3.71)</td>
</tr>
<tr>
<td>PPF</td>
<td>0.96 (0.41, 2.24)</td>
</tr>
</tbody>
</table>

*P < 0.05. Values in parentheses are 95% confidence intervals. Unit is odds ratio. A value >1 indicates that patients who underwent the treatment in the corresponding cell in the top row had a higher dysphagia rate than patients who underwent the treatment in the corresponding cell in the left hand column, and a value <1 indicates the opposite. Missing treatments mean no data available at this follow-up time point.

90° = 90 degree fundoplication. BM IV = Belsey Mark IV. APF = Anterior partial fundoplication. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.
Table 3.9 Network meta-analysis results – Dysphagia scores

<table>
<thead>
<tr>
<th>Treatment</th>
<th>3-12 months</th>
<th>1-5 years</th>
<th>5-10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90°</td>
<td>APF</td>
<td>PPF</td>
</tr>
<tr>
<td>PPI</td>
<td>0.63 (-0.43, 1.70)</td>
<td>0.29 (-0.65, 1.23)</td>
<td>0.17 (-0.78, 1.13)</td>
</tr>
<tr>
<td>APF</td>
<td>-0.34 (-1.06, 0.37)</td>
<td>-0.46 (-1.19, 0.27)</td>
<td>-0.78 (-1.40, -0.16)*</td>
</tr>
<tr>
<td>PPF</td>
<td>-0.12 (-0.49, 0.25)</td>
<td>-0.32 (-0.71, 0.07)</td>
<td>-0.17 (-1.12, 0.78)</td>
</tr>
<tr>
<td>Nissen</td>
<td>-0.34 (-0.84, 0.16)</td>
<td>-0.27 (-0.75, 0.20)</td>
<td></td>
</tr>
<tr>
<td>Hill</td>
<td>0.18 (-0.53, 0.89)</td>
<td>-0.71 (-1.14, -0.28)*</td>
<td>-0.89 (-1.72, -0.06)*</td>
</tr>
</tbody>
</table>

*P < 0.05. Values in parentheses are 95% confidence intervals. Standardised mean difference, expressed as standard deviations. A positive value indicates that patients who underwent the treatment in the corresponding cell in the top row had a higher dysphagia assessment score (less dysphagia) than patients who underwent the treatment in the corresponding cell in the left hand column, and a negative value indicates the opposite. Missing treatments/time points mean no data available at this follow-up time point.

90° = 90 degree fundoplication. APF = Anterior partial fundoplication. MHWC = Mesh hiatoplasty with cardiophrenicopexy. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.
At 3-12 month follow-up, NF patients had a significantly higher rate of dysphagia at 3-12 months than any other group apart from Angelchik and Hill repair. Sensitivity analysis reallocating 120° anterior partial fundoplications to 90° resulted in a statistically significant difference in dysphagia rates between PPF and 90°. NF also had significantly higher dysphagia scores compared to APF or 90° fundoplication. There were no significant differences between the partial fundoplications, or between any of them and PPI therapy. Sensitivity analysis by serial exclusion of individual PPF studies frequently resulted in the difference with Nissen at short-term follow-up to reach statistical significance. Fundoplication rankograms at short-term follow-up are shown in Figures 3.12 (rate data) and 3.13 (score data), with Nissen consistently ranking as the worst treatment, and PPF and APF ranking fairly similarly.

At 1-5 years, those who underwent any partial fundoplication were still significantly less likely to suffer from dysphagia, and have lower dysphagia scores, compared to those who received an NF. This is reflected in the fundoplication rankograms (Figures 3.12 and 3.13), with Nissen again ranking as the worst treatment.

At 5-10 year follow-up, NF still showed significantly higher dysphagia scores compared to APF or PPF. Rate data analysis showed similar point estimates, but with wider confidence intervals. One study reported >10 year score data for APF versus NF with no significant difference found.

Predictive intervals for all comparisons in this outcome were narrow, and inconsistency factors for all loops were small, suggesting no evidence of significant inconsistency or heterogeneity.
Figure 3.12 Rankogram of fundoplications according to dysphagia rate

The probability of each included fundoplication ranking as the best, second best, third, fourth or worst treatment in the network is represented by the coloured bars, at each time point. Missing time points mean insufficient data available at that time point for ranking.

90° = 90 degree fundoplication. APF = Anterior partial fundoplication. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.
The probability of each included fundoplication ranking as the best, second best, third, fourth or worst treatment in the network is represented by the coloured bars, at each time point. Missing time points/treatments mean insufficient data available at that time point for ranking.

90° = 90 degree fundoplication. APF = Anterior partial fundoplication. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.
Comparison-adjusted funnel plots using reflux and dysphagia data for assessment of publication bias are shown in Figure 3.14. Study-specific effect sizes were evenly distributed around the pooled estimate line, with the exception of NF versus PPF studies reporting reflux rate data.

Figure 3.14 Comparison-adjusted funnel plots for dysphagia and reflux 3-12 month data. The zero line represents the null hypothesis that the study-specific effect sizes do not differ from the comparison-specific pooled estimates. Different coloured points on the plot represent the different comparisons, as in the key.

90° = 90 degree fundoplication. APF = Anterior partial fundoplication. BM IV = Belsey Mark IV. MHWC = Mesh hiatoplasty with cardiophrenicopexy. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.
3.4.5 Secondary outcomes

Oesophageal acid exposure scores

The direct evidence available for this outcome at 3-12 months is summarised in Figure 3.15. All studies reported DeMeester scores, except for one which reported a Minaire score (Segol et al., 1989), which was subjected to sensitivity analysis by exclusion.

Table 3.10 reports the NMA results. PPF and Nissen patients had significantly lower oesophageal acid scores than those on PPI therapy at 3-12 months. There were no significant differences otherwise between the treatments. Predictive intervals were of moderate width, suggesting some between-study heterogeneity, but sensitivity analysis results were similar to the main analysis.
Figure 3.16 shows the fundoplication rankogram at this time point, with PPF and Nissen ranking fairly equally, followed by APF and PPI.

Table 3.10 Network meta-analysis results – Oesophageal acid exposure scores

<table>
<thead>
<tr>
<th></th>
<th>3-12 months†</th>
<th>1-5 years‡</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>APF</td>
<td>PPF</td>
</tr>
<tr>
<td>PPI</td>
<td>-7.57 (-17.62, 2.49)</td>
<td>-8.79 (-16.64, -0.95)*</td>
</tr>
<tr>
<td>APF</td>
<td>-1.23 (-8.36, 5.90)</td>
<td>-1.40 (-8.13, 5.32)</td>
</tr>
<tr>
<td>PPF</td>
<td>-0.30 (-0.19, 0.80)</td>
<td>-0.49 (-0.86, -0.11)*</td>
</tr>
<tr>
<td>Nissen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*P < 0.05. Values in parentheses are 95% confidence intervals. †Mean difference, unit is DeMeester score value. ‡Standardised mean difference, expressed as standard deviations. A positive value indicates that patients who underwent the treatment in the corresponding cell in the top row had higher acid exposure scores (higher acid exposure) than patients who underwent the treatment in the corresponding cell in the left hand column, and a negative value indicates the opposite. Missing treatments/time points mean no data available at this follow-up time point. 90° = 90 degree fundoplication. APF = Anterior partial fundoplication. PPI = Proton pump inhibitor. PPF = Posterior partial fundoplication.
At 1-5 year follow-up, APF and Nissen patients had significantly lower acid exposure scores than those who underwent a 90° fundoplication, and Nissen patients had significantly lower scores than PPF patients. However, these results were based on data from just four studies, and sensitivity analysis splitting the Nissen node showed different results (such as a significant decrease in acid exposure scores in PPF patients compared to APF patients and some Nissen groups). One study comparing APF with Nissen reported results at 5-10 years, and found no significant difference between the two.
Total oesophageal acid exposure time

Figure 3.17 summarises the direct evidence available at 3-12 months, and Table 3.11 reports the NMA results.

Figure 3.17 Network map of direct evidence for total oesophageal acid exposure time

3-12 month data. The size of each circle (node) is proportional to the number of patients who received the treatment. The width of the lines represents the number of RCTs that directly compared the connected pairs of treatments. The values in parentheses denote the number of RCTs that investigated the associated comparison, followed by the combined number of patients in those RCTs.

90° = 90 degree fundoplication. APF = Anterior partial fundoplication. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.
Table 3.11 Network meta-analysis results – Total oesophageal acid exposure time

<table>
<thead>
<tr>
<th>Treatment</th>
<th>3-12 months</th>
<th>1-5 years</th>
<th>5-10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPI</td>
<td>-1.35 (-4.33, 1.63)</td>
<td>-1.41 (-4.17, 1.35)</td>
<td>-2.64 (-5.11, -0.18)*</td>
</tr>
<tr>
<td>APF</td>
<td>-0.05 (-2.95, 2.84)</td>
<td>-1.24 (-2.83, 0.36)</td>
<td>-0.85 (-2.73, 1.04)</td>
</tr>
<tr>
<td>PPF</td>
<td>-1.24 (-2.83, 0.36)</td>
<td>0.39 (-1.04, 1.82)</td>
<td>5.99 (3.36, 8.62)*</td>
</tr>
<tr>
<td>Nissen</td>
<td>-0.90 (-3.10, 1.30)</td>
<td>-0.85 (-2.73, 1.04)</td>
<td>4.75 (1.85, 7.66)*</td>
</tr>
<tr>
<td>Angelchik</td>
<td>-2.25 (-4.27, -0.24)*</td>
<td>5.99 (3.36, 8.62)*</td>
<td>3.34 (0.36, 6.33)</td>
</tr>
<tr>
<td>Hill</td>
<td>3.34 (0.36, 6.33)</td>
<td>0.39 (-1.04, 1.82)</td>
<td>0.26 (-3.38, 3.89)</td>
</tr>
<tr>
<td>MHWC</td>
<td>-1.15 (-4.85, 2.55)</td>
<td>5.60 (3.39, 7.81)*</td>
<td>1.10 (-2.01, 4.21)</td>
</tr>
<tr>
<td>APF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPI</td>
<td>-0.05 (-2.95, 2.84)</td>
<td>-0.48 (-0.57, -0.38)*</td>
<td>-4.70 (-4.95, -4.44)*</td>
</tr>
<tr>
<td>PPF</td>
<td>-1.24 (-2.83, 0.36)</td>
<td>0.39 (-1.04, 1.82)</td>
<td>5.99 (3.36, 8.62)*</td>
</tr>
<tr>
<td>Nissen</td>
<td>-0.90 (-3.10, 1.30)</td>
<td>-0.85 (-2.73, 1.04)</td>
<td>4.75 (1.85, 7.66)*</td>
</tr>
<tr>
<td>Angelchik</td>
<td>-2.25 (-4.27, -0.24)*</td>
<td>5.99 (3.36, 8.62)*</td>
<td>3.34 (0.36, 6.33)</td>
</tr>
<tr>
<td>Hill</td>
<td>3.34 (0.36, 6.33)</td>
<td>0.39 (-1.04, 1.82)</td>
<td>0.26 (-3.38, 3.89)</td>
</tr>
<tr>
<td>MHWC</td>
<td>-1.15 (-4.85, 2.55)</td>
<td>5.60 (3.39, 7.81)*</td>
<td>1.10 (-2.01, 4.21)</td>
</tr>
<tr>
<td>PPF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPI</td>
<td>0.39 (-1.04, 1.82)</td>
<td>-4.22 (-4.46, -3.98)*</td>
<td>4.75 (1.85, 7.66)*</td>
</tr>
<tr>
<td>APF</td>
<td>-0.48 (-0.57, -0.38)*</td>
<td>0.39 (-1.04, 1.82)</td>
<td>5.99 (3.36, 8.62)*</td>
</tr>
<tr>
<td>PPF</td>
<td>1.24 (-2.83, 0.36)</td>
<td>0.39 (-1.04, 1.82)</td>
<td>5.99 (3.36, 8.62)*</td>
</tr>
<tr>
<td>Nissen</td>
<td>-1.24 (-2.83, 0.36)</td>
<td>0.39 (-1.04, 1.82)</td>
<td>5.99 (3.36, 8.62)*</td>
</tr>
<tr>
<td>Angelchik</td>
<td>-2.25 (-4.27, -0.24)*</td>
<td>5.99 (3.36, 8.62)*</td>
<td>3.34 (0.36, 6.33)</td>
</tr>
<tr>
<td>Hill</td>
<td>3.34 (0.36, 6.33)</td>
<td>0.39 (-1.04, 1.82)</td>
<td>0.26 (-3.38, 3.89)</td>
</tr>
<tr>
<td>MHWC</td>
<td>-1.15 (-4.85, 2.55)</td>
<td>5.60 (3.39, 7.81)*</td>
<td>1.10 (-2.01, 4.21)</td>
</tr>
</tbody>
</table>

*P < 0.05. Values in parentheses are 95% confidence intervals. Mean difference, unit is percentage acid exposure time (pH<4). A positive value indicates that patients who underwent the treatment in the corresponding cell in the top row had a higher percentage exposure time.
(longer duration of oesophageal acid exposure) than patients who underwent the treatment in the corresponding cell in the left hand column, and a negative value indicates the opposite. Missing treatments/time points mean no data available at this follow-up time point.

90° = 90 degree fundoplication. APF = Anterior partial fundoplication. MHWC = Mesh hiatoplasty with cardiophrenicopexy. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.
At 3-12 month follow-up, PPF and Nissen patients had significantly shorter total acid exposure times than those on PPI therapy, and those who underwent an Angelchik procedure had significantly longer exposure times than those who underwent any fundoplication or a Hill repair. MHWC patients had much longer acid exposure times than all other patients, including those on PPI therapy. Sensitivity analysis excluding non-fundoplication procedures revealed a significant decrease in exposure time in patients who underwent a PPF compared to those who underwent an APF. There was no evidence of significant between-study heterogeneity or inconsistency. The fundoplication rankogram at this time point is shown in Figure 3.18. PPF ranks best, followed by Nissen, 90° and APF, then PPI therapy.

![Rankogram of fundoplications according to total oesophageal acid exposure time](image)

Figure 3.18 Rankogram of fundoplications according to total oesophageal acid exposure time

The probability of each included fundoplication ranking as the best, second best, third, fourth or worst treatment in the network is represented by the coloured bars. There were insufficient data for ranking at other time points.

90° = 90 degree fundoplication. APF = Anterior partial fundoplication. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.
At 1-5 years, Hill repair patients had significantly shorter total exposure times than all others, though data were only available for three other treatments from four RCTs (each comparison with data from only one study). Nissen patients also had significantly shorter exposure times in comparison with PPF and PPI patients. Sensitivity analysis splitting the Nissen node according to bougie use and short gastric artery division/perseveration revealed a significant decrease in acid exposure time in patients who underwent a PPF in comparison with PPI, but results were otherwise similar. There were insufficient data at this time point to calculate rankings, predictive intervals or inconsistency factors.

At 5-10 year follow-up, PPF patients had significantly shorter acid exposure times than all others. Those who underwent an Angelchik procedure had significantly shorter exposure times than all others except PPF patients. APF patients had significantly shorter times than those on PPI therapy. These results were however based on data from just four RCTs, and there were insufficient data available to statistically assess heterogeneity.

Dilatation for dysphagia

The direct evidence available at short-term follow-up is summarised in Figure 3.19, and NMA results are shown in Table 3.12.

Apart from PPF patients being significantly less likely to undergo dilatation for dysphagia than those who underwent a Nissen or Hill procedure, there were no differences between the groups at both time points with available data (up to 5 years follow-up). However, data were extremely heterogeneous with very wide confidence and predictive intervals. There was no evidence of inconsistency between the direct and indirect evidence in this outcome’s networks. Figure 3.20 summarises the fundoplication rankings, which show PPF being second only to PPI therapy, followed by Nissen and APF.

One study comparing Nissen with Angelchik reported results at 5-10 years, with patients who underwent a Nissen being significantly less likely to undergo dilatation for dysphagia.
Figure 3.19 Network map of direct evidence for dilatation for dysphagia rate

3-12 month data. The size of each circle (node) is proportional to the number of patients who received the treatment. The width of the lines represents the number of RCTs that directly compared the connected pairs of treatments. The values in parentheses denote the number of RCTs that investigated the associated comparison, followed by the combined number of patients in those RCTs.

APF = Anterior partial fundoplication. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.
<table>
<thead>
<tr>
<th></th>
<th>APF</th>
<th>PPF</th>
<th>Nissen</th>
<th>BM IV</th>
<th>Hill</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-12 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPI</td>
<td>28.52 (0.36, 2230.42)</td>
<td>3.42 (0.16, 73.87)</td>
<td>9.51 (0.50, 179.04)</td>
<td>11.30 (0.22, 568.51)</td>
<td>26.72 (0.91, 781.95)</td>
</tr>
<tr>
<td>APF</td>
<td>0.12 (0.00, 3.41)</td>
<td></td>
<td>0.33 (0.01, 8.37)</td>
<td>0.40 (0.01, 24.83)</td>
<td>0.94 (0.02, 35.30)</td>
</tr>
<tr>
<td>PPF</td>
<td></td>
<td>2.78 (1.12, 6.92)*</td>
<td></td>
<td>3.31 (0.21, 51.75)</td>
<td>7.82 (1.17, 52.32)*</td>
</tr>
<tr>
<td>Nissen</td>
<td></td>
<td></td>
<td>9.51 (0.50, 179.04)</td>
<td></td>
<td>2.81 (0.53, 14.90)</td>
</tr>
<tr>
<td>BM IV</td>
<td></td>
<td></td>
<td></td>
<td>1.19 (0.09, 15.92)</td>
<td>2.36 (0.21, 26.81)</td>
</tr>
<tr>
<td>1-5 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPF</td>
<td>2.73 (0.43, 17.37)</td>
<td></td>
<td></td>
<td>0.54 (0.02, 15.98)</td>
<td></td>
</tr>
<tr>
<td>APF</td>
<td></td>
<td>2.95 (0.69, 12.55)</td>
<td>0.36 (0.01, 10.44)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPF</td>
<td>1.08 (0.34, 3.43)</td>
<td></td>
<td>0.13 (0.01, 3.41)</td>
<td>0.20 (0.01, 5.22)</td>
<td></td>
</tr>
<tr>
<td>Nissen</td>
<td></td>
<td>0.12 (0.01, 2.55)</td>
<td></td>
<td>0.18 (0.01, 3.92)</td>
<td></td>
</tr>
<tr>
<td>REY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.48 (0.02, 109.46)</td>
</tr>
<tr>
<td>DD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*P < 0.05. Values in parentheses are 95% confidence intervals. Unit is odds ratio. A value >1 indicates that patients who underwent the treatment in the corresponding cell in the top row had a higher dilatation for dysphagia rate than patients who underwent the treatment in the corresponding cell in the left hand column, and a value <1 indicates the opposite. Missing treatments/time points mean no data available at this follow-up time point.

90° = 90 degree fundoplication. APF = Anterior partial fundoplication. BM IV = Belsey Mark IV. MHWC = Mesh hiatoplasty with cardiophrenicopexy. REY DD = Roux-en-Y duodenal diversion. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.
Figure 3.20 Rankogram of fundoplications according to dilatation for dysphagia rate

The probability of each included fundoplication ranking as the best, second best, third or worst treatment in the network is represented by the coloured bars. There were insufficient data for ranking at other time points, and no data for 90° fundoplication.

APF = Anterior partial fundoplication. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.

Reoperation

Figure 3.21 summarises the direct evidence at 3-12 months for this outcome and Table 3.13 reports the NMA results. PPF patients were significantly less likely to require a reoperation by 5 years postoperatively compared to those who underwent a Nissen fundoplication. There was no evidence of significant between-study heterogeneity for this comparison. There were no significant differences otherwise between any of the groups at any time points. The fundoplication rankogram for this time point is shown in Figure 3.22, with PPF being >90% likely to rank as the best treatment.
Figure 3.21 Network map of direct evidence for reoperation rate

3-12 month data. The size of each circle (node) is proportional to the number of patients who received the treatment. The width of the lines represents the number of RCTs that directly compared the connected pairs of treatments. The values in parentheses denote the number of RCTs that investigated the associated comparison, followed by the combined number of patients in those RCTs.

90° = 90 degree fundoplication. APF = Anterior partial fundoplication. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.
<table>
<thead>
<tr>
<th>Time Period</th>
<th>APF</th>
<th>PPF</th>
<th>Nissen</th>
<th>Angelchik</th>
<th>REY DD</th>
<th>Hill</th>
<th>MHWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-12 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90°</td>
<td>1.00 (0.01, 114.98)</td>
<td>0.86 (0.01, 85.69)</td>
<td>0.34 (0.00, 30.09)</td>
<td>0.99 (0.01, 71.06)</td>
<td>3.67 (0.03, 461.71)</td>
<td>0.81 (0.01, 121.91)</td>
<td></td>
</tr>
<tr>
<td>90°</td>
<td>0.87 (0.06, 13.10)</td>
<td>0.39 (0.09, 1.72)</td>
<td>1.15 (0.21, 6.35)</td>
<td>2.94 (0.73, 11.76)</td>
<td>3.69 (0.38, 35.70)</td>
<td>0.22 (0.01, 7.12)</td>
<td></td>
</tr>
<tr>
<td>1-5 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90°</td>
<td>1.14 (0.26, 4.98)</td>
<td>0.27 (0.08, 0.96)*</td>
<td>0.80 (0.25, 2.51)</td>
<td>1.52 (0.10, 23.22)</td>
<td>0.15 (0.01, 3.94)</td>
<td>0.69 (0.03, 14.01)</td>
<td>0.62 (0.10, 3.77)</td>
</tr>
<tr>
<td>APF</td>
<td>0.23 (0.07, 0.79)*</td>
<td>0.70 (0.28, 1.75)</td>
<td>1.33 (0.10, 18.61)</td>
<td>5.67 (0.42, 76.01)</td>
<td>0.54 (0.02, 13.19)</td>
<td>2.56 (0.14, 46.45)</td>
<td>2.31 (0.46, 11.47)</td>
</tr>
<tr>
<td>PPF</td>
<td>2.97 (1.34, 6.56)*</td>
<td>1.91 (0.16, 22.63)</td>
<td>0.18 (0.01, 4.02)</td>
<td>0.10 (0.00, 5.00)</td>
<td>0.45 (0.01, 18.70)</td>
<td>4.73 (0.07, 304.95)</td>
<td>4.27 (0.14, 127.18)</td>
</tr>
<tr>
<td>Nissen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angelchik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-10 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPF</td>
<td>0.17 (0.02, 1.54)</td>
<td>0.72 (0.28, 1.84)</td>
<td>4.17 (0.38, 45.18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.13 continued

<table>
<thead>
<tr>
<th></th>
<th>PPF</th>
<th>Nissen</th>
</tr>
</thead>
<tbody>
<tr>
<td>APF</td>
<td>0.44 (0.02, 11.06)</td>
<td>0.44 (0.03, 6.04)</td>
</tr>
<tr>
<td>PPF</td>
<td>1.00 (0.15, 6.62)</td>
<td></td>
</tr>
</tbody>
</table>

*P < 0.05. Values in parentheses are 95% confidence intervals. Unit is odds ratio. A value >1 indicates that patients who underwent the treatment in the corresponding cell in the top row had a higher reoperation rate than patients who underwent the treatment in the corresponding cell in the left hand column, and a value <1 indicates the opposite. Missing treatments mean no data available at this follow-up time point. 90° = 90 degree fundoplication. APF = Anterior partial fundoplication. MHWC = Mesh hiatoplasty with cardiophrenicopexy. REY DD = Roux-en-Y duodenal diversion. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.
Figure 3.22 Rankogram of fundoplications according to reoperation rate

The probability of each included fundoplication ranking as the best, second best, third or worst treatment in the network is represented by the coloured bars. There were no significant differences between the treatments at all other time points, so rankograms were not calculated.

$90^\circ = 90$ degree fundoplication. APF = Anterior partial fundoplication. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.

Postoperative complications

Figure 3.23 summarises the direct evidence available for this outcome for both the main analysis, and the sensitivity analysis splitting the Nissen node according to bougie use and short gastric vessel division/preservation. None of the RCTs investigating PPI therapy reported complications in that group, so PPI was only included as a reference treatment to enable its use for indirect evidence. Allowing for this, there was no significant difference between any of the surgical procedures (Table 3.14).
Figure 3.23 Network map of direct evidence for postoperative complications

A – main analysis, including all procedures with data for this outcome. B – sensitivity analysis (Nissen node split into four groups and non-fundoplication procedures excluded). The size of each circle (node) is proportional to the number of patients who received the treatment. The width of the lines represents the number of RCTs that directly compared the connected pairs of treatments. The values in parentheses denote the number of RCTs that investigated the associated comparison, followed by the combined number of patients in those RCTs.

90° = 90 degree fundoplication. APF = Anterior partial fundoplication. NSGVD = Nissen with short gastric vessel division. NSGVP = Nissen with short gastric vessel preservation. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.
Table 3.14 Network meta-analysis results – Postoperative complications

3-12 months

<table>
<thead>
<tr>
<th></th>
<th>90°</th>
<th>APF</th>
<th>PPF</th>
<th>Nissen</th>
<th>Angelchik</th>
<th>BM IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPI</td>
<td>9.54 (1.00, 91.34)</td>
<td>31.60 (3.33, 300.02)*</td>
<td>22.37 (2.77, 180.78)*</td>
<td>15.02 (1.94, 116.09)*</td>
<td>19.52 (2.01, 189.80)*</td>
<td>13.08 (0.80, 214.55)</td>
</tr>
<tr>
<td>90°</td>
<td>3.31 (0.87, 12.65)</td>
<td>0.71 (0.28, 1.77)</td>
<td>0.48 (0.19, 1.22)</td>
<td>1.58 (0.60, 4.12)</td>
<td>1.58 (0.44, 1.03)</td>
<td>1.37 (0.16, 11.63)</td>
</tr>
<tr>
<td>APF</td>
<td>90°</td>
<td>6.70 (0.44, 1.03)</td>
</tr>
<tr>
<td>PPF</td>
<td>0.71 (0.28, 1.77)</td>
<td>0.48 (0.19, 1.22)</td>
<td>1.58 (0.60, 4.12)</td>
<td>1.58 (0.60, 4.12)</td>
<td>1.58 (0.60, 4.12)</td>
<td>1.58 (0.60, 4.12)</td>
</tr>
<tr>
<td>Nissen</td>
<td>3.31 (0.87, 12.65)</td>
<td>0.71 (0.28, 1.77)</td>
<td>0.48 (0.19, 1.22)</td>
<td>1.58 (0.60, 4.12)</td>
<td>1.58 (0.60, 4.12)</td>
<td>1.58 (0.60, 4.12)</td>
</tr>
<tr>
<td>Angelchik</td>
<td>1.30 (0.48, 3.52)</td>
<td>0.87 (0.29, 2.58)</td>
<td>0.71 (0.44, 1.03)</td>
<td>0.67 (0.44, 1.03)</td>
<td>0.67 (0.44, 1.03)</td>
<td>0.67 (0.44, 1.03)</td>
</tr>
</tbody>
</table>

3-12 months (continued)

<table>
<thead>
<tr>
<th></th>
<th>REY DD</th>
<th>Hill</th>
<th>MHWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPI</td>
<td>15.02 (1.17, 193.40)*</td>
<td>19.24 (1.78, 207.56)*</td>
<td>9.33 (0.60, 146.02)</td>
</tr>
<tr>
<td>90°</td>
<td>1.58 (0.26, 9.61)</td>
<td>2.02 (0.43, 9.50)</td>
<td>0.98 (0.12, 7.79)</td>
</tr>
<tr>
<td>APF</td>
<td>0.48 (0.08, 2.87)</td>
<td>0.61 (0.13, 2.83)</td>
<td>0.30 (0.04, 2.33)</td>
</tr>
<tr>
<td>PPF</td>
<td>0.67 (0.14, 3.30)</td>
<td>0.86 (0.24, 3.12)</td>
<td>0.42 (0.06, 2.76)</td>
</tr>
<tr>
<td>Nissen</td>
<td>1.00 (0.22, 4.63)</td>
<td>1.28 (0.38, 4.31)</td>
<td>0.62 (0.10, 3.91)</td>
</tr>
<tr>
<td>Angelchik</td>
<td>0.77 (0.12, 4.78)</td>
<td>0.99 (0.20, 4.74)</td>
<td>0.48 (0.06, 3.87)</td>
</tr>
<tr>
<td>BM IV</td>
<td>1.15 (0.10, 13.27)</td>
<td>1.47 (0.23, 9.31)</td>
<td>0.71 (0.05, 10.10)</td>
</tr>
<tr>
<td>REY DD</td>
<td>1.28 (0.18, 9.05)</td>
<td>0.62 (0.06, 6.80)</td>
<td>0.48 (0.05, 4.39)</td>
</tr>
</tbody>
</table>

*P < 0.05. Values in parentheses are 95% confidence intervals. Unit is odds ratio. A value >1 indicates that patients who underwent the treatment in the corresponding cell in the top row had a higher postoperative complication rate than patients who underwent the treatment in the corresponding cell in the left hand column, and a value <1 indicates the opposite. Missing treatments mean no postoperative complication rate data available.
90° = 90 degree fundoplication. APF = Anterior partial fundoplication. MHWC = Mesh hiatalplasty with cardiophrenicopexy. BM IV = Belsey Mark IV. MHWC = Mesh hiatalplasty with cardiophrenicopexy. REY DD = Roux-en-Y duodenal diversion. PPF = Posterior partial fundoplication. PPI = Proton pump inhibitor.
Gas bloat syndrome

Figures 3.24 and 3.25 summarise the direct evidence available at 3-12 months, for rates and scores respectively. Most studies reported abdominal bloating or hyperflatulence only, and these data were not included.

Figure 3.24 Network map of direct evidence for gas bloat rate

3-12 month data. The size of each circle (node) is proportional to the number of patients who received the treatment. The width of the lines represents the number of RCTs that directly compared the connected pairs of treatments. The values in parentheses denote the number of RCTs that investigated the associated comparison, followed by the combined number of patients in those RCTs.

APF = Anterior partial fundoplication. PPF = Posterior partial fundoplication.
3-12 month data. The size of each circle (node) is proportional to the number of patients who received the treatment. The width of the lines represents the number of RCTs that directly compared the connected pairs of treatments. The values in parentheses denote the number of RCTs that investigated the associated comparison, followed by the combined number of patients in those RCTs.

PPF = Posterior partial fundoplication.

Tables 3.15 and 3.16 show the NMA results for rate and score data respectively. There were no significant differences between the groups at any of the time points, although there was a relative paucity of data for this outcome (Table 3.3). Predictive intervals were very wide, suggesting significant between-study heterogeneity. Pairwise meta-analysis and sensitivity analysis also showed no significant differences.
Table 3.15 Network meta-analysis results – Gas bloat rate

<table>
<thead>
<tr>
<th></th>
<th>PPF</th>
<th>Nissen</th>
<th>Angelchik</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-12 months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APF</td>
<td>1.36 (0.33, 5.66)</td>
<td>2.70 (0.50, 14.66)</td>
<td>0.34 (0.01, 12.76)</td>
</tr>
<tr>
<td>PPF</td>
<td>1.98 (0.80, 4.94)</td>
<td>0.25 (0.01, 7.00)</td>
<td>0.13 (0.01, 3.11)</td>
</tr>
<tr>
<td>Nissen</td>
<td>1.98 (0.80, 4.94)</td>
<td>0.25 (0.01, 7.00)</td>
<td>0.13 (0.01, 3.11)</td>
</tr>
<tr>
<td>1-5 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nissen</td>
<td>1.66 (0.69, 3.99)</td>
<td>1.52 (0.43, 5.40)</td>
<td></td>
</tr>
<tr>
<td>PPF</td>
<td>1.98 (0.80, 4.94)</td>
<td>0.25 (0.01, 7.00)</td>
<td>0.13 (0.01, 3.11)</td>
</tr>
<tr>
<td>Nissen</td>
<td>0.92 (0.28, 3.00)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*P < 0.05. Values in parentheses are 95% confidence intervals. Unit is odds ratio. A value >1 indicates that patients who underwent the treatment in the corresponding cell in the top row had a higher gas bloat rate than patients who underwent the treatment in the corresponding cell in the left hand column, and a value <1 indicates the opposite. Missing treatments/time points mean no data available.

APF = Anterior partial fundoplication. PPF = Posterior partial fundoplication

Table 3.16 Network meta-analysis results – Gas bloat scores

<table>
<thead>
<tr>
<th></th>
<th>Nissen</th>
<th>MHWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-12 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPF</td>
<td>1.95 (-1.79, 5.69)</td>
<td>1.90 (-5.55, 9.34)</td>
</tr>
<tr>
<td>Nissen</td>
<td>-0.06 (-6.50, 6.38)</td>
<td>-0.23 (-0.87, 0.40)</td>
</tr>
<tr>
<td>1-5 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPF</td>
<td>0.09 (-0.38, 0.55)</td>
<td>-0.23 (-0.87, 0.40)</td>
</tr>
<tr>
<td>Nissen</td>
<td>-0.32 (-0.76, 0.12)</td>
<td>-0.23 (-0.87, 0.40)</td>
</tr>
</tbody>
</table>

*P < 0.05. Values in parentheses are 95% confidence intervals. Standardised mean difference, expressed as standard deviations. A positive value indicates that patients who underwent the treatment in the corresponding cell in the top row had higher scores (more gas bloat) than patients who underwent the treatment in the corresponding cell in the left hand column, and a negative value indicates the opposite. Missing treatments/time points mean no data available.

MHWC = Mesh hiatoplasty with cardiophrenicopexy
PPF = Posterior partial fundoplication.
3.4.6 Cluster plots of benefit and harm

SUCRA clustered ranking plots are shown in Figure 3.26. Across all time points with sufficient data to enable this analysis, PPF was the only treatment which consistently ranked well in terms of reflux and dysphagia (top right quadrant of the graph).

Figure 3.26 Clustered ranking plots of main treatments at different time points, according to efficacy of reflux control and incidence of dysphagia (continued on next page)
Figure 3.26 Continued - Clustered ranking plots of main treatments at different time points, according to efficacy of reflux control and incidence of dysphagia (continued on next page)
3.5 Discussion

This NMA shows that a PPF strikes the best balance between reflux control and side effects including dysphagia, in comparison with other surgical procedures for GORD. PPF is also superior
to medical therapy in terms of reflux control. These findings remain consistent through all follow-up time points, and different outcome measures.

Three previous pairwise MAs have compared PPF with NF alone (Broeders et al., 2010; Shan et al., 2010; Tan et al., 2011), concluding that PPF resulted in equivalent reflux control with less dysphagia, but these were not able to include other commonly performed procedures such as APF (Thompson and Watson, 2015). Other MAs have included PPF in a mixed “posterior” (Broeders et al., 2011; Memon et al., 2015) or “partial” (Ma et al., 2012; Varin et al., 2009) fundoplication group, and compared this to a second mixed group, with results that are difficult to interpret given the heterogeneous nature of the procedures within each group (Thompson and Watson, 2015). All of these prior MAs included a small number of RCTs (<12) as only direct comparisons could be used. Most only used the data reported at latest follow-up from each RCT, meaning that the analysis contained short and long term results from different patients. This introduces another source of heterogeneity as the prevalence of symptoms such as dysphagia changes considerably over time (Fuchs et al., 2014).

The NMA methodology used in the present study has allowed much more RCT data to be included, with each procedure analysed simultaneously as a separate group in a manner that fully respects randomisation (Caldwell et al., 2005). The use of all available direct and indirect evidence substantially increased the precision of the effect estimates. Analysing data from different follow-up time points separately also eliminated an important source of heterogeneity and allowed for the determination of outcome measures over time. These features substantially increase the external validity and clinical applicability of the results in comparison with previous reviews.

Patient-reported symptoms and scores were used to assess all primary and several secondary outcomes in this review to enable a pragmatic evaluation of the procedures (Grant et al., 2013). More objective tools such as pH monitoring and endoscopy have traditionally been regarded as the best methods of assessing reflux control after surgery for GORD (Demeester et al., 1974), and manometry and mechanical studies have been used to assess side effects such as dysphagia (Booth et al., 2008). However there is evidence that the results of such investigations correlate poorly with clinical outcome following surgery (Anvari et al., 2011; Mathew et al., 1997; O’Boyle et al., 2002; Shaw et al., 2010; Walker et al., 1992). Furthermore, well patients with no substantial symptoms
are less likely to consent to further invasive tests postoperatively, which may bias the results (Cai et al., 2008).

The best measure of surgical success is relief of symptoms without side effects as reported by the patient, particularly as the indication for anti-reflux surgery is usually patient preference and symptom severity (Shaw et al., 2010). Patient-reported symptom scores have been shown to correlate best with the actual outcome as perceived by the patient (Watson et al., 2012).

This study has some potential limitations. The quality of included trials in any meta-analysis affect the validity of its results, and the risk of selection and performance bias in a proportion of included RCTs was assessed as unclear or high as blinding was not attempted or reported. Blinding was not possible in trials that compared surgical intervention with PPI therapy. Overall, trial quality did not considerably vary between comparisons and there was no evidence of systematic publication bias.

The inclusion of non-fundoplication procedures, one of which is no longer performed because of safety concerns (Kmiot et al., 1991), may be questioned. However, this enabled the inclusion of indirect evidence from those RCTs, which increased the precision of the overall effect estimates. Furthermore, each of these older procedures were analysed as separate nodes in all analyses, and subjected to sensitivity analysis (by exclusion) to ensure that their inclusion did not influence the main findings.

Endoscopic procedures for the treatment of GORD were not included in this review even though a number have been developed over the last decade as an alternative to surgery. Although initial reports showed some promise, subsequent sham-controlled studies have generally failed to demonstrate the efficacy of these techniques (Fry et al., 2007). The placebo response in some is up to 50% (Hogan, 2006) and several techniques were subsequently withdrawn from the market because of safety and durability concerns (Hogan, 2006). In view of this endoscopic anti-reflux procedures were not included in as specified *a priori* in the review protocol (Amer et al., 2014).

Current US (Stefanidis et al., 2010) and European (Fuchs et al., 2014) guidelines suggest that the choice of anti-reflux procedure should be left to the individual surgeon according to their expertise
and regional practice as the conclusions of published trials and reviews have been mixed. This NMA, which incorporates the results of over 50 RCTs involving more than 5300 patients, challenges such guidelines by showing that a PPF provides the best balance of reflux control and dysphagia in comparison with all other anti-reflux procedures and medical therapy, and that this effect is durable. Future research should be directed at comparing novel procedures to PPF and improving the amount of long term follow-up data available for existing procedures, such as through the use of registries.

3.6 Conclusion
This review was able to incorporate the entirety of available RCT evidence on the surgical management of GORD, using NMA methodology. This has allowed for a simultaneous assessment and ranking of all the described interventions against clinically relevant measures of benefit and harm, which was not possible previously using standard MA methods. This methodology can be applied to other surgical research synthesis scenarios where multiple treatment options exist.

The results of this review show that a PPF provides the best balance of long-term, durable reflux control with less dysphagia, compared to other treatments. While other procedures may be more suitable in carefully selected patients, PPF should be considered the standard intervention for the surgical management of GORD in adults.
CHAPTER FOUR
Bias in surgical randomised trials: a meta-epidemiological study using laparoscopic versus open surgery as an example

My contribution to this chapter
This project was conceived by my supervisors (JLM, GPH and MDS) and myself. I drafted the project plan and revised it in conjunction with my supervisors. I designed the search strategy and performed all steps of the systematic search and review update process, and selected and extracted data from all identified eligible trials, with duplication by Samuel Grainger and Choo Khoo, two part-time research assistants employed for this project. Peter McCall assisted with data entry on a contract basis in preparation for analysis. I performed all of the analysis with expert advice from GPH. All drafts and the final text of this chapter were written by myself, with revisions in conjunction with my supervisors.

4.1 Chapter summary
Blinding, random sequence generation, and allocation concealment are established strategies to minimise bias in RCTs. Meta-epidemiological studies of drug trials have demonstrated exaggerated treatment effects in RCTs where such methods were not employed. As blinding is more difficult in surgical trials it is important to determine whether this applies to them. This study investigated whether lack of blinding, and other potential sources of bias in trial design, have a systematic effect on surgical RCT outcomes, using trials comparing laparoscopic and open surgery as an example. The Cochrane Database of Systematic Reviews was searched for systematic reviews of RCTs that compared laparoscopic and open abdominal surgical procedures. Each review was then scrutinised to determine whether at least one of the included trials was blinded. Eligible reviews were updated and individual RCTs retrieved. Extracted data included the primary outcomes of interest (length of stay and complications), secondary outcomes and a risk of bias assessment. A pairwise meta-analysis was performed for each procedure comparing laparoscopic and open surgery. Serial meta-regression was then used to determine how each bias-minimisation measure influences the size of the treatment effect within each procedure. The resulting coefficients were meta-analysed to obtain an overall difference between trials that employed bias-
minimisation strategies, and those that did not. Five hundred and ninety six full-text articles were identified, and data from 316 RCTs were included, reporting on eight different procedures. Patient-blinded RCTs reported a smaller difference in length of stay between laparoscopic and open groups (difference of standardised mean differences (DSMD) -0.36 (CI -0.73, 0.00)), and complications (ratio of odds ratios (ROR) 0.76 (CI 0.61, 0.93)). Blinding of postoperative carers and outcome assessors had similar effects on reported outcomes. This study shows that lack of blinding significantly alters the treatment effect estimates of RCTs comparing laparoscopic and open surgery, and may lead to erroneous conclusions. Blinding should be implemented in procedural RCTs where possible to avoid systematic bias.

4.2 Introduction

RCTs are well established as the ideal trial design for assessing the benefits and harms of healthcare interventions, as they can account for unmeasured confounders (Stirrat et al., 1992). This is important in the context of novel surgical techniques, which should undergo rigorous scientific validation prior to widespread uptake (Meakins, 2009; Potter et al., 2014; Russell, 1995). The objectiveness and validity of RCTs is critical as their results and the conclusions of subsequent meta-analyses substantially influence evidence-based clinical practice and health policy (Moher et al., 1998).

One challenge for the validity of RCTs is the potential for outcome assessments of interventions to systematically deviate from the true effect size because of bias arising from preconceptions and predispositions such as optimism, the placebo effect and observer bias (Hrobjartsson et al., 2012; Schulz and Grimes, 2002). The different terms used to describe these biases, their sources and relevance to surgical RCTs in particular have been detailed in Chapter 1, as well as strategies to counter them such as blinding, random sequence generation and allocation concealment.

There are several examples of novel procedural interventions where early non-blinded RCTs appeared to show superiority over established treatments, whereas subsequent appropriately blinded RCTs concluded that the novel procedure is no more effective than the established treatment or a sham procedure. Renal artery denervation for the treatment of hypertension (Shun-Shin et al., 2014), endoscopic sphincterotomy for pain after cholecystectomy (Cotton et al., 2014),
embryonic dopamine neuron implantation for severe Parkinson’s (McRae et al., 2004) and arthroscopic partial meniscectomy for degenerative tears (Sihvonen et al., 2013) are all recent examples of this.

Research methodology studies have shown that lack of blinding in RCTs results in an exaggeration of the treatment effect of interventions. In serial systematic reviews of RCTs with both blinded and non-blinded outcome assessors, Hróbjartsson et al demonstrated an exaggerated treatment effect of between 27% and 68% with respect to binary (Hróbjartsson et al., 2012), continuous (Hróbjartsson et al., 2013) and time-to-event outcomes (Hróbjartsson et al., 2014). However, these systematic reviews included data from fewer than 25 RCTs each. Meta-epidemiological studies can incorporate a much greater number of studies and therefore much more data (Stirrat et al., 1992). All such studies published to date have included trials investigating a wide range of treatments across a range of disciplines. The effect of blinding and other bias-minimisation measures specifically on RCTs of surgical procedures has not been examined.

Laparoscopic surgery was first introduced into general surgical practice in the 1980s, having first been described by Georg Kelling in 1901 (Schollmeyer et al., 2007), and almost 30 years after its introduction to gynaecological practice (Cuschieri, 1989). It has been argued that no other development has had such a dramatic and pivotal impact on surgery worldwide (Neugebauer et al., 1995). Many general surgical procedures have subsequently transitioned from an open to a laparoscopic approach with the latter often becoming accepted as the ‘standard of care’ (Russell, 1995) before definitive evidence from well-designed RCTs (Neugebauer et al., 1991). The added cost of laparoscopic surgery is widely considered to be offset by benefits such as shorter postoperative hospitalisation, quicker return to work, less postoperative pain and fewer postoperative complications (Cuschieri et al., 1990). This is in part based on MAs of RCTs, most of which were non-blinded (McCulloch et al., 2002).

This chapter reports the results of a meta-epidemiological study using individual trial data to investigate whether lack of blinding and other potential sources of bias in surgical RCT design systematically affect subjective trial outcomes, using RCTs comparing laparoscopic and open approaches to general surgical operations as an example.
4.3 Methods
A study protocol was prepared and agreed upon *a priori*.

4.3.1 Search strategy and selection criteria
Any abdominal surgical procedure which is performed both laparoscopically and open was included, where the two approaches have been compared in RCTs and where at least one of those trials was blinded. A blinded RCT was defined as a trial where the patients, healthcare staff, data collectors, outcome assessors, and/or data analysts were unaware of the patient’s assigned treatment (Fergusson et al., 2004; Haahr and Hrobjartsson, 2006; Montori et al., 2002) for at least the duration of the patient’s postoperative hospital stay. The definitions for these blinding categories were as follows:

- Patients were defined as the individuals who were assigned to one of the approaches.
- Healthcare staff were defined as the nurses, doctors and other personnel (apart from the operating surgeon) who cared for the patients during the study period.
- Data collectors were defined as the individuals who collected data for the study outcomes (e.g. administered a questionnaire on postoperative pain).
- Outcome assessors were defined as the individuals who decided if a participant had attained or suffered the outcome of interest (e.g. return of intestinal function or postoperative complications).
- Data analysts were defined as the individuals who conducted the data analysis.

All randomised and quasi-randomised trials were included. Quasi-randomisation was defined as the use of methods such as alternation, or assignment on the basis of date of birth, record number, day of admission or similar (Higgins and Green, 2011). No language, publication status or year of publication restrictions were applied. All citations were in English, as translated by the databases. Abstracts and full texts in French, German and Japanese were able to be translated by the data extractors. Studies in other languages were translated using Google translate (Jackson et al., 2019). Non-randomised trials and studies investigating single-incision laparoscopic or natural orifice endoscopic approaches were excluded.

The systematic search for eligible trials was conducted in three stages.
Eligible procedure search

Firstly, the Cochrane Library was searched from inception to March 2015 using a structured strategy (Appendix D1) to identify systematic reviews where a laparoscopic and open approach to an abdominal general surgical procedure was compared. The Cochrane Library search included the following resources:

1. The Cochrane Database of Systematic Reviews.
2. The Database of Abstracts of Reviews of Effects.
3. The Cochrane Methodology Register.
4. The Health Technology Assessment (HTA) Database.
5. The NHS Economic Evaluation Database.

The ‘related articles’ feature in PubMed and the reference lists of identified systematic reviews were also checked to identify further potentially relevant reviews. All potentially eligible systematic reviews were then scrutinised to determine whether at least one of the included RCTs were blinded. A list of eligible procedures was then drawn up.

All RCTs included in the identified systematic reviews assessing each procedure were checked for eligibility for this study. Lists of studies excluded from those reviews were also checked where available to determine whether any were eligible for this study. This was pertinent in several instances where the published systematic review had excluded quasi-randomised trials.

Review search update

Secondly, for each eligible procedure, the published search strategy of the most recent review was used to update the systematic search for RCTs comparing a laparoscopic and open approach, by searching the same electronic databases as the original review, or the following at a minimum: the Cochrane Library, MEDLINE and EMBASE.

If the most recent review had no available published search strategy, an alternative review for the same procedure with a published strategy was selected. The database search dates were customised to overlap with the most recent calendar year of the published reviews’ searches for that procedure (e.g. if the most recent published review’s search was to May 2010, the search start date was set to January 2010). The search end date for all procedures was November 2015.
The results of each search were combined in a spreadsheet and duplicate citation records were excluded. Multiple (non-duplicate) publications of the same trial were retained in case all data were not reported in both. Study protocols were also retained to aid in assessing study methodology (risk of bias assessment). Two reviewers independently screened all titles and abstracts for eligibility, then the full text of potentially eligible trials against the selection criteria. Systematic reviews identified in this update process were also retrieved, and the included and excluded studies lists checked for eligible RCTs. Disagreement was resolved by consensus and discussion with a third author when required.

Retrieval of eligible trials

Finally, procedure-specific lists of RCTs were drawn up, combining all eligible RCTs identified in either of the above two steps. These RCTs were individually retrieved and assessed for relevant outcomes before inclusion.

4.3.2 Outcome measures

Trials that reported any of the following outcomes for an eligible procedure were included. All outcomes and their definitions were agreed upon \textit{a priori}.

Primary outcomes

1. Length of postoperative stay (in days).
2. Postoperative complication rate (as defined by trial authors).

Secondary outcomes

1. Time to recovery (number of postoperative days to return to work or usual activity as defined by trial authors).
2. Postoperative pain (measured by ordinal, visual analogue or composite scales). This outcome was divided into short-term (\(<4\) weeks) and long-term pain (\(\geq 4\) weeks) for all procedures.
3. Return of intestinal function (number of postoperative days to first passage of flatus, and first passage of bowel motion).
4.3.3 Data extraction and quality assessment

Two reviewers independently extracted and recorded data from each included RCT, including key patient and intervention characteristics and relevant outcome data, using a pre-piloted data extraction form (Appendix D2), based on the Cochrane Collaboration’s Data Collection Form Template (Cochrane, 2013). Discrepancies were resolved by discussion and arbitration by a third reviewer when required.

Where studies reported both time to return to work and time to usual activity, the latter was preferentially extracted as return to employment is not universal and is influenced by the nature of each patient’s occupation. Postoperative pain data reported at multiple time points for different patient numbers within one of this study’s predefined time points (< and ≥ 4 weeks) were all extracted, and a ‘mini’ meta-analysis was performed using RevMan (Review Manager V5.3, The Nordic Cochrane Centre, Copenhagen) to obtain a summary statistic (MD) and measure of variance (standard error). These results were then entered as the data for postoperative pain (in the appropriate time subgroup) for that study. Different postoperative pain scales with an opposite direction of severity were inverted by subtracting the mean from the maximum possible value for the scale, to ensure all scales point in the same direction (Higgins and Green, 2011). Time to recovery and return of intestinal function data were converted from weeks and hours respectively into days when required to ensure data unit homogeneity.

Outcome data from RCTs reporting multiple laparoscopic or open arms (e.g. mini-incision and standard open, or gasless and standard laparoscopy) were combined where appropriate using the appropriate formulae (Higgins and Green, 2011). Ineligible treatment groups in multi-arm trials (such as robotic surgery) were excluded.

The reviewers also independently conducted a detailed risk of bias assessment. This was based on the Cochrane Collaboration’s Risk of Bias tool (Higgins et al., 2011), with expansion of the
blinding domain into five separately assessed components to cover the blinding categories detailed earlier in Section 4.3.1. The following domains were also assessed: random sequence generation, allocation concealment, incomplete outcome data, selective outcome reporting, and other potential sources of bias (such as baseline imbalances or differential diagnostic activity). Each domain was assessed as low risk, high risk or unclear. Study protocols were used at this point where available, then excluded from subsequent steps. Disagreements were resolved by discussion or arbitration by a third reviewer where consensus could not be reached.

4.3.4 Statistical analysis

The extracted individual trial data were analysed using meta-epidemiological principles (Sterne et al., 2002) in three steps to determine the influence of each form of blinding, effective random sequence generation and allocation concealment on reported treatment effects, using the Stata (StataIC 13, StataCorp LP., College Station, Texas) statistical package and relevant commands.

Firstly, a pairwise MA was performed for each procedure to determine the difference between a laparoscopic and open approach with regards each outcome of interest, using a random effects model and the metan command (Harris et al., 2008). The effect size for continuous data were summarised as an SMD (expressed as SD). Categorical data were summarised as odds ratios. Where reported data allowed for this, an intention-to-treat analysis was used.

Secondly, binary codes were used for each study to separately denote whether each bias-minimisation measure in question (such as blinding of patients) was used (0 = measure not used or unclear/high risk, 1 = measure used or low risk), as per the risk of bias assessment. Serial meta-regression (sorted by procedure type) was then performed using the metareg command (Sharp, 1998) to determine the difference in effect estimate between studies that used each measure and those that did not, for each outcome of interest using a random effects model (White, 2011). The results of this step were summarised as DSMDs for continuous data, and RORs for categorical data.

Lastly, these meta-regression results were in turn meta-analysed using the metan command (Harris et al., 2008) across the procedures to obtain an overall difference in effect estimate between studies that used each bias-minimisation measure and those that did not, for each outcome of interest.
These results were summarised as DSMDs and RORs for continuous and categorical data respectively, and presented as forest plots with calculation of the I^2 statistic to assess statistical heterogeneity between the procedures. A summative analysis comparing studies that used any form of blinding and those that did not was also performed for primary outcomes.

Post hoc sensitivity analysis was performed where appropriate to determine the influence of the inclusion of procedures with fewer data. The results of these sensitivity analyses are reported where they are notably different to the main analysis results.

4.4 Results

4.4.1 Search results and study characteristics

Eligible procedure search

The results of the search for eligible procedures (first step of the systematic search) are summarised in Figure 4.1. Nine eligible procedures were identified through 50 systematic reviews of RCTs comparing a laparoscopic and open approach. An additional sixteen reviews were subsequently identified using Pubmed’s ‘related articles’ feature. The procedures and the number of potentially eligible RCTs identified at this stage of the search are listed in Table 4.1.

![Figure 4.1 Search for eligible procedures](image-url)
Table 4.1 Selected Procedures

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Number of reviews*</th>
<th>Number of articles†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendicectomy</td>
<td>13</td>
<td>85</td>
</tr>
<tr>
<td>Cholecystectomy</td>
<td>3</td>
<td>66</td>
</tr>
<tr>
<td>Colonic resection</td>
<td>25</td>
<td>74</td>
</tr>
<tr>
<td>Donor nephrectomy</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Fundoplicaton</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>Gastric bypass</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Inguinal hernia</td>
<td>6</td>
<td>84</td>
</tr>
<tr>
<td>Rectal resection</td>
<td>7</td>
<td>25</td>
</tr>
<tr>
<td>Rectopexy</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Total: 66 386

*This includes systematic reviews identified using PubMed’s ‘related articles’ feature following the Cochrane Library’s database search. †The number of potentially eligible papers identified through the reviews’ included and excluded studies lists. These were later checked for duplicate publication and relevant outcomes (in step three) prior to inclusion.

Review search update

Table 4.2 lists the systematic reviews from which search strategies were used to update the search for each included procedure and the start date of each search. The study selection process following this is summarised in Figure 4.2 and detailed per procedure in Table 4.3. The potentially eligible RCTs identified at the conclusion of this step were then combined with those identified earlier during the search for eligible procedures.
Table 4.2 Review update strategies

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Review’s search strategy used</th>
<th>Search start date*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendicectomy</td>
<td>(Sauerland et al., 2010)</td>
<td>2014</td>
</tr>
<tr>
<td>Cholecystectomy</td>
<td>(Keus et al., 2006)</td>
<td>2004</td>
</tr>
<tr>
<td>Colonic resection</td>
<td>(Sammour et al., 2011)</td>
<td>2012</td>
</tr>
<tr>
<td>Donor nephrectomy</td>
<td>(Wilson et al., 2011)</td>
<td>2013</td>
</tr>
<tr>
<td>Fundoplicaton</td>
<td>(Amer et al., 2014)†</td>
<td>2014</td>
</tr>
<tr>
<td>Gastric bypass</td>
<td>(Reoch et al., 2011)‡</td>
<td>2010</td>
</tr>
<tr>
<td>Inguinal hernia</td>
<td>(McCormack et al., 2003)</td>
<td>2009</td>
</tr>
<tr>
<td>Rectal resection</td>
<td>(Vennix et al., 2014)</td>
<td>2013</td>
</tr>
<tr>
<td>Rectopexy</td>
<td>(Tou et al., 2008)</td>
<td>2010</td>
</tr>
</tbody>
</table>

*Calendar year overlap with the latest published search for that procedure. Where the search strategy for the most recently published review was not available, another review’s strategy for that procedure was used instead. Therefore these dates do not necessarily correlate with the search dates of the systematic reviews from which the search strategy was used. †Study protocol with a published search strategy. ‡An initial search using this review’s strategy yielded over 10,000 citations, so after discussion with subject experts the following terms were dropped: weight loss, obesity.
Figure 4.2 Review update search and study selection flowchart

Combined results across search updates for all included procedures.

Database Search 16,521 citations

16,200 excluded on title review
154 excluded on abstract review

210 potentially eligible full text articles retrieved

Handsearch 43 citations
<table>
<thead>
<tr>
<th>Procedure</th>
<th>Database 1</th>
<th>Database 2</th>
<th>Database 3</th>
<th>Citations*</th>
<th>Abstracts†</th>
<th>Full texts‡</th>
<th>Hand-search§</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendicectomy</td>
<td>Cochrane</td>
<td>MEDLINE</td>
<td>EMBASE</td>
<td>84</td>
<td>20</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholecystectomy</td>
<td>Cochrane</td>
<td>MEDLINE</td>
<td>EMBASE</td>
<td>1503</td>
<td>2087</td>
<td>49</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colonic resection</td>
<td>Cochrane</td>
<td>MEDLINE</td>
<td>EMBASE</td>
<td>122</td>
<td>185</td>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donor nephrectomy</td>
<td>Cochrane</td>
<td>MEDLINE</td>
<td>EMBASE</td>
<td>8</td>
<td>61</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundoplication</td>
<td>Cochrane</td>
<td>MEDLINE</td>
<td>EMBASE</td>
<td>29</td>
<td>67</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastric bypass</td>
<td>Cochrane</td>
<td>MEDLINE</td>
<td>EMBASE</td>
<td>1642</td>
<td>1144</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

131
<table>
<thead>
<tr>
<th>Procedure</th>
<th>Database</th>
<th>Citations*</th>
<th>Abstracts†</th>
<th>Full texts‡</th>
<th>Hand-search§</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inguinal hernia</td>
<td>Cochrane</td>
<td>195</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEDLINE</td>
<td>742</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EMBASE</td>
<td>1158</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total#</td>
<td>2034</td>
<td>79</td>
<td>59</td>
<td>22</td>
</tr>
<tr>
<td>Rectal resection</td>
<td>Cochrane</td>
<td>560</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEDLINE</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EMBASE</td>
<td>1025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total#</td>
<td>1666</td>
<td>47</td>
<td>23</td>
<td>4</td>
</tr>
<tr>
<td>Rectopexy</td>
<td>Cochrane</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEDLINE</td>
<td>520</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EMBASE</td>
<td>1001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total#</td>
<td>1467</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

*Number of citation returns per database searched using the search strategy and search start date listed in Table 4.2. This includes duplicate citations. †Number of abstracts selected from the title search. ‡Number of full texts selected from abstract review. §Number of articles identified through a hand-search of additional systematic reviews identified through this review search update process. These were retrieved and subjected to full text review. #Total number of citation returns from all three databases for each procedure’s review search update. This total excludes duplicate citations from individual databases, so is usually a smaller number than the sum total of results from the databases.
Retrieval of eligible trials

A combined total of 596 full text articles were assessed at this final stage of the search process for eligibility. Flowcharts summarising the exclusions and final number of included trials per procedure are presented in Figures 4.3 – 4.11. Three hundred and forty eight eligible papers were identified, reporting on a total of 318 RCTs (Appendix D3). RCTs comparing a laparoscopic and open approach for four procedures (appendicectomy, cholecystectomy, colonic resection and inguinal hernia) constituted over 85% of the included studies. There were only two eligible studies assessing rectal rectopexy, meaning that there were insufficient data to include this procedure in subsequent analysis.

Table 4.4 lists the number of RCTs with each bias-minimisation measure included in every outcome analysis per procedure. Over 12% of the included studies were blinded according to the pre-specified definition in this study, with the proportion of blinded RCTs per procedure ranging from 6% to 50%. Most studies did not continue blinding beyond patient discharge. Only one study (Solomon et al., 2002) reported blinding of data analysts, but as there were insufficient other data for this procedure (rectal rectopexy) analysis of this bias-minimisation measure was not possible.
Figure 4.4 Cholecystectomy eligible trial selection

119 cholecystectomy full-text articles
66 identified in Step 1
53 identified in Step 2

55 exclusions
Not an RCT 20
No relevant outcomes 35

64 articles (58 trials) included in analysis
6 blinded

Figure 4.5 Colonic resection eligible trial selection

101 colonic resection full-text articles
74 identified in Step 1
27 identified in Step 2

48 exclusions
Not an RCT 9
No relevant outcomes 38
Insufficient data 1

53 articles (46 trials) included in analysis
10 blinded
Figure 4.6 Donor nephrectomy eligible trial selection

- 20 donor nephrectomy full-text articles
 - 20 identified in Step 1
 - 0 identified in Step 2

- 8 exclusions
 - Not an RCT
 - Incorrect comparison
 - No relevant outcomes

- 12 articles (8 trials) included in analysis
 - 1 blinded

Figure 4.7 Fundoplication eligible trial selection

- 28 fundoplication full-text articles
 - 22 identified in Step 1
 - 6 identified in Step 2

- 13 exclusions
 - No relevant outcomes

- 15 articles (13 trials) included in analysis
 - 2 blinded
Figure 4.8 Gastric bypass eligible trial selection

9 gastric bypass full-text articles
6 identified in Step 1
3 identified in Step 2

5 exclusions
Not an RCT 2
Incorrect comparison 2
No relevant outcomes 1

4 articles (4 trials) included in analysis
2 blinded

Figure 4.9 Inguinal hernia eligible trial selection

165 inguinal hernia full-text articles
84 identified in Step 1
81 identified in Step 2

58 exclusions
Not an RCT 17
Incorrect comparison 9
Incorrect procedure 2
No relevant outcomes 26
Insufficient data 4

107 articles (100 trials) included in analysis
6 blinded
The eligible rectopexy RCTs could not be included in subsequent analyses as there were insufficient trials for meta-regression for this procedure.
Table 4.4 Included trials with bias-minimisation measures

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Procedure*</th>
<th>Blinded patients</th>
<th>Blinded healthcare staff</th>
<th>Blinded data collectors</th>
<th>Blinded outcome assessors</th>
<th>Random sequence generation§</th>
<th>Allocation concealment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of stay</td>
<td>Appendicectomy</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>35</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Cholecystectomy</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>22</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Colonic resection</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>29</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Donor nephrectomy</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Fundoplication</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Gastric bypass</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Inguinal hernia</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>42</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Rectal resection</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>

Complications

<table>
<thead>
<tr>
<th>Procedure*</th>
<th>Blinded patients</th>
<th>Blinded healthcare staff</th>
<th>Blinded data collectors</th>
<th>Blinded outcome assessors</th>
<th>Random sequence generation§</th>
<th>Allocation concealment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendicectomy</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>36</td>
<td>7</td>
</tr>
<tr>
<td>Cholecystectomy</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>Colonic resection</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>29</td>
<td>16</td>
</tr>
<tr>
<td>Donor nephrectomy</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Fundoplication</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Gastric bypass</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Inguinal hernia</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>55</td>
<td>14</td>
</tr>
<tr>
<td>Rectal resection</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>Outcome</td>
<td>Procedure*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blinded patients</td>
<td>Blinded healthcare staff</td>
<td>Blinded data collectors</td>
<td>Blinded outcome assessors</td>
<td>Random sequence generation§</td>
</tr>
<tr>
<td>Time to recovery</td>
<td>Appendicectomy</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>Cholecystectomy</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Colonic resection</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Donor nephrectomy</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Fundoplication</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Gastric bypass</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Inguinal hernia</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>45</td>
<td>11</td>
</tr>
<tr>
<td>Short-term pain</td>
<td>Appendicectomy</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>Cholecystectomy</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Colonic resection</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>Donor nephrectomy</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Inguinal hernia</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>38</td>
<td>7</td>
</tr>
<tr>
<td>Rectal resection</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Outcome</td>
<td>Procedure*</td>
<td>Blinded patients</td>
<td>Blinded healthcare staff</td>
<td>Blinded data collectors</td>
<td>Blinded outcome assessors</td>
<td>Random sequence generation§</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Long-term pain</td>
<td>Cholecystectomy</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Colonic resection</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Donor nephrectomy</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Inguinal hernia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>Time to flatus</td>
<td>Cholecystectomy</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Colonic resection</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Rectal resection</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Time to bowel</td>
<td>Appendicectomy</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>motion</td>
<td>Cholecystectomy</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Colonic resection</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Rectal resection</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

*There were insufficient rectopexy trials to include this procedure in any analysis, so it is not listed here. Procedures with reported data for an outcome but where these were insufficient for inclusion in the relevant analysis are not listed under that outcome. †Only one trial (assessing rectopexy) reported blinding of data analysts (which could not be analysed due to insufficient data for that procedure), so assessment of this bias-minimisation measure was not possible. ‡A dash (-) indicates that there were insufficient data to include that procedure in the analysis for that bias-minimisation measure and outcome. For a procedure to be included at least one of the RCTs reporting that outcome had to report use of the bias-minimisation measure in question, with sufficient data available from other trials (which did not use that measure) assessing the same outcome for that procedure. §As non-randomised studies were not included, this domain assessed whether generation of the randomisation sequence was correctly performed according to the Cochrane Risk of Bias tool’s criteria, rather than the presence or absence of randomisation.
4.4.2 Length of stay

A total of 254 RCTs reported this outcome, of which two investigated rectopexy and were unable to be included in any of the analyses because of insufficient data. Length of stay meta-regression results are shown in Figures 4.12 – 4.18, with a summative analysis of any blinding in Figure 4.16.

Studies that used a blinding measure reported a smaller difference in length of stay between the laparoscopic and open groups compared to those that did not use that blinding measure, and this difference was up to 0.5 SD. The point estimates in each analysis show that this was consistent across the majority of procedures, and the I^2 statistic for most analyses was low, indicating low between-procedure heterogeneity. The summative analysis further demonstrates this with blinded trials reporting a smaller difference of 0.34 SD compared to non-blinded trials.

RCTs judged to have generated an appropriate randomisation sequence also reported a smaller difference in length of stay between the laparoscopic and open groups. However, this difference was not statistically significant and the I^2 statistic for this analysis showed evidence of significant between-procedure heterogeneity. This was largely driven by the result for donor nephrectomy trials, which were a relatively small number (seven). Sensitivity analysis excluding this procedure showed a much smaller I^2 statistic, and a similar overall result. Allocation concealment did not appear to significantly influence the reported difference in length of stay, with an overall DSMD approaching zero.
Figure 4.12 Length of stay forest plot – meta-regression of patient blinding

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Figure 4.13 Length of stay forest plot – meta-regression of healthcare staff blinding

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Figure 4.14 Length of stay forest plot – meta-regression of data collector blinding

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Figure 4.15 Length of stay forest plot – meta-regression of outcome assessor blinding

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Figure 4.16 Length of stay forest plot – meta-regression of any blinding

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Figure 4.17 Length of stay forest plot – meta-regression of random sequence generation

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
148

Figure 4.18 Length of stay forest plot – meta-regression of allocation concealment

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
4.4.3 Complications

This was the most commonly reported outcome with data from 281 studies available for analysis, after exclusion of one study investigating rectopexy. Figures 4.19 – 4.25 summarise the meta-regression results for this outcome, and the summary ‘any blinding’ analysis is shown in Figure 4.23.

Significantly smaller differences in the number of complications between the laparoscopic and open groups were reported by studies where patients and healthcare staff were blinded compared to those where those groups were not. The I^2 statistic for both these analyses was zero, meaning no evidence of between-procedure heterogeneity. For most procedures, smaller differences were also reported by studies where data collectors and outcome assessors were blinded, though fewer data were available for these analyses and the confidence intervals included the null value (ROR = 1). The summative analysis (Figure 4.25) shows a similar result to the individual blinding analyses.

Appropriate generation of a randomisation sequence was also associated with a smaller reported difference in the complication rate between the laparoscopic and open groups, though this was not statistically significant and point estimates for the procedures were variable. The reported difference in complications was not influenced by the presence or absence of allocation concealment.
Figure 4.19 Complications forest plot – meta-regression of patient blinding

Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. ROR = Ratio of odds ratios.
Figure 4.20 Complications forest plot – meta-regression of healthcare staff blinding

Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. ROR = Ratio of odds ratios.
Figure 4.21 Complications forest plot – meta-regression of data collector blinding

Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. ROR = Ratio of odds ratios.
Figure 4.22 Complications forest plot – meta-regression of outcome assessor blinding

Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. ROR = Ratio of odds ratios.
Figure 4.23 Complications forest plot – meta-regression of any blinding

Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. ROR = Ratio of odds ratios.
Figure 4.24 Complications forest plot – meta-regression of random sequence generation

Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. ROR = Ratio of odds ratios.
Figure 4.25 Complications forest plot – meta-regression of allocation concealment

Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. ROR = Ratio of odds ratios.
4.4.4 Secondary outcomes

Time to recovery

One hundred and forty one studies reported this outcome, with insufficient data available for rectal resection to enable inclusion in the analyses. Analysis results are summarised in Figures 4.26 – 4.31. None of the blinding groups were still blinded at the time this outcome was attained by patients, so comparisons are between studies where blinding had occurred at the initial stages (e.g. before patient discharge) compared to others where no blinding was attempted during the trial.

A smaller difference in time to recovery between laparoscopic and open groups was reported by studies where any of the blinding measures were undertaken compared to non-blinded RCTs, apart from data collectors. Although the 95% confidence intervals for these analyses included zero, this was partly influenced by the results for colonic resection RCTs, which were only four for this outcome with just one blinded study. Sensitivity analysis excluding this procedure resulted in narrower confidence intervals for the difference between blinded and non-blinded studies.

Both correctly performed random sequence generation and allocation concealment also influenced the reported results of trials, with studies where those measures were used reporting a smaller difference in time to recovery across most procedures. Confidence intervals for both analyses included zero however, and the influence of allocation concealment was relatively small (0.2 SD).
Figure 4.26 Time to recovery forest plot – meta-regression of patient blinding

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Figure 4.27 Time to recovery forest plot – meta-regression of healthcare staff blinding

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Figure 4.28 Time to recovery forest plot – meta-regression of data collector blinding

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Figure 4.29 Time to recovery forest plot – meta-regression of outcome assessor blinding

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not. 95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Figure 4.30 Time to recovery forest plot – meta-regression of random sequence generation

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Figure 4.31 Time to recovery forest plot – meta-regression of allocation concealment

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Short term pain

Pain score data were reported by a total of 122 RCTs for six procedures, with insufficient data available to include fundoplication and gastric bypass trials. Figures 4.32 – 4.37 show the analysis results for each bias-minimisation measure.

RCTs where outcome assessors were blinded reported a significantly smaller difference in short-term pain between laparoscopic and open groups compared to studies where outcome assessors were not blinded (Figure 4.35). This effect was large (1.4 SD), and the I^2 statistic for this analysis showed no evidence of between-study heterogeneity, as did the point estimates for the contributing procedures. Blinding of other groups also influenced the reported results of trials though this was not statistically significant, and with considerable heterogeneity between procedures.

Studies judged to have generated an appropriate randomisation sequence reported a greater difference in short-term pain between laparoscopic and open groups compared to those that were not (Figure 4.36). This result was consistent across procedures, but not statistically significant. Analysis of the effect of allocation concealment showed a similar result though with significant between-procedure heterogeneity and a confidence interval that included zero (Figure 4.37).
Figure 4.32 Short-term pain forest plot – meta-regression of patient blinding

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Figure 4.33 Short-term pain forest plot – meta-regression of healthcare staff blinding

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Figure 4.34 Short-term pain forest plot – meta-regression of data collector blinding

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not. 95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Figure 4.35 Short-term pain forest plot – meta-regression of outcome assessor blinding

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Figure 4.36 Short-term pain forest plot – meta-regression of random sequence generation

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Figure 4.37 Short-term pain forest plot – meta-regression of allocation concealment

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Long-term pain

Thirty-two trials comparing a laparoscopic and open approach to seven procedures reported this outcome, but a paucity of data meant that only up to three procedures (cholecystectomy, colonic resection and donor nephrectomy) were able to be included in each of the blinding analyses, with data from a total of just twelve trials. Data from RCTs investigating inguinal hernia were also included in the random sequence generation and allocation concealment analyses.

The forest plot summarising the analysis for patient blinding is shown in Figure 4.38, and shows no significant influence on the reported difference in long-term pain. As mentioned earlier however, this should be interpreted with caution as the included data were from a very small number of studies, and there was evidence of substantial between-procedure heterogeneity with an I^2 statistic of over 90%. Analysis results for healthcare staff and data collector blinding were similar (forest plots not shown). Only one procedure (colonic resection) reported sufficient data for outcome assessor blinding analysis with the result suggesting that studies with this form of blinding reported an increased difference in long-term pain (DSMD 1.00, 95% CI 0.57, 1.44). However, this was based on data from just five trials with only one blinded RCT, and between-study heterogeneity was high ($I^2 = 100\%$).

Data for the effect of appropriate random sequence generation and allocation concealment on reported long-term pain results were available from nineteen studies investigating three procedures. Analysis results (Figures 4.39 and 4.40) showed that use of either of these bias-minimisation measures was associated with a greater reported difference in long-term pain between the laparoscopic and open groups. There was no statistical evidence of heterogeneity ($I^2 = 0\%$), though the point estimates for each procedure varied in both analyses. These results were not statistically significant.
Figure 4.38 Long-term pain forest plot – meta-regression of patient blinding

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Figure 4.40 Long-term pain forest plot – meta-regression of allocation concealment

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Return of intestinal function

This outcome was not commonly reported, with time to first passage of flatus reported by 32 RCTs investigating four procedures (appendicectomy, cholecystectomy, colonic resection and rectal resection), and time to first passage of bowel motion reported by 33 RCTs for five procedures (the same four procedures above with the addition of rectopexy). However, as few of these trials used bias-minimisation, the number of procedures included in each analysis for this outcome were much fewer.

Data for only one to two procedures (colonic and rectal resection) were able to be included in the meta-regressions investigating the effect of each blinding measure on reported time to first passage of flatus and time to first bowel motion. All these analyses showed a smaller reported difference in time to return of intestinal function between studies that used each blinding measure and those that did not (Figure 4.41 shows one example), though confidence intervals were wide (all included zero), and some of the analyses showed evidence of significant heterogeneity.

RCTs assessed as appropriately generating a randomisation sequence and concealing it effectively reported a smaller difference in time to return of intestinal function between laparoscopic and open groups compared to other studies (Figures 4.42 – 4.45), though this difference was often not statistically significant. There was no statistical evidence of significant heterogeneity for these analyses.
Figure 4.41 Return of intestinal function (time to first passage of flatus) forest plot – meta-regression of outcome assessor blinding

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Figure 4.42 Return of intestinal function (time to first passage of flatus) forest plot – meta-regression of random sequence generation

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Figure 4.43 Return of intestinal function (time to first passage of bowel motion) forest plot – meta-regression of random sequence generation

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Figure 4.44 Return of intestinal function (time to first passage of flatus) forest plot – meta-regression of allocation concealment

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
Figure 4.45 Return of intestinal function (time to first passage of bowel motion) forest plot – meta-regression of allocation concealment

Unit is standard deviations. Weights are based on random effects meta-analysis. Values to the left of midline indicate that studies that used this bias-minimisation measure reported a small difference compared to studies that did not.

95% CI = 95% confidence interval. DSMD = Difference of standardised mean differences.
4.5 Discussion

This study shows that trials comparing a laparoscopic and open approach to general surgical procedures reported significantly smaller differences in outcome measures between the intervention groups when patients, healthcare staff or outcome assessors were blinded, and when random sequence generation was performed correctly. This finding is consistent across procedures and multiple outcome measures, including outcomes where the endpoint is reached after un-blinding such as time to recovery. Blinding of data collectors and concealment of the allocation sequence were also found to be influential but to a lesser extent, with no statistically significant differences in the reported results of RCTs that used either of those two measures compared to those that did not.

Quantitative interpretation of the results using rules of thumb for SMDs (Higgins and Green, 2011) alone may suggest that the influence of lack of these bias-minimisation measures is small (SD < 0.4). However, RCTs comparing a laparoscopic and open approach have commonly reported similar small differences between the intervention groups (McCulloch et al., 2002), but these have been interpreted as clinically important and have contributed to change in the accepted standard surgical practice (Russell, 1995). Systematic bias arising from failure to use bias-minimisation measures may have therefore contributed to a type I error in some of those trials.

Several meta-epidemiology studies have concluded that RCTs where blinding is not performed report an exaggerated treatment effect (Savovic et al., 2012; Schulz et al., 1995; Wood et al., 2008). Similar results have been reported from studies investigating the influence of random sequence generation (Siersma et al., 2007). These studies have however been criticised for being too heterogeneous (Hrobjartsson et al., 2012) as they pooled meta-analyses from a wide range of disciplines reporting on a variety of different outcome measures, and some relied on a binary (yes or no) definition of blinding without differentiating between the various forms blinding can take (Devereaux et al., 2001). Furthermore, these studies relied on the risk of bias assessments of the included meta-analyses, which may have used different definitions or relied on ambiguous statements such as “this study was double-blinded” (Hill et al., 2002; Schulz and Grimes, 2002). The validity of these results, particularly in relation to procedural trials which were under-represented in the data pool, is therefore questionable. Other studies have attempted to minimise heterogeneity by analysing data from studies that reported both blinded and un-blinded outcome
assessment thus ensuring that the same outcomes were being compared (Hrobjartsson et al., 2012, 2013; Hrobjartsson et al., 2014). Only a small number of RCTs are designed in this manner however, so such studies have included very limited data. Additionally, these studies could only assess the influence of one form of blinding.

The present study incorporated design elements from both types of studies including individual trial data, a standardised comprehensive risk of bias assessment across all included studies, a defined set of relevant outcome measures and meta-epidemiological analysis, as well as other elements such as an assessment of individual forms of blinding and standardisation of the intervention comparison (laparoscopic versus open). The outcome measures used in this study are more likely to be influenced by systematic bias arising from trial design and are patient-relevant endpoints commonly reported in studies comparing surgical techniques. All of these features allowed for a novel, systematic and pragmatic assessment of the influence of each of several bias-minimisation strategies on the reported results of surgical RCTs in a manner that substantially minimises heterogeneity and ensures external validity.

There are some potential limitations to this study. The proportion of blinded studies was relatively small for some procedures, which may affect power, and there were insufficient data to allow for an assessment of the influence of data analyst blinding. Although this may be due to incomplete reporting of methods leading to a high proportion of unclear risk of bias assessments, the procedure and trial selection process was systematic and sensitive, so this is more likely reflective of the relative paucity of blinded trials in the surgical trial literature (Karanicolas et al., 2008), which highlights the need for the present study.

The statistical analysis was performed as a univariate meta-regression model, meaning that the result for each bias-minimisation measure did not independently take into account the presence or absence of other measures. This means that confounding may be contributing to some of the findings. Multivariate meta-regression was not possible due to the low proportion and number of blinded trials for each procedure, and combining trials across procedures to facilitate this would have introduced significant heterogeneity and decreased the validity of the findings. The consistency of the findings across outcomes and procedures for specific bias-minimisation measures would suggest that substantial confounding is unlikely.
Only one risk of bias assessment was completed for each included study, instead of a breakdown by outcome, which may affect the validity of the results with regards to end-points that are reached well beyond discharge from hospital (and un-blinding) such as time to recovery. However, the main purpose of this study was to pragmatically assess the influence of blinding \textit{per se} within an RCT’s design on outcomes which are commonly reported in surgical RCTs, and it is acknowledged that it is difficult to maintain blinding in surgical trials beyond discharge, particularly of patients and healthcare staff. It is also pertinent to note that even such long-term outcomes were significantly affected by the presence or lack of the studied measures, suggesting that their bias-minimising effect extends well beyond their period of implementation in a study.

The Consolidated Standards of Reporting Trials (CONSORT) statement (Schulz et al., 2010), a comprehensive set of guidelines on the reporting of randomised trials produced by an international expert group, specifies measures such as blinding and random sequence generation as features of robust RCT design. Some authors have argued that blinding is too difficult or unrealistic in surgical RCTs, and that non-blinding may not materially alter results (Patel et al., 2013; Pham et al., 2009; Vinuela et al., 2012). This systematic meta-epidemiological study, which included trial data from over 300 individual surgical RCTs, shows that lack of patient, healthcare staff and outcome assessor blinding, and lack of adequate random sequence generation, systematically alter the results of trials comparing different surgical approaches, which may lead to erroneous results and conclusions. These findings need to be taken into account when interpreting the results of published studies, and should be used to guide the design of future surgical trials. Further efforts are required to facilitate and disseminate the implementation of effective blinding in procedural trials.

4.6 Conclusion
The present study used meta-epidemiological methods at an individual trial level to comprehensively assess the effect of bias-minimisation measures including blinding on the reported outcomes of surgical RCTs comparing a laparoscopic and open approach to common abdominal surgical procedures. Although several previous studies have investigated the influence
of such measures on RCT results in general, none had specifically examined this effect on procedural trials where additional challenges to effective blinding exist.

The results of this study show that RCTs that did not use blinding or adequate random sequence generation reported a significantly greater difference between treatment groups compared to trials where these bias-minimisation measures were used. This may lead to exaggerated differences in outcome measures in individual trials, and could also influence the results of subsequent meta-analyses. Blinding should be implemented in procedural RCTs wherever feasible to avoid systematic bias.
CHAPTER FIVE
Conclusions

5.1 Summary
The continuous development and refinement of techniques and treatments has long been a key attribute of the discipline of surgery (Brennan, 2008), in a quest to offer patients optimal care (Potter et al., 2014). Robust evidence derived from RCTs and subsequent MAs is therefore an indispensable tool in modern surgical practice. There are several challenges however to the development of this evidence. This thesis has addressed two of these challenges, namely the statistical synthesis of RCT data where multiple treatment comparisons exist, and the influence of non-blinding and other potential sources of bias on the results of surgical RCTs.

The application of NMA methodology to surgical research synthesis to enable inclusive analysis of all available data and succinct conclusions was demonstrated in this thesis, using two examples. Both were conducted in accordance with the Cochrane Collaboration’s recommended methodology (Higgins and Green, 2011) and PRISMA guidelines (Hutton et al., 2015; Moher et al., 2009; Shamseer et al., 2015) to ensure rigor and validity.

International guidelines groups have regarded preoperative carbohydrate loading as an integral part of enhanced recovery protocols and advocated for its routine use for all elective surgery (Cerantola et al., 2013; Gustafsson et al., 2013; Lassen et al., 2012; Mortensen et al., 2014; Nygren et al., 2013), even though individual RCTs had shown quite variable results. The NMA detailed in Chapter Two is the first study to include all data from all trials, regardless of the control treatment used in contributing RCTs. It showed conclusively that there was no additional benefit gained from CHO loading compared to water across all the clinically relevant outcomes assessed. This finding has already led to a change in the guidelines of two major international surgical societies (The American Society of Colon and Rectum Surgeons and the Society of American Gastrointestinal and Endoscopic Surgeons) (Carmichael et al., 2017), and reflects an evidence-based change in practice. The paper reporting this NMA has been cited more than 25 times since its recent publication (Amer et al., 2017).
Chapter Three of this thesis describes an NMA of surgical treatments for GORD, a very common condition for which multiple different surgical procedures exist. International surgical society recommendations were that the choice of procedure should be left to the individual surgeon due to conflicting data (Stefanidis et al., 2010), despite more than 50 RCTs involving thousands of patients published over more than four decades. The NMA detailed in Chapter Three included all published trials, analysed all of the available data and produced an objective ranking of the different procedures according to clinically important outcomes of benefit and harm. It showed that the best balance of risk and benefit for patients undergoing surgical treatment of GORD is obtained with posterior partial fundoplication. This NMA represents the first comprehensive synthesis of all the available RCT data and provides a definite answer to a clinical question that had been the subject of debate among surgeons for years (Amer et al., 2018).

It has been known for some time that failure to implement bias-minimisation measures in clinical trials systematically alters the results and may lead to incorrect conclusions (Savovic et al., 2012; Schulz et al., 1995; Wood et al., 2008). Before now this issue had not been examined specifically in procedural trials despite the fact that procedures have a greater placebo effect than other forms of treatment (Kaptchuk et al., 2000; McRae et al., 2004) and may therefore be more prone to systematic bias. In addition, some of the standard bias-minimisation measures such as blinding are more difficult to implement in surgical trials. Chapter Four reports on a comprehensive meta-epidemiological study using trial data from 316 individual RCTs to explore this question in detail, using the practical example of trials that compared laparoscopic versus open access for common abdominal surgical procedures. The results showed that trials where blinding or adequate random sequence generation were not performed reported a greater difference between the laparoscopic and open groups for endpoints such as length of stay and postoperative complication rates, compared to RCTs that used those bias-minimisation measures. These findings help to better inform the interpretation of already published trials, and guide the design of future surgical trials to ensure their objectiveness and validity.

5.2 Future directions
NMA methodology can be used to answer many more surgical research questions. During the course of this PhD, the author has been involved in three other collaborations using NMA methodology to assess the treatment options for early hepatocellular carcinoma (Swan et al.,
the surgical management of obesity (Grainger et al., 2018) and bowel preparation prior to colorectal surgery (Woodfield et al., 2017). Many more clinically relevant questions can be answered using NMA methodology where sufficient data exist to enable this. This potential has been a recurring theme in discussions following presentation of components of this thesis at national and international surgical meetings (List of Awards, Grants and Presentations).

While it is important to produce trial reviews that can inform evidence-based recommendations, it is equally important that there is timely uptake of this information into clinical practice. Although many surgeons were among the early pioneers of RCTs, some recent qualitative studies have raised concerns regarding surgeons’ attitudes and uptake of RCT and systematic review findings (Lassen et al., 2005; Melis et al., 2010; Potter et al., 2014; Slim et al., 2004). This is in contrast to other surveys that concluded that modern surgical practice is evidence-based (Howes et al., 1997; Kenny et al., 1997; Kingston et al., 2001). All of these studies were conducted in Europe and North America, and there is little information about attitudes among the surgical community in Australasia. Michael Solomon and colleagues (Gattellari et al., 2001) conducted an Australasian survey and found mixed results: while most respondents were positive towards RCTs, they were sceptical regarding the applicability of the results to their everyday practice. However, this study was restricted to colorectal surgeons and is more than 15 years old. More information on current attitudes towards evidence-based practice is required through a large representative survey of Australasian surgeons across a range of surgical disciplines. This will help determine whether additional interventions and programmes are required to ensure recognition and timely uptake of high quality evidence.

Finally, the importance of considering blinding and other bias-minimisation measures in evaluating current evidence and future surgical RCT design needs to be prioritised. Initiatives such as the Balliol Colloquia a decade ago may go some way in achieving this by bringing together experts and facilitating discussion, consensus and recommendations (Lancet, 2009; McCulloch et al., 2009). The inclusion of material on bias and trial design in courses for trainees and surgeons, such as the CLEAR (Critical Literature Evaluation and Research) course run by the Royal Australasian College of Surgeons (RACS, 2019) and similar courses in other jurisdictions (Potter et al., 2014) (Martin et al., 2003), will help increase awareness in the surgical community of these issues.
REFERENCES

Hatlebakk, J.G., Zerbib, F., Bruley des Varannes, S., Attwood, S.E., Ell, C., Fiocca, R., Galmiche, J.P.,
Eklund, S., Langstrom, G., Lind, T., et al. (2016). Gastroesophageal acid reflux control 5 years after
antireflux surgery, compared with long-term Esomeprazole therapy. Clin Gastroenterol H 14, 678–685
e673.

of the effects of oral preoperative carbohydrates on postoperative nausea and vomiting after laparoscopic

preoperative oral carbohydrates and peptides on postoperative endocrine response, mobilization, nutrition

risperidone, risperidone beats quetiapine, and quetiapine beats olanzapine: an exploratory analysis of head-

randomised trials. BMJ 343, d5928.

(The Cochrane Collaboration) Available from https://www.cochrane-handbook.org

inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Syn Meth 3, 98-
110.

Lancet 386, 628-630.

Hill, A.D., Walsh, T.N., Bolger, C.M., Byrne, P.J., and Hennessy, T.P. (1994). Randomized controlled trial

treatments in the maintenance treatment of bipolar disorder: a systematic review and network meta-analysis. Lancet Psych 1, 351-359.

APPENDIX A

Published papers

A1 Network meta-analysis of the effect of preoperative carbohydrate loading on recovery after elective surgery

Systematic review

Network meta-analysis of the effect of preoperative carbohydrate loading on recovery after elective surgery

M. A. Amer1,*, M. D. Smith1,*, G. P. Herbison1,*, L. D. Plank1 and J. L. McCall1,2,5,6

Departments of 1Surgical Sciences and 2Prevention and Social Medicine, Dunedin School of Medicine, University of Otago, and 3Department of General Surgery, Dunedin Hospital, Dunedin, 4Department of General Surgery, Southland Hospital, Invercargill, and 5Department of Surgery, School of Medicine, University of Auckland, and 6New Zealand Liver Transplant Unit, Auckland City Hospital, Auckland, New Zealand. Correspondence to Dr M. A. Amer, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand (e-mail: mai.amer@otago.ac.nz)

Background: Three meta-analyses have summarized the effects of preoperative carbohydrate administration on postoperative outcomes in adult patients undergoing elective surgery. However, these studies could not account for the different doses of carbohydrate administered and the different controls used. Multiple-treatments meta-analysis allows robust synthesis of all available evidence in these situations.

Methods: Article databases were searched systematically for RCTs comparing preoperative carbohydrate administration with water, a placebo drink, or fasting. A four-treatment multiple-treatments meta-analysis was performed comparing two carbohydrate dose groups (low, 10–44 g; high, 45 g or more) with two control groups (fasting, water or placebo). Primary outcomes were length of hospital stay and postoperative complication rate. Secondary outcomes included postoperative insulin resistance, vomiting and fatigue.

Results: Some 43 trials involving 3110 participants were included. Compared with fasting, preoperative low-dose and high-dose carbohydrate administration decreased postoperative length of stay by 0–4.95% per cent c.i. 0.43 to 0.7) and 0.2 (0.04 to 0.40) days respectively. There was no significant decrease in length of stay compared with water or placebo. There was no statistically significant difference in the postoperative complication rate, or in most of the secondary outcomes, between carbohydrate and control groups.

Conclusion: Carbohydrate loading before elective surgery conferred a small reduction in length of postoperative hospital stay compared with fasting, and no benefit in comparison with water or placebo.

Presented in part to a meeting of the Surgical Research Society, Royal Australian College of Surgeons, Sydney, Australia, November 2015

Paper accepted 21 September 2016 Published online 21 December 2016 in Wiley Online Library (www.bjs.co.uk). DOI: 10.1002/bjs.10408

Introduction

Enhanced recovery after surgery (ERAS), or fast-track recovery, is a set of perioperative principles and strategies brought together in an integrated pathway to optimize patients' operative journeys and minimize morbidity. ERAS protocols are now in widespread use across many surgical disciplines internationally, as they have been shown to reduce complications, facilitate recovery and shorten discharge4.

However, the evidence supporting the use of some individual components of ERAS is variable, so that their routine inclusion in ERAS protocols remains debatable2. An example is the preoperative administration of a carbohydrate load, usually as an oral solution, promoted as a counter to postoperative hypoglycaemia1.

Surgery, as a form of stress, is known to induce peripheral insulin resistance, which can lead to hypoglycaemia, which, in turn, may lead to postoperative complications and prolonged recovery5. Studies have shown that a preoperative carbohydrate load large enough to stimulate a prompt insulin response decreases postoperative insulin resistance by approximately 50 per cent1. More than 30 RCTs have investigated whether this effect results in improved postoperative outcomes. These RCTs have recently been summarized in several meta-analyses5,6, including a Cochrane review7.
However, these meta-analyses resulted in variable conclusions, due partly to the use of different inclusion and exclusion criteria, so that different RCTs were included in each meta-analysis. More importantly, however, a standard pairwise meta-analysis cannot account for the different carbohydrate doses and controls used in the included RCTs. As a result, these meta-analyses either combined different control groups (such as fasting, water and placebo) into one treatment arm or performed several different head-to-head meta-analyses, thereby limiting their interpretability. Thus, there remains a need for an inclusive, methodologically sound, analysis of all the available evidence, to resolve ongoing uncertainty around the true clinical value of carbohydrate loading.

Multiple-treatments meta-analysis offers a validated method of synthesis in instances such as this, where multiple intervention or control treatments have been compared for the same condition in head-to-head RCTs. This type of meta-analysis employs the large amount of indirect evidence available in addition to the direct evidence, thus increasing the precision of the effect estimate. Moreover, multiple-treatments meta-analysis enables visualization of all the available evidence, and a ranking of all the treatments available. This study employed multiple-treatments meta-analysis to determine the effects of preoperative carbohydrate administration on clinically relevant postoperative outcomes in adult patients undergoing elective surgery.

Methods

Search strategy and selection criteria

A systematic review of RCTs of preoperative carbohydrate administration for elective surgical patients was performed, using the process detailed in the Cochrane review. In brief, article databases and trial registries were searched to June 2016, using a structured sensitivity-maximizing search strategy and no language restrictions. Two authors independently screened all titles and abstracts for eligibility, and trial authors were contacted when further information was required to determine eligibility.

All randomized and quasi-randomized trials comparing the preoperative administration of at least 10 g carbohydrate (orally or intravenously) within 4 h of surgery start time, with fasting, water or placebo, to adults undergoing any type of elective surgical procedure, were included. Studies that co-administered other substances (such as glucose) were included, as long as the dose of carbohydrate was 10 g or more. Studies that administered carbohydrate more than 4 h before surgery, and those that

Fig. 1 PRISMA flow chart for the study

included patients undergoing emergency surgery (defined as within 24 h of first physician contact), were excluded.

Outcome measures

All trials that reported the primary outcomes including length of postoperative stay (in days) or postoperative complication rate (as defined by trial authors) were selected. Trials that reported any of the following secondary outcomes were also included: aspiration pneumonitis rate (defined as observed regurgitation or vomiting in association with abnormal chest imaging), vomiting within the first 24 h after surgery (measured as an incidence count), insulin resistance (measured by the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) method), insulin sensitivity (measured by the hyperinsulinemic–euglycemic clamp method), nausea at 24 h after surgery, postoperative general well-being and postoperative fatigue (all measured on ordinal, visual analogue or composite scales), and return of intestinal function (number of postoperative days to first passage of flatus, and first bowel motion).

Data extraction and quality assessment

For studies that were also included in the Cochrane review, data that had already been extracted were used. For the additional studies included in the present study, the same structured paper form used in the Cochrane review was employed to collect extracted data. Extracted
data included study characteristics, patient characteristics, intervention details and outcome measures. Study authors were contacted to request missing data necessary for multiple-treatments meta-analysis.

Missing standard deviations were calculated from standard errors or confidence intervals, as described in the Cochrane Handbook, or from ranges or interquartile ranges, as described by Hozo and colleagues. When standard deviations could not be calculated, and attempts to contact the study authors were exhausted, they were imputed using the median of reported standard deviations from other similar trials.

The methodological quality of all included trials was assessed using the Cochrane risk-of-bias tool, across the following domains: random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and other potential sources of bias. Each domain was assessed as high, low or unclear risk.

Statistical analysis

A random-effects multiple-treatments meta-analysis was performed using the suite of StatsDirect (StatsCorp, College Station, Texas, USA) routines developed specifically for this purpose. The main analysis comprised four treatment groups (nodes): low-dose carbohydrate (10–44 g), high-dose carbohydrate (45 g or more), water or placebo, and fasting. Fasting was allocated as the reference treatment in the network. Comparisons between the water/placebo group and the fasting group are not reported, as this review does not include all RCTs that compared preoperative fasting with water only. A network map was produced to provide a visual summary of the network of evidence available.

Fig. 2 Risk of bias summary figure

Fig. 3 Network map of evidence. The size of each circle (node) is proportional to the number of patients who received the treatment. The width of the lines represents the number of RCTs that directly compared the connected pair of treatments. The values in parentheses denote the number of RCTs that investigated the associated comparison, followed by the combined number of patients in those RCTs.

The results for continuous data are summarized as the mean difference (MD — with units) or standardized mean difference (SMD — expressed as standard deviations), as appropriate, with 95% confidence intervals. The SMD was used when studies assessing the same outcome used different measures, or the results for that outcome were substantially different owing to study population differences. Categorical data were summarized as odds ratios (ORs) with 95% confidence intervals (see also Appendix S1, supporting information). When SMD was appropriate, the original result is reported in standard
deviations, as well as the back-transformed approximations to the initial unit12.

For primary outcomes with statistically significant differences between the groups, the probability of each treatment group ranking as the best, second, third or worse treatment in the network was calculated, and presented as a rankogram if one treatment was clearly superior (greater than 90 per cent probability of ranking best)17. A meta-regression analysis for those outcomes was also performed to evaluate further any relationship with carbohydrate dose. A cumulative meta-analysis for the outcome length of postoperative stay was also performed, as well as several subgroup and sensitivity analyses, including testing for heterogeneity and publication bias (Appendix S1, supporting information).

Results

Search results and study characteristics

Fig. 1 summarizes the database search and study selection process. Forty-three RCTs18–29, involving 5110 patients, fulfilled the inclusion criteria. One trial19 could not be included in the multiple-treatment meta-analysis as the only relevant reported outcome was the aspiration pneumonitis rate, which was zero across all groups in all RCTs. Another trial12 reported nausea as a mean incidence rate, which could not be included in the multiple-treatment meta-analysis but is included in the qualitative synthesis.

Table S1 summarizes the characteristics of included studies. Patients in the included RCTs underwent a wide variety of open and laparoscopic surgical procedures for benign and malignant pathology, including colorectal and upper gastrointestinal, endocrine, orthopaedic, cardiothoracic and gynaecological surgery. The majority of RCTs involved the administration of high-dose carbohydrate before surgery (mostly 45–55 g). In two studies30,41 carbohydrate was administered intravenously and only one study40 directly compared low- and high-dose carbohydrate.

The risk-of-bias assessment of the included trials is summarized in Fig. 2 (see also Fig. S1, supporting information, which shows the domain assessment for individual trials). Of the 43 included trials, only one20,22,25,28,29 were adequately blinded with a low risk of performance or detection bias. There was evidence of selection bias in the majority of studies. Only two trials23,30 were judged as having low risk of bias across all domains.

Primary outcomes

Length of postoperative stay

Length of postoperative stay was the most commonly reported outcome, and was therefore used for the sensitivity analyses and funnel plot. Fig. 3 summarizes the network of direct evidence available for this outcome. This was reported by 25 studies18,20,22,24,27–29,31,33,38,39,42,44–46,50,52,53,57,59 involving 1888 participants. Mean length of postoperative stay in the included studies ranged from 1 to 17 days. The multiple-treatment meta-analysis results are presented in Fig. 4 and Table 1. Compared with fasting, patients administered carbohydrate before surgery were discharged earlier (high-dose carbohydrate: SMD 0.2 (95 per cent c.i. 0.04 to 0.4) standard deviations earlier; low-dose carbohydrate: SMD 0.4 (0.03 to 0.7) standard deviations earlier). On back-transformation into days, high-dose carbohydrate administration decreased length of stay in patients undergoing major surgery (mean length of stay 2 days or more) by 0.7 (95 per cent c.i. 0.1 to 1.4) days, and for patients undergoing minor surgery (mean length of stay less than 2 days) by 0.07 (0.03 to 0.1) days. Compared with water or placebo, no benefit was shown for either low- or high-dose carbohydrate with respect to time to hospital discharge.
Table 1 Multiple-treatments meta-analysis results

<table>
<thead>
<tr>
<th></th>
<th>Versus fasting</th>
<th>Versus water/placebo</th>
<th>Versus low-dose CHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of postoperative stay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-dose CHO</td>
<td>-0.2 (-0.4, -0.04)**</td>
<td>-0.2 (-0.4, 0.02)</td>
<td>0.1 (0.2, 0.6)</td>
</tr>
<tr>
<td>Low-dose CHO</td>
<td>-0.4 (-0.7, -0.09)**</td>
<td>-0.3 (-0.7, 0.04)</td>
<td></td>
</tr>
<tr>
<td>Blood transfusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major surgery (days)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-dose CHO</td>
<td>-0.7 (-1.4, -0.1)**</td>
<td>-0.7 (-1.4, 0.07)</td>
<td>0.1 (0.1, 1.7)</td>
</tr>
<tr>
<td>Low-dose CHO</td>
<td>-1.4 (-2.1, -0.7)**</td>
<td>-1.6 (-2.6, 0.2)</td>
<td></td>
</tr>
<tr>
<td>Minor surgery (days)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-dose CHO</td>
<td>-0.6 (-0.3, -0.9)**</td>
<td>-0.7 (-1.0, 0.1)</td>
<td>0.0 (0.0, 0.2)</td>
</tr>
<tr>
<td>Low-dose CHO</td>
<td>-0.6 (-0.3, -0.9)**</td>
<td>-0.5 (-0.5, 0.2)</td>
<td></td>
</tr>
<tr>
<td>Subset analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major abdominal surgery (days)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-dose CHO</td>
<td>-3.1 (-3.2, -3.0)</td>
<td>-3.1 (-3.1, -3.1)**</td>
<td>0.1 (-0.1, 0.7)</td>
</tr>
<tr>
<td>Low-dose CHO</td>
<td>-1.6 (-2.1, -1.1)</td>
<td>-1.6 (-1.9, -1.2)</td>
<td></td>
</tr>
<tr>
<td>Minor abdominal surgery (days)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-dose CHO</td>
<td>-2.0 (-2.5, -1.4)</td>
<td>-2.0 (-2.5, -1.4)</td>
<td></td>
</tr>
<tr>
<td>Low-dose CHO</td>
<td>-1.0 (-1.6, -0.3)</td>
<td>-1.0 (-1.6, -0.3)</td>
<td></td>
</tr>
<tr>
<td>Orthopaedic surgery (days)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-dose CHO</td>
<td>-0.7 (-1.5, 0.0)</td>
<td>-0.8 (-1.6, 0.0)</td>
<td></td>
</tr>
<tr>
<td>Low-dose CHO</td>
<td>-0.7 (-1.5, 0.0)</td>
<td>-0.8 (-1.6, 0.0)</td>
<td></td>
</tr>
<tr>
<td>Cardiac surgery (days)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-dose CHO</td>
<td>-1.0 (-1.6, -0.4)</td>
<td>-1.0 (-1.6, -0.4)</td>
<td></td>
</tr>
<tr>
<td>Low-dose CHO</td>
<td>-1.0 (-1.6, -0.4)</td>
<td>-1.0 (-1.6, -0.4)</td>
<td></td>
</tr>
<tr>
<td>Postoperative stay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-dose CHO</td>
<td>-0.6 (-1.2, 0.0)</td>
<td>-0.6 (-1.2, 0.0)</td>
<td></td>
</tr>
<tr>
<td>Low-dose CHO</td>
<td>0.0 (0.0, 0.0)</td>
<td>0.0 (0.0, 0.0)</td>
<td></td>
</tr>
<tr>
<td>Waiting time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-dose CHO</td>
<td>2.1 (2.5, 1.7)</td>
<td>2.1 (2.5, 1.7)</td>
<td></td>
</tr>
<tr>
<td>Low-dose CHO</td>
<td>2.1 (2.5, 1.7)</td>
<td>2.1 (2.5, 1.7)</td>
<td></td>
</tr>
<tr>
<td>Postoperative complications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-dose CHO</td>
<td>0.0 (0.0, 0.0)</td>
<td>0.0 (0.0, 0.0)</td>
<td></td>
</tr>
<tr>
<td>Low-dose CHO</td>
<td>0.0 (0.0, 0.0)</td>
<td>0.0 (0.0, 0.0)</td>
<td></td>
</tr>
<tr>
<td>Postoperative nausea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-dose CHO</td>
<td>0.0 (0.0, 0.0)</td>
<td>0.0 (0.0, 0.0)</td>
<td></td>
</tr>
<tr>
<td>Low-dose CHO</td>
<td>0.0 (0.0, 0.0)</td>
<td>0.0 (0.0, 0.0)</td>
<td></td>
</tr>
<tr>
<td>Postoperative vomiting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-dose CHO</td>
<td>0.0 (0.0, 0.0)</td>
<td>0.0 (0.0, 0.0)</td>
<td></td>
</tr>
<tr>
<td>Low-dose CHO</td>
<td>0.0 (0.0, 0.0)</td>
<td>0.0 (0.0, 0.0)</td>
<td></td>
</tr>
<tr>
<td>Time to first bowel motion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-dose CHO</td>
<td>-0.0 (-0.4, -0.0)</td>
<td>-0.0 (-0.4, 0.0)</td>
<td></td>
</tr>
<tr>
<td>Low-dose CHO</td>
<td>0.0 (0.0, 0.0)</td>
<td>0.0 (0.0, 0.0)</td>
<td></td>
</tr>
</tbody>
</table>

Values in parentheses are 95% confidence intervals. *Standardized mean difference (SMD) (expressed in standard deviations). The SMD was converted back to a mean difference in days, using standard deviations reported in the included trials. The mean standard deviation (0.4 days) of all trials reporting major surgery (mean length of stay greater than 2 days) was used in this calculation, mean length of stay in this group was 8.1 days. (The mean standard deviation (0.4 days) of all trials reporting minor surgery (mean length of stay less than 2 days) was used in this calculation, mean length of stay in this group was 1.1 days. **Mean difference. #Wald ratio. ANOVA low-dose carbohydrate (CHO) data available for this outcome. **P < 0.05 (Wald test).

No statistically significant difference was found between the two carbohydrate groups in the network. None of the treatments was clearly superior on calculation of ranking probabilities for this outcome. Meta-regression also demonstrated no relationship between carbohydrate dose and length of postoperative stay, with none of the heterogeneity in the model explained by the dose of carbohydrate administered ($R^2 = 0$th) (Fig. 5). Cumulative meta-analysis of high-dose carbohydrate versus control demonstrated that further studies are unlikely to change this effect estimate significantly (Fig. S2, supporting information).

Testing for inconsistency between the direct and indirect evidence for this analysis yielded low inconsistency factors for all evidence loops, ranging from 0.66 to 0.84. There were
difference between the direct and indirect evidence for this outcome (inconsistency factor ranging from 0.3 to 0.66).

Secondary outcomes

Aspiration pneumonia

No aspiration pneumonia events were reported in any of the 19 studies (25,27,29,31,33,34,46,48,56) that included this outcome. Therefore, a multiple-treatments meta-analysis was not performed.

Vomiting

Eight studies (23,25,26,33,34,46,48,56) reported the rate of postoperative vomiting, involving 810 participants. The multiple-treatments meta-analysis results are summarized in Table 1. There was no statistically significant difference between the groups in the network. Inconsistency for this analysis was low (inconsistency factor of up to 0.4).

Insulin resistance

Thirteen studies (24,25,26,47,49,54–56) were included, with data available for 503 participants. High-dose carbohydrate administration resulted in a statistically significant decrease in insulin resistance compared with fasting, and water or placebo, but with wide confidence intervals approaching non-significance (Table 1). One study (55) reported very different numerical results compared with the other trials, despite using the same methodology and formulas. Sensitivity analysis excluding this study showed no statistically significant differences between any of the groups. Inconsistency in this network was high (inconsistency factors of 2.4 and 4.8).

Insulin sensitivity

Four studies (40,41,52,53) measured insulin sensitivity using the hyperinsulinemic–euglycemic clamp method, with data available for 62 participants. No low-dose carbohydrate studies were available for this outcome. Multiple-treatments meta-analysis showed no significant differences in any of the comparisons (Table 1).

Other secondary outcomes

The results of the remaining secondary outcomes are shown in Table 1 and Appendix S2 (supporting information).

Discussion

This multiple-treatments meta-analysis shows that administration of a preoperative carbohydrate load, within 4 h of surgery start time, led to a small reduction in length of postoperative stay, with no statistically significant differences in secondary outcomes.
postoperative stay in comparison with fasting, but no significant effect in comparison with allowing patients water, or a placebo drink, before surgery. Heterogeneity analysis for this outcome using predictive interval calculations showed moderate between-study heterogeneity, and evidence of publication bias was suggested on examination of the comparison-adjusted funnel plot. Further, sensitivity analysis, separating the water/placebo group into water and placebo, then the placebo subgroup into blinded and unblinded studies, showed no significant difference between any of the placebo and carbohydrate groups. In addition, a cumulative meta-analysis of this outcome suggests that future studies are unlikely to show a larger effect than that observed in this study.

SMD was used for length of postoperative stay to account for the wide variety in expected length of stay between the different procedures. Procedures with differing expected lengths of stay cannot be compared directly using the mean difference, as any effect of carbohydrate administration would be expected to be proportional to the actual length of stay. SMD can be interpreted using rules of thumb, where an SMD of 0.4 standard deviations or less is considered to indicate a small effect, suggesting that the difference between the carbohydrate and fasting groups was small. The back-transformation results support this conclusion, showing a reduction in length of stay of approximately 10 per cent in both carbohydrate groups compared with fasting, and no difference compared with water or placebo. It is important not to conclude from the subgroup analysis that the effect of preoperative carbohydrate loading on major abdominal surgery is larger than on other procedures, as the relative reduction in length of stay was similar between subgroups.

This multiple-treatments meta-analysis found no evidence that high-dose carbohydrate was more or less effective in reducing length of stay compared with low-dose carbohydrate. There were fewer data available for low-dose carbohydrate in the network, highlighted by wider confidence intervals than for the high-dose comparisons. Sensitivity analysis using meta-regression supported this finding, showing no evidence of a carbohydrate dose–response relationship.

There was no significant difference in the postoperative complication rate for patients given a carbohydrate load, compared with patients who remained fasted, or those given water or a placebo drink. Although high-dose carbohydrate conferred a reduction in nausea scores at 24 h compared with water or placebo, this was based on a small number of studies, and there was no statistically significant difference in the incidence of vomiting between the groups. No other significant differences were found between the carbohydrate and control groups in any of the other clinical secondary outcomes investigated. The confidence intervals for some of these outcomes were wide, however, reflecting a relative paucity of available data, and heterogeneity.

The effect of carbohydrate loading on postoperative insulin resistance was investigated, as it is this effect in particular that provided the rationale for introducing preoperative carbohydrate loading. There was no statistically significant difference in insulin sensitivity in this multiple-treatments meta-analysis. This may, however, be a type II error (false-negative finding), as only four studies were available to assess insulin sensitivity. Further, a statistically significant difference was found in insulin resistance (measured by homeostatic modelling) between high-dose carbohydrate and both control treatment groups, although with high inconsistency and sensitivity analysis suggesting this finding was influenced by the reported results of a single study. A reduction in postoperative insulin resistance per se may not be clinically important unless it in turn leads to improved postoperative outcomes.

Three previous meta-analyses have investigated the effect of preoperative carbohydrate loading. The findings of the present review are broadly consistent with the largest and most recent of these, which included 27 trials and found a small decrease (0.4 days) in length of postoperative stay for patients given a carbohydrate load (high dose) only in comparison with fasting, an increase in insulin sensitivity compared with the control treatments, and a shorter time to passage of flatus by less than half a day. No other significant differences were found for an identical set of outcomes as in the present review.

The use of multiple-treatments meta-analysis methodology in this study has allowed more data to be incorporated than in all previous reviews, as well as the use of all direct and indirect evidence available, thereby increasing the precision of the effect estimates. The fasting, water/placebo and carbohydrate dosing regimens were also analysed simultaneously as separate groups, in a manner that fully respects randomisation, unlike subgroup analysis, thus eliminating an important source of clinical heterogeneity and bias in previous meta-analyses. This increases the external validity and applicability of these results. The review process and quality assessment was conducted in accordance with the Cochrane Collaboration’s recommended standard methodology, and following the principles of the PRISMA guidelines, including those recently published specifically for multiple-treatments meta-analysis.

There are some potential limitations to this study. The validity of the results of any meta-analysis is dependent on a large degree on the quality of included trials, and most trials
were of low to moderate quality, with the risk of performance and selection bias being a particular concern. A lack of well-designed, placebo-controlled trials, in particular, led to the combination of placebo and water into one group for the main analysis. This issue was addressed through sensitivity analysis by splitting the groups, which did not show significantly different results.

There was evidence of moderate statistical heterogeneity and inconsistency between the direct and indirect evidence for some outcomes. This is to be expected given the heterogeneity in trial design, endpoints measured and clinical settings. Nevertheless, subgroup and sensitivity analyses to explore this heterogeneity did not reveal significantly different results.

Comparisons involving low-dose carbohydrate administration for some outcomes were informed by only one or two head-to-head RCTs, with the majority of data coming from indirect evidence. Although this may affect the power and reliability of the effect estimates, all of the results for high-dose carbohydrate administration were comparable, suggesting that the true effect of low-dose carbohydrate administration is likely to be similar to the estimates of this multiple treatments meta-analysis.

Current anaesthetic guidelines recommend allowing patients clear fluids for up to 2 h before surgery, based on the established safety of this practice in patients who are at high risk of aspiration. Recently published ERAS guidelines strongly recommend the routine use of oral carbohydrate loading before a variety of elective procedures, including colonic resection, rectal/pelvic surgery, gastrectomy, pancreaticoduodenectomy and radical cystectomy. This is despite an acknowledgement that the evidence supporting this recommendation is of low to moderate quality, and for some procedures only by extrapolation. This review, incorporating the results of more than 40 RCTs and involving over 3000 patients, shows that the administration of preoperative carbohydrate within 4 h of surgery start time is safe, but does not provide a significant clinical benefit over water, or a flavoured drink with no calories. This needs to be considered when developing elective ERAS protocols, particularly given the significant costs involved in routine carbohydrate loading. Future trials investigating preoperative loading should focus on the potential role of other additives, such as immunonutrients, in selected patients.

Acknowledgements

This review used data extracted as part of the Cochrane review on the same topic, published in 2014; the authors acknowledge the contribution of the co-authors of that review, J. Nygren and M. Soop.

The authors thank S. Petrich (Department of Surgical Sciences, Dancen School of Medicine) for assistance with translation; the Interloans team at the University of Otago Library for their assistance with retrieval of trial papers; and J. Aguilera Nascimento, O. Canbay, R. Hahn, J. Hedener, M. Hedström and M. Maserati for providing additional information on their studies.

The corresponding author is the recipient of a Dancen School of Medicine Dunbar Scholarship (2014, 2016) and a Royal Australasian College of Surgeons Foundation for Surgery New Zealand Scholarship (2015). This project was supported by a Health Research Council of New Zealand Project Grant (12/256).

Disclosure: The authors declare no conflict of interest.

References

www.bmj.com

Preoperative carbohydrate loading and recovery after elective surgery

Supporting information

Additional supporting information may be found in the online version of this article:

Appendix S1 Further methodological details (Word document)
Appendix S2 Additional results for secondary outcomes (Word document)
Table S1 Details of included studies (Word document)
Fig. S1 Risk-of-bias table, showing the domain assessment for individual trials (Word document)
Fig. S2 Cumulative meta-analysis of trials reporting comparison of high-dose carbohydrate versus fasting or water/placebo (control) with regard to length of postoperative hospital stay (Word document)
Fig. S3 Comparison-adjusted funnel plot for length of postoperative stay (Word document)
A2 Registered review protocol – Surgical management of gastro-oesophageal reflux disease (GORD) in adults: a systematic review and network meta-analysis
randomisation status is not clear.

Condition or domain being studied

Participants/population
All adults with an established diagnosis of GORD, based on symptoms and an objective measure such as endoscopy or pH manometry, deemed appropriate for surgical management.

Intervention(s), exposure(s)
The interventions will include any fundoplication technique, whether performed by open or laparoscopic surgery. The intervention groups for the main analysis will be as follows:
1. Total (360 degree) fundoplication (with or without the division of the short gastric arteries)
2. 90 degree fundoplication
3. Anterior partial fundoplication (120 degree or more)
4. Posterior partial fundoplication (180 degree, 270 degree)
5. Medical treatment with PPIs (as a comparator)
Each of these techniques will be analysed as an independent intervention in the network. Interventions which include other variations such as variable wrap lengths, omission of a hiatalplasty or fixation to the right hiatal pillar as part of the procedure, or the non-use of a bougie will be permitted, but such variations will be noted. Interventions involving fundoplication in combination with another procedure (such as Heller's myotomy for achalasia) will be excluded.

Comparator(s)/control
Medical treatment with PPIs (as a comparator).
See 'types of interventions' above.

Context
Primary outcome(s)
1. Health-related quality of life scores, measured on an appropriate validated tool.
2. GORD-specific quality of life, measured on an appropriate validated tool.
3. Dysphagia, measured either as a dichotomous variable or on a validated scale (such as a DAI score).
For primary outcomes, data will be analysed separately in four groups according to follow-up time:
a. From 3 months, up to and including 1 year
b. From over 1 year, up to and including 5 years
c. From over 5 years, up to and including 10 years
d. Over 10 years
Where one trial has reported the same primary outcome for different follow-up time-points, we will include the data in the appropriate group, ensuring that duplication is avoided.

Secondary outcome(s)
1. Reflux symptoms. We anticipate that most studies will report this as a dichotomous or categorical scale patient-reported outcome.
2. Oesophageal acid exposure, measured as a DeMeester score.
3. Total oesophageal acid exposure time (as a percentage) on pH monitoring.
4. Dilatation for dysphagia rate, defined as the need for oesophageal dilatation for symptomatic dysphagia postoperatively.
5. Reoperation rate, defined as the number of patients who required revision surgery for ongoing symptoms and/or objective findings of persistent GORD during the follow-up period.
6. Postoperative complications, as defined by the trial authors.
7. Gas bloat, measured on a dichotomous, categorical or visual scale.
For all secondary outcomes except postoperative complications, data will be analysed separately in four groups according to follow-up time, where enough data is available to make this meaningful.
a. From 3 months, up to and including 1 year.
b. From over 1 year, up to and including 5 years.
c. From over 5 years, up to and including 10 years.
d. Over 10 years.

Where one trial has reported the same secondary outcome for different follow-up timepoints, we will include the data in the appropriate groups, ensuring that duplication is avoided.

Data extraction (selection and coding)
Selection of studies:
The results of searches from both the electronic databases and other resources will be combined in a spreadsheet. Duplicate citation records will be excluded. Duplicate publications will be retained in case all data are not reported in both. Two authors (MAA and JLM) will independently screen all titles and abstracts for eligibility. The full text of potentially eligible trials will then be obtained and reviewed against the pre-defined inclusion criteria. Any exclusions at this point will be independently recorded (together with the reason for exclusion), before a final list of included trials is drawn up. Disagreement will be resolved by discussion and consensus. Failing this, a third author (GPH) will arbitrate. Study selection will be reported as a PRISMA flow chart.

Data extraction and management:
A pre-piloted data extraction form, based on the Cochrane Collaboration’s Data Collection Form Template will be used by two authors (MAA and MDS) to independently extract and record data. Discrepancies will be resolved by discussion, or if a consensus cannot be reached, discussion with a third author (GPH). Any requests for further data will be made if required (MAA), by contacting the first or contact author of the relevant trial, where an email address is available.

Dealing with missing data:
Where data are missing or not available, we will contact the study authors to request this (MAA), where an email address is available. Where data are missing to the extent that the study cannot be included in the meta-analysis and attempts to obtain the relevant data have been exhausted, the results will be presented and discussed in the review, in the context of the findings.

We will calculate missing statistics such as standard deviations from the reported data where possible. Where standard deviations cannot be calculated, we will impute these using the mean of the reported standard deviations from the other trials. Sensitivity analysis will be performed to explore the effect of imputed versus reported data.

Risk of bias (quality) assessment
The methodological quality of each included study will be independently assessed by two authors (MAA and MDS), using a standardised, pre-piloted form as part of the data extraction process. The assessment will be based on the Cochrane Collaboration’s Risk of Bias tool, using the following domains: random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective outcome reporting, and any other potential sources of bias. Each domain will be assessed as low risk, high risk, or unclear. Disagreements will be resolved by discussion, and arbitration by a third author (GPH) where consensus cannot be reached. We will report the results of this assessment as a Risk of Bias summary figure.

Strategy for data synthesis
Data synthesis:
A network, or multiple treatments, meta-analysis will be performed to use the available indirect evidence, in addition to the pair-wise comparisons. This is a method of synthesising information from a network of trials addressing the same question using different interventions, where both the direct (pair-wise) and indirect evidence can be used to produce a single effect size. This increases precision while randomisation is respected. This also enables a ranking of the different interventions according to their effectiveness, as measured by different outcomes. This will be performed within a frequentist framework using Stata, by running the routines available for network meta-analysis. The construct of the network will be reported as a network geometry figure.
Assessment of heterogeneity:
We will assess the heterogeneity of included studies according to their clinical, methodological and statistical diversity. Clinical heterogeneity will be assessed using subgroup analysis. Statistical heterogeneity will be assessed by calculating predictive intervals. We will also assess inconsistency or incoherence of each independent three-way loop in the evidence structure, by calculating the difference between the direct and indirect estimates (the inconsistency factor) in each closed loop formed by the network of trials. This will be presented as an inconsistency plot. Any significant inconsistencies will be investigated further to determine possible causes, including methodological and clinical heterogeneity.

Assessment of reporting biases:
We will assess publication bias by visual inspection of a funnel plot if there are enough studies to make this reasonable.

Analysis of subgroups or subsets
Subgroup analysis:
We will perform the following subgroup analyses if possible:
1. Open versus laparoscopic surgery (per intervention technique).
2. Division of the short gastric arteries in 360° wraps.

Sensitivity analysis:
We will conduct sensitivity analysis by excluding trials of low methodological quality and consider the results of this analysis in comparison to overall findings in the discussion section. We will also conduct sensitivity analysis to explore the effects of imputed data; and the effects of studies where more than one technique was used in the same arm.

Contact details for further information
Mohammad Amaz: the_busy_b@hotmail.com

Organisational affiliation of the review
Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, PO Box 58, Dunedin 9054, New Zealand
http://www.otago.ac.nz/srm-surgery/

Review team members and their organisational affiliations
Dr Mohammad A Amaz: Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
Mr Mark D Smith: Department of General Surgery, Southland Hospital, Invercargill, New Zealand
Professor D Peter Harman: Department of Preventive and Social Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
Professor John L McCall: Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand

Anticipated or actual start date
16 April 2014

Anticipated completion date
16 May 2015

Funding sources/sponsors
This review is part of a larger project on advanced meta-analysis funded by a New Zealand Health Research Council Project Grant (HRG 12/265).
The contact author is a recipient of the Dunedin School of Medicine Dunbar Scholarship for 2014 and 2016, and the Royal Australasian College of Surgeons Foundation for Surgery New Zealand Scholarship for 2015.

Conflicts of interest
PROSPERO
International prospective register of systematic reviews

None known

Language
English

Country
New Zealand

Published protocol

Stage of review
Review_Completed_published

Details of final report/publication(s)

https://doi.org/10.1002/bjs.10924

Subject index terms status
Subject indexing assigned by CRD

Subject index terms
Adult; Gastroesophageal Reflux; Humans

Date of registration in PROSPERO
04 June 2014

Date of publication of this version
06 August 2018

Details of any existing review of the same topic by the same authors
None

Stage of review at time of this submission

<table>
<thead>
<tr>
<th>Stage</th>
<th>Started</th>
<th>Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary searches</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Piloting of the study selection process</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Formal screening of search results against eligibility criteria</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Data extraction</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Risk of bias (quality) assessment</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Data analysis</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Versions
04 June 2014
04 June 2014
17 November 2014
12 April 2018
<table>
<thead>
<tr>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 December 2015</td>
</tr>
<tr>
<td>21 December 2015</td>
</tr>
<tr>
<td>29 December 2015</td>
</tr>
<tr>
<td>26 June 2016</td>
</tr>
<tr>
<td>06 August 2016</td>
</tr>
</tbody>
</table>

PROSPERO
International prospective register of systematic reviews

This information has been provided by the named contact for this review. CRD has accepted this information in good faith and registered the review in PROSPERO. CRD bears no responsibility or liability for the content of this registration record, any associated files or external websites.
A3 Network meta-analysis of surgical management of gastro-oesophageal reflux disease in adults

Network meta-analysis of surgical management of gastro-oesophageal reflux disease in adults

M. A. Amer1,2, M. D. Smith1,2, C. H. Khoo1, G. P. Herbison1 and J. L. McCall1,3,5,6

Departments of 1Surgical Sciences and 2Preventive and Social Medicine, Dunedin School of Medicine, University of Otago, and 3Department of General Surgery, Dunedin Hospital, Dunedin, 4Department of General Surgery, Christchurch Hospital, Christchurch, and 5Department of Surgery, School of Medicine, University of Auckland, and 6New Zealand Liver Transplant Unit, Auckland, New Zealand

Correspondence to: Dr M. A. Amer, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, PO Box 54, Dunedin 9054, New Zealand (e-mail: mbamer@msd.uniba.edu.au)

Background: Proton pump inhibitors are the mainstay of treatment for gastro-oesophageal reflux disease, but are associated with ongoing costs and side-effects. Antireflux surgery is cost-effective and is preferred by many patients. A oesophageal (360°) fundoplication is the traditional procedure, but other variations including partial fundoplications are also commonly performed, with the aim of achieving durable reflux control with minimal dysphagia. Many RCTs and some pairwise meta-analyses have compared some of these procedures but there is still uncertainty about which, if any, is superior. Network meta-analysis allows multiple simultaneous comparisons and robust synthesis of the available evidence in these situations. A network meta-analysis comparing all antireflux procedures was performed to identify which has the most favourable outcomes as short-term (1–12 months), medium-term (1–5 years) and long-term (10 years and more than 10 years) follow-up.

Methods: Article databases were searched systematically for all eligible RCTs. Primary outcomes were quality-of-life measures and dysphagia. Secondary outcomes included reflux symptoms, pH studies and complications.

Results: Fifty-one RCTs were included, involving 3357 patients and 14 different treatments. Posteror partial fundoplication ranked best in terms of reflux symptoms, and caused less dysphagia than most other interventions including Nissen fundoplication. This was consistent across all time points and outcome measures.

Conclusion: Posteror partial fundoplication provides the best balance of long-term, durable reflux control with less dysphagia, compared with other treatments.

Published online 11 July 2018 in Wiley Online Library (www.bjps.org), DOI: 10.1111/bjp.13024

Introduction

Gastro-oesophageal reflux disease (GORD) affects up to 20 per cent of the population in the Western world. Proton pump inhibitor (PPI) therapy has been the mainstay of treatment for the past 20 years, with surgery reserved mainly for patients with refractory GORD. However, the cost, inconvenience and potential side-effects of long-term acid suppression mean that many patients prefer surgery. Several recent RCTs have confirmed the long-term cost-effectiveness of surgical intervention compared with continued medical therapy. Surgical procedures for GORD largely involve the creation of a flap valve by wrapping the gastric fundus around the gastro-oesophageal junction (so-called fundoplication). Several variations of this are commonly performed, including total 360° (Nissen) fundoplication, and partial fundoplication positioned either posterior or anterior to the oesophagus as it enters the abdomen via the oesophageal hiatus of the diaphragm. The aim of partial wraps is to reduce the incidence of dysphagia, but the potential disadvantage is poorer reflux control.
More than 50 RCTs have compared various fundoplication procedures, involving thousands of patients and years of follow-up data. Although the results of many have been pooled in pairwise meta-analyses, all these have inherent limitations, as they have either combined different fundoplication techniques to allow a local-to-local analysis 15-16, or compared only two techniques in isolation35-37. It therefore remains difficult, more than 40 years after the first RCT was published11, to determine which fundoplication technique is superior, both in terms of reflux control and potential harm12. Calls have been made for even more RCTs38, whereas others have suggested that none of the options is ideal13, and the choice of procedure should simply be left to the surgeon14.

Network meta-analysis allows the simultaneous comparison of multiple different treatments for a given condition, while respecting randomization42. It can be thought of as an extension of the standard pairwise (A versus B) meta-analysis, to a structure that includes multiple treatments (A versus B versus C) and all the possible direct and indirect comparisons within. This increases the precision of the effect estimate, and allows valid comparisons to be made between interventions even if they have not been compared directly in an RCT13. Network meta-analysis also enables ranking of different treatments with respect to benefits and harms.

The aim of the present systematic review and network meta-analysis was to include all available evidence from RCTs that have compared different fundoplication techniques in adults with GORD to identify which, if any, technique has the most favourable outcome profile in terms of reflux control, and side-effects such as dysphagia. As the degree of reflux control, and prevalence of dysphagia and other symptoms can change significantly over time following surgery, the analysis was repeated at four follow-up time points: 3–12 months, 1–5 years, 5–10 years and over 10 years.

Methods

This study was conducted in accordance with the Cochrane Collaboration’s recommended methodology49 and the PRISMA guidelines50, including those specifically concerning network meta-analysis51. The study protocol, including a detailed analysis plan, was prepared and published \textit{a priori}. A complete description of the methods is included in Appendix S1 (supporting information).

Search strategy and study selection

Article databases, trial registries and grey literature sources were searched from inception to March 2017, using a structured search strategy (Appendix S2, supporting information) and no language restrictions, for RCTs comparing any surgical antireflux procedures, and/or PPIs, in adult patients with GORD. Two authors independently screened all titles and abstracts for eligibility. Selected full texts were then reviewed independently before a list of included studies was finalized, in discussion with a third author.

Outcome measures

All trials that reported the primary outcomes, including general and gastroesophageal-specific quality-of-life scores and dysphagia, were included. Trials were also included if they reported any of the following secondary outcomes: reflux symptoms, oesophageal acid exposure scores, total oesophageal acid exposure time, dilatation for dysphagia rate, reoperation rate, postoperative complications and gas bleed syndrome (Appendix S4, supporting information).

Data extraction and quality assessment

A structured, piloted electronic form was used by two authors independently to collect extracted data. Study authors were contacted to request missing data if an e-mail address was available. Data that were still missing were calculated if possible using established methodology, or imputed (Appendix S5, supporting information). All outcome data except postoperative complications were recorded separately in four groups according to follow-up times: 3–12 months, 1–5 years, 5–10 years and more than 10 years. Continuous (score) and dichotomous (rate) data for each outcome were both included and recorded separately. Where one trial reported the same outcome for different follow-up times, data were included in the appropriate groups, ensuring that duplication was avoided.

The Cochrane risk-of-bias tool52 was used to assess the methodological quality of all included RCTs (Appendix S1, supporting information).

Statistical analysis

A random-effects network meta-analysis was performed using the suite of R53 3.1.1 routines (RStudio, College Station, Texas, USA) available for this54 (Appendix S1, supporting information). The main analyses included all treatments for which data were available for that outcome and follow-up time. Fundoplications were divided into the following four groups: 90\degree, at least 120\degree anterior partial fundoplication (APF), at least 180\degree posterior partial fundoplication (PPF) and total 360\degree Nissen fundoplication (NF). Allocation of 120\degree APF was subjected to sensitivity
analysis by reallocation to the 90th group. Network maps for each outcome were produced to provide a visual summary of the network of evidence available. An intention-to-treat analysis was used.

For outcome time points with enough data available, and statistically significant differences between treatments, the ranking probabilities of each fundoplication technique (and PPI, as the reference) were calculated, and presented as a rankogram. The ranking (surface under the cumulative ranking curve, SUCRA) scores for each treatment for the most commonly reported effectiveness (reflux) and adverse (dysphagia) outcomes were then combined by time point into clustered ranking plots, to enable a simultaneous comparison of benefit and harm.

Several sensitivity analyses, and testing for evidence of data heterogeneity and publication bias were also carried out (Appendix S1, supporting information).

Results

Search results and study characteristics

The database search and study selection process are summarized in Fig. 1. Fifty-one RCTs (reported in 75 papers with eligible data) were included, involving 5377 patients and 13 different surgical procedures in addition to PPIs (Table I). The most common comparison was NF versus PPI; NF was compared with every other fundoplication in at least three RCTs. The characteristics and relevant outcomes of each included RCT are detailed in Table S1 (supporting information), and the number of trials and patients for which data were available for each outcome and follow-up time in Table S2 (supporting information). Fig. S1 (supporting information) summarizes the risk-of-bias assessment of the included trials, and Fig S2 (supporting information) shows the domain assessment for individual trials, categorized by comparison. Only seven trials were judged as being at low risk of bias across all domains. Many trials did not provide details of blinding and allocation concealment, although over one-quarter were judged as well blinded.

Outcomes

Reflux

Reflux was the most commonly reported efficacy outcome (Table S2, supporting information), and was therefore substituted in place of quality-of-life scores as the main efficacy outcome. Fig. 2a and Fig. S3 (supporting information) summarize the direct evidence available at 3–12 months, for
Table 1. Summary of included trials

<table>
<thead>
<tr>
<th>Trial comparison</th>
<th>No. of trials</th>
<th>No. of patients</th>
<th>Publication year</th>
<th>Europe</th>
<th>Americas</th>
<th>Oceania</th>
<th>Asia/Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nissen versus PPI</td>
<td>10</td>
<td>2150</td>
<td>2006–2015</td>
<td>14</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Nissen versus APR</td>
<td>6</td>
<td>590</td>
<td>2004–2010</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Nissen versus Nissen</td>
<td>2</td>
<td>505</td>
<td>2010–2012</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Laparoscopic versus APR</td>
<td>3</td>
<td>609</td>
<td>2008–2011</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>PPI versus Nissen</td>
<td>4</td>
<td>596</td>
<td>2007–2017</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nissen versus Angerican</td>
<td>1</td>
<td>32</td>
<td>1999</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nissen versus HII</td>
<td>2</td>
<td>115</td>
<td>1961–1964</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nissen versus Others</td>
<td>7</td>
<td>706</td>
<td>1964–2015</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPI versus PPI</td>
<td>1</td>
<td>252</td>
<td>2012</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd:YAG versus Nd:YAGII</td>
<td>0</td>
<td>488</td>
<td>1996–2000</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Laparoscopic versus Nd:YAG</td>
<td>1</td>
<td>717</td>
<td>2009</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belsey versus HII</td>
<td>1</td>
<td>30</td>
<td>1974</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Number of trials reporting this comparison. Three-arm trials are therefore included three times in the counts for all trials directly compared in them. Total number of patients randomized in each comparison. The number of events for different outcomes at different time points varied. Patients enrolled in three-arm trials are accounted twice to account for the two direct comparisons each patient was involved in. Year of publication of index paper in each trial; subsequent follow-up papers were included in this review, but are not included in this column. Single trial comparisons. Other procedures included: Delphi Mark IV, BMB IV, Zuma, on. V transoral endoscopy, curvical coagulation with posterior gastroscopy. Nissen with mesh hiatal Hernia, Nissen with partial graft, fundal, anterior reflux, fundoplication (NUG), mesh hiatal hernia and anterolateral suspension. Nissen with and without use of a laparoscopic valve (NUG). PPI, posterior partial fundoplication; APR, anterior partial fundoplication; 90°, 90° fundoplication; PPI, posterior partial fundoplication; NUG, Nissen with short gastric vessel division; NUG, Nissen with short gastric vessel preservation.

Fig. 2 Network maps of direct evidence for a short-term reflux and dysphagia rate at 3–12 months after treatment. The size of each circle (node) is proportional to the number of patients who received the treatment. The width of the lines represents the number of RCTs that directly compared the connected pairs of treatments: PPI, posterior partial fundoplication; APR, anterior partial fundoplication; 90°, 90° fundoplication; PPI, posterior partial fundoplication; NUG, Nissen with short gastric vessel division; NUG, Nissen with short gastric vessel preservation.

Rates and scores respectively. Across all time points, rate and score data showed similar overall results and rankings, despite minor variations in the treatment effect point estimates and confidence intervals.

Tables 3 and 4 (supporting information) show reflux network meta-analysis results for rate and score data respectively. At 3–12 month follow-up, NF showed a significantly lower rate of reflux symptoms than PPI therapy or APR, and was the only fundoplication with reflux rates as low as those of the Angerican procedure. Analysis of score data showed that all fundoplications had significantly lower reflux scores than PPI therapy, but there were no
statistically significant differences between the fundaplications. Both NF and PPF had significantly lower reflux scores than mesh hiatalpasty with cardiafundoplication. Fig. 3a shows the fundaplication rankogram for reflux scores at 3–12 months; NF and PPF ranked similarly as the best treatments, followed by APE, 90° and PPI respectively. Rate data showed similar rankings (Fig. 5d, supporting information).

At 1–5-year follow-up, there were no statistically significant differences between the groups in the main analysis of rate data. Score data analysis showed a reduction in reflux scores with any fundaplication in comparison with PPI, except 90°. PPF alone had statistically significantly lower reflux scores compared with mesh hiatalpasty with cardiafundoplication. Fundaplication rankograms showed that PPF ranked as the best treatment (Fig. 3b).

At long-term follow-up, patients who underwent PPF were significantly less likely to report reflux symptoms than those who had APE or NF, although this was based on rate data from only three studies. Score data were available only for APF and NF, with no significant difference between them. One study reported data after follow-up of more than 10 years, with no statistically significant difference in reflux rates between NF and PPF.

Pairwise meta-analysis and sensitivity analyses showed no substantive differences compared with the main analysis results (Appendix S3, supporting information). Apart from the 5–10-year comparison where predictive intervals were wide (suggesting significant between-study heterogeneity), there was no evidence of inconsistency or heterogeneity in the analyses.

Dysphagia

A large number of trials reported this outcome (Table S2, supporting information). Fig. 2b and Fig. 5f (supporting information) summarize the direct evidence available at 3–12 months for rates and scores respectively. Rate and score data showed similar overall results and rankings across all time points, despite some variation in the treatment effect point estimates and confidence intervals.
respectively. At 3–12-month follow-up, patients who underwent NF had a significantly higher rate of dysphagia at 3–12 months than any other group apart from Angelchik and Hill repair. NF also had significantly higher dysphagia scores than APF or 90° fundoplication. There were no statistically significant differences between the partial fundoplications, or between any of them and PPI therapy. Fundoplication rankograms are shown for raw data in Fig. 4a and for score data in Fig. 5b (supporting information). Nissen consistently ranked as the worst treatment, and PPI and APF ranked fairly similarly.

At 1–5 years, those who underwent any partial fundoplication were still significantly less likely to suffer from dysphagia and had lower dysphagia scores, compared with those who had NF. This is reflected in the fundoplication rankograms (Fig. 4c, Fig. 5c, supporting information), with Nissen again ranking as the worst treatment.

At 5–10-year follow-up, NF was still associated with statistically significantly higher dysphagia scores than APF or PPI. Raw data analysis showed similar point estimates, but with wider confidence intervals. One study that reported score data after more than 10 years for APF alone found no significant difference.

Results of pairwise meta-analysis and sensitivity analyses were largely similar to those of the main analysis (Appendix S1, supporting information). Predictive intervals for all comparisons were narrow, and inconsistency factors for all loops were small, suggesting no evidence of significant inconsistency or heterogeneity.

Quality-of-life scores

Both general (health-related) and gastrointestinal/reflux-specific quality-of-life scores were reported by a small number of trials, with all time point analyses for these two outcomes combining data from just four trials or fewer (Table S2, supporting information). This paucity of data led to a decision to substitute these outcomes with reflux as the main measure of efficacy in this review. Network meta-analysis results are detailed in Appendix S3, Figs S7 and S8, and Tables S7 and S8 (supporting information).
Fig 5 Clustered ranking plots of main treatments at different time points, according to efficacy of reflux control and incidence of dysphagia: a 1–12-month continuous data; b 1–12-month dichotomous data; c 1–5-year continuous data; d 1–5-year dichotomous data. The surface under the cumulative ranking curve (SUCRA) value of 100 corresponds to a 100 per cent probability of this treatment ranking first for that outcome, and a value of 0 corresponds to a 100 per cent probability of this treatment ranking last. Treatments in the top right quadrant of the plot offer the best reflux control with the least dysphagia. Missing outcomes indicate insufficient data to enable cluster analysis. There were insufficient continuous data beyond 5 years. Dichotomous data for the 5–10-year and over 10-year time points were combined to enable cluster analysis. PPI, proton pump inhibitor; APC, antipepticus; PPP, PPI and proton pump inhibitor.
Other results
The results for all other outcomes are detailed in Appendix S3, Tables S9–S13 and Figs S8–S19 (supporting information). Comparison-adjusted funnel plots, for assessment of publication bias, are shown in Fig. S20 (supporting information). Study-specific effect sizes were distributed evenly around the pooled estimate line, with the exception of studies of NF versus PPF reporting reflux rate data.

Cluster plots of benefit and harm
SUgRA clustered ranking plots are shown in Fig. 5. Across all time points with sufficient data to enable this analysis, PPF was the only treatment that consistently ranked well in terms of reflux and dysphagia.

Discussion
This network meta-analysis has shown that PPF resides in the best balance between reflux control and side-effects including dysphagia, in comparison with other surgical procedures for GORD. PPF is also superior to medical therapy in terms of reflux control. These findings remain consistent through all follow-up time points, and different outcome measures.

Three previous pairwise meta-analyses13,14 investigated the outcomes of PPF in comparison with NF alone, concluding that PPF resulted in equivalent reflux control with less dysphagia; however, they were not able to address how other commonly performed procedures, such as AEF, would compare.29 Other meta-analyses included PPF in a mixed ‘posterior’2,3 or ‘partial’11,18 fundoplication group, and compared this with a second mixed group, generating results that are difficult to interpret given the heterogeneous nature of the procedures being compared.25 All of the previous meta-analyses included a small number of RCTs (fewer than 12) as only direct comparisons were possible. In addition, most used only the data reported at latest follow-up from each trial, meaning that the analysis contained short- and long-term results from different patients. This introduces another source of heterogeneity, because the prevalence of symptoms such as dysphagia changes significantly over time.27

The network meta-analysis methodology used in the present study allowed much more RCT data to be included, with each procedure analysed simultaneously as a separate group in a manner that fully respects randomization.22 The use of all available direct and indirect evidence increased the precision of the effect estimates. Analyzing data from different follow-up times separately also eliminated an important source of heterogeneity, and allowed outcome measures over time to be determined. These features increase the external validity and clinical applicability of the results, in comparison with other reviews.

Patient-reported scores were used to assess all primary and several secondary outcomes in this review to enable a pragmatic evaluation of the procedures. More objective tools such as pH monitoring and oesophagometry have traditionally been regarded as the standard methods of assessing reflux control after surgery for GORD,30 and manometry and mechanical studies have been used to assess side-effects such as dysphagia.7,31 However, there is evidence that the results of such investigations correlate poorly with clinical outcome following surgery.32–34 Furthermore, patients who feel well after surgery with no significant symptoms are less likely to consent to further invasive tests, which may bias the results.35

The best measure of surgical success is relief of symptoms without significant side-effects, as reported by the patient, particularly as the indication for antireflux surgery is usually patient preference and symptom severity.36 Patient-reported symptom scores have been shown to correlate best with the actual outcome as perceived by the patient.37

This study has some potential limitations. The quality of included trials in any meta-analysis affects the validity of its results, and the risk of selection and performance bias in a proportion of included RCTs was assessed as unclear or high, as blinding was not attempted or reported. Blinding was not possible in trials that compared surgical intervention with PPI therapy. Overall, trial quality did not significantly vary between comparisons, and there was no evidence of systematic publication bias.

The inclusion of non-fundoplication procedures, one of which is no longer performed because of safety concerns,12 may be questioned. This was done to enable use of indirect evidence available from those RCTs, and therefore increase the precision of the overall effect estimates. Furthermore, each of these older procedures was analysed as a separate individual node in all analyses, and subjected to sensitivity analysis (by exclusion) to ensure that its inclusion did not influence the main findings.

Current US38 and European39 guidelines suggest that the choice of antireflux procedure should be left to the individual surgeon according to their expertise and regional practice, as the conclusions of published trials and reviews have been mixed. This network meta-analysis, which incorporates the results of over 50 RCTs involving more than
5300 patients, has shown that PPI provides the best balance of reflux control and dysphagia, in comparison with all other antireflux procedures and medical therapy, and that this effect is durable.

Acknowledgments

The authors thank V. Jordan (NZ Cochrane Fellow, School of Medicine, University of Auckland) and R. German (Medical Librarian, University of Otago) for assistance with development and validation of the search strategy; the Interloans team in the University of Otago Library and staff at the Royal Australasian College of Surgeons Library for their assistance with retrieval of trial papers; and D. Watson (Flinders University) for providing additional study information and data. The protocol for this review was registered a priori (PROSPERO: CRD42014010374). This project was supported by a Health Research Council of New Zealand Project Grant (12/250) and a Dunedin School of Medicine Dean’s Postgraduate Fund Grant (2016). M.A.A. is the recipient of a Royal Australasian College of Surgeons Foundation for Surgery New Zealand Scholarship (2015) and a Dunedin School of Medicine Dux Ratio Scholarship (2014, 2016).

Disclosure: The authors declare no conflict of interest.

References

253

Supporting information

Additional supporting information can be found online in the Supporting Information section at the end of the article.
APPENDIX B

Preoperative carbohydrate loading systematic review and NMA – additional material

B1 Search strategies

CENTRAL search

#1 MeSH descriptor Carbohydrates explode all trees
#2 ((carbohydrat* or CHO) near (oral or load* or treatment or drink* or fluid* or administrat* or rich))
#3 (oral fluid* or CHO or fasting):ti,ab
#4 nutricia* or maltodextrin
#5 (#1 OR #2 OR #3 OR #4)
#6 MeSH descriptor Postoperative Care, this term only
#7 MeSH descriptor Postoperative Period, this term only
#8 MeSH descriptor Insulin Resistance, this term only
#9 MeSH descriptor Surgical Procedures, Elective, this term only
#10 MeSH descriptor Postoperative Complications, this term only
#11 MeSH descriptor Cholecystectomy, Laparoscopic, this term only
#12 MeSH descriptor Pain, Postoperative, this term only
#13 pre?op*:ti,ab
#14 (postoperative near (recovery or pain or nausea or vomiting or fatigue)):ti,ab
#15 (insulin near resistance):ti,ab
#16 (surgery near (elective or abdominal)):ti,ab
#17 (#6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR #16)
#18 (#5 AND #17)

Medline search

1. ((carbohydrat* or CHO) adj3 (oral or load* or treatment or drink* or fluid* or administrat* or rich)).mp. or (oral fluid* or CHO or fasting).ti,ab. or (nutricia* or maltodextrin).mp. or Carbohydrates/
2. Postoperative Care/ or Postoperative Period/ or Insulin Resistance/ or Surgical Procedures,
Elective/ or Postoperative Complications/ or Cholecystectomy, Laparoscopic/ or Pain,
Postoperative/ or pre?op*.ti,ab. or (post?operative adj3 (recovery or pain or nausea or vomiting or
fatigue)).ti,ab. or (insulin adj3 resistance).ti,ab. or (surgery adj3 (elective or abdominal)).ti,ab.
3. 1 and 2
4. ((randomized controlled trial or controlled clinical trial).pt. or randomized.ab. or placebo.ab. or
clinical trials as topic.sh. or randomly.ab. or trial.ti.) not (animals not (humans and animals)).sh.
5. 3 and 4

EMBASE search
1. ((carbohydrat* or CHO) adj3 (oral or load* or treatment or drink* or fluid* or administrat* or
rich)).mp. or (oral fluid* or CHO or fasting).ti,ab. or (nutricia* or maltodextrin).mp. or
carbohydrate/
2. pre?op*.ti,ab. or (post?operative adj3 (recovery or pain or nausea or vomiting or fatigue)).ti,ab.
or (insulin adj3 resistance).ti,ab. or (surgery adj3 (elective or abdominal)).ti,ab. or postoperative
care/ or postoperative period/ or postoperative pain/ or insulin resistance/ or elective surgery/ or
postoperative complication/ or cholecystectomy/
3. (placebo.sh. or controlled study.ab. or random*.ti,ab. or trial*.ti,ab.) not (animals.sh not
(humans.sh and animals.sh))
4. 3 and 2 and 1

CINAHL search
S1 TX (carbohydrate* or CHO) and AB (oral or load* or treatment or drink* or fluid* or
administrat* or rich)
S2 AB oral fluid* or CHO or fasting
S3 TX nutricia* or maltodextrin
S4 (MM “Carbohydrates”)
S5 S1 or S2 or S3 or S4
S6 (MH “Postoperative Pain”) OR (MH “Postoperative Period”) OR (MH “Postoperative Care”)
OR (MH “Postoperative Complications”) OR (MH “Insulin Resistance”) OR (MH “Surgery,
Elective”) OR (MH “Cholecystectomy, Laparoscopic”)

256
S7 TI pre?op* or AB pre?op*
S8 AB postoperative and AB (recovery or pain or nausea or vomiting or fatigue)
S9 AB insulin and AB resistance
S10 AB surgery and AB (elective or abdominal)
S11 S6 or S7 or S8 or S9 or S10
S12 S5 and S11
S13 (random* or placebo or trial*) or ((single or double or triple or treble) and (mask* or blind*)) or (multicenter* or prospective)
S15 S13 or S14
S16 S12 and S15

Web of Science search
1. TS=(pre$op*) or TS=((cholecystectomy or surgery or surgical) same (elective or abdominal or laparoscopic))
2. TS=((carbohydrat* or CHO) same (oral or load or treatment or drink* or fluid* or administrat* or rich)) or TS=(nutricia* or maltodextrin)
3. TS=(post$op* same (care or period or complications or pain or recovery or nausea or vomiting or fatigue)) or TS=(insulin same resistance)
4. #1 AND #2 AND #3
B2 Data extraction form

<table>
<thead>
<tr>
<th>Unique ID</th>
<th>ISDN</th>
<th>First author</th>
<th>Year</th>
<th>Reviewer</th>
<th>Date Reviewed</th>
</tr>
</thead>
</table>

Notes

Study Methods and Details

<table>
<thead>
<tr>
<th>Trial Characteristics</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study site(s)</td>
<td></td>
</tr>
<tr>
<td>Country/countries</td>
<td></td>
</tr>
<tr>
<td>How was participant eligibility defined?</td>
<td></td>
</tr>
<tr>
<td>Mean or median age of participants</td>
<td></td>
</tr>
<tr>
<td>Risk breakdown of participants (ASA where defined)</td>
<td></td>
</tr>
<tr>
<td>Surgery type / number</td>
<td></td>
</tr>
<tr>
<td>Number receiving:</td>
<td></td>
</tr>
<tr>
<td>* Epidural anaesthesia</td>
<td></td>
</tr>
<tr>
<td>* Spinal anaesthesia</td>
<td></td>
</tr>
<tr>
<td>* General anaesthesia</td>
<td></td>
</tr>
<tr>
<td>Number undergoing laparoscopic/minimally invasive surgery</td>
<td></td>
</tr>
<tr>
<td>How many participants were randomized?</td>
<td></td>
</tr>
<tr>
<td>Number of participants allocated to:</td>
<td></td>
</tr>
<tr>
<td>* Carbohydrate</td>
<td></td>
</tr>
<tr>
<td>* Placebo</td>
<td></td>
</tr>
<tr>
<td>* Fasting</td>
<td></td>
</tr>
<tr>
<td>Number of participants analysed:</td>
<td></td>
</tr>
<tr>
<td>* Carbohydrate</td>
<td></td>
</tr>
<tr>
<td>* Placebo</td>
<td></td>
</tr>
<tr>
<td>* Fasting</td>
<td></td>
</tr>
<tr>
<td>Carbohydrate group:</td>
<td></td>
</tr>
<tr>
<td>* Preparation</td>
<td></td>
</tr>
<tr>
<td>* Time administered</td>
<td></td>
</tr>
<tr>
<td>* Route administered</td>
<td></td>
</tr>
</tbody>
</table>
(Continued)

* Volume of drink
* Carbohydrate dose
* Co-intervention

Placebo group:
* Details of placebo
* Time administered
* Amount of drink
* Carbohydrate dose

Fasting group:
* Duration of preop fast - solids
* Duration of preop fast - liquids
* Duration of preop fast - carbohydrate

References to other trials

<table>
<thead>
<tr>
<th>First author</th>
<th>Journal/Conference</th>
<th>Title</th>
<th>Year of publication/presentation</th>
<th>Contact details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Did this report include any references to published or unpublished trials potentially eligible for this review? **No**

Outcomes - Complete a separate copy for each relevant subgroup

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For continuous data:

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Unit of measurement</th>
<th>Carbohydrate group</th>
<th>Placebo group</th>
<th>Fasting group</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n</td>
<td>Mean</td>
<td>SD</td>
<td>n</td>
</tr>
</tbody>
</table>

Primary outcome - Length
(Continued)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin resistance (HOMA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postop fatigue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postop nausea at 24 hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postop vomiting in the first 24 hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postop time to passage of flatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postop time to passage of first bowel movement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For dichotomous data:

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Carbohydrate group</th>
<th>Placebo group</th>
<th>Fasting group</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>number with event</td>
<td>number without event</td>
<td>number with event</td>
<td>number without event</td>
</tr>
<tr>
<td>Primary outcome - Total complications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspiration pneumonitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postop vomiting 1 or more episodes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain</th>
<th>Describe</th>
<th>Reviewer’s Judgement - Risk of Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Adequate sequence generation</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>2. Allocation concealment</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>3. Blinding - Subjective</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Blinding - Objective</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>4. Incomplete outcome data - Length of Stay</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Incomplete outcome data - Complication rate</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Incomplete outcome data - Secondary endpoints</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>5. Selective outcome reporting</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>6. Other potential threats to validity</td>
<td>Unclear</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C

Anti-reflux surgery systematic review and NMA – additional material

C1 Search strategies

CENTRAL search
1. (MeSH descriptor gastroesophageal reflux, explode all trees) or (MeSH descriptor bile reflux, explode all trees) or (MeSH descriptor heartburn, explode all trees) or (MeSH descriptor esophagitis, explode all trees) or (MeSH descriptor gastritis, explode all trees) or (MeSH descriptor gastroparesis, explode all trees) or (MeSH descriptor gastric emptying, explode all trees) or (MeSH descriptor esophageal motility disorders, explode all trees) or (MeSH descriptor dyspepsia, explode all trees) or (MeSH descriptor eructation, explode all trees) or (MeSH descriptor hernia, hiatal, explode all trees) or (esophag* or oesophag*) or (acid regurgitation) or (gastric acid) or (gastr* near reflux):ti,ab or (gord or gerd):ti,ab or (duodenogastric reflux) or (acid near reflux) or (gastr* acid secret*) or (stomach acid secret*) or (gastr* near erosion) or (gastr* near ulcer) or (stomach erosion) or (stomach near ulcer) or (peptic near ulcer) or (heartburn or indigestion) or (esophagitis or oesophagitis) or (les):ti,ab or (low* sphinct* pressure) or (gastr* empt* disorder) or (stomach empt* disorder) or (dyspep*) or (eructat*) or (regurg*)
2. (MeSH descriptor fundoplication, explode all trees) or (fundoplic*):ti,ab or (nissen or rossetti or toupet or lind or watson or belsey or dor or hill procedure):ti,ab or (part* near fundoplication) or (antireflux surg*):ti,ab or (antireflux interven*):ti,ab or (laparosc* near fundoplication) or (open near fundoplication)
3. (#1 and #2)

Medline search
1. (randomized controlled trial or randomised controlled trial or controlled clinical trial).pt or randomized.ti,ab or randomised.ti,ab or placebo.ti,ab or drug therapy.sh or randomly.ti,ab or trial.ti,ab or groups.ti,ab
2. animals.sh NOT humans.sh
3. 1 not 2
4. esophagus/ or gastroesophageal reflux/ or exp laryngopharyngeal reflux/ or duodenogastric reflux/ or bile reflux/ or heartburn/ or esophagitis/ or esophagitis, peptic/ or gastritis/ or exp peptic ulcer/ or gastroparesis/ or gastric emptying/ or dyspepsia/ or eructation/ or exp hernia, diaphragmatic/ or $esophag*.mp or acid regurgitation.mp or (gastr* adj3 reflux).tw or gord.tw or gerd.tw or (acid adj3 reflux).tw or (gastr* adj3 acid adj3 secret*).tw or (stomach adj3 acid adj3 secret*).tw or (gastr* adj3 erosion).tw or (gastr* adj3 ulcer).tw or (stomach adj3 erosion).tw or (stomach adj3 ulcer).tw or (peptic adj3 ulcer).tw or (heartburn or indigestion).tw or $esophagitis.tw or (peptic adj3 $esophagitis).tw or les.tw or (low* adj3 sphincter adj3 pressure).tw or ($esophag* adj3 motil* adj3 disorder).tw or (gastr* adj3 empt* adj3 disorder).tw or (stomach adj3 empt* adj3 disorder).tw or dyspep*.tw or eructat*.tw or regurg*.tw

5. fundoplication/ or gastric fundus/ or fundoplic*.tw or (nissen or rossetti or toupet or lind or watson or belsey or dor or hill procedure).tw or (part* adj3 fundoplication).tw or (antireflux adj3 surg*).tw or (antireflux adj3 interven*).tw or (laparose* adj3 fundoplication).tw or (open adj3 fundoplication).tw or (minim* adj3 fundoplication).tw

6. 3 and 4 and 5

EMBASE search

1. (random$ or factorial$ or crossover$ or cross-over$ or cross over$ or placebo$ or singl$ adj blind$ or doubl$ adj blind$ or triple blind$ or assign$ or allocate$ or volunteer$).ti,ab or crossover procedure/ or double-blind procedure/ or randomized controlled trial/ or single-blind procedure/
2. (animal$ not human$).sh,hw
3. (book or conference paper or editorial or letter or review).pt not exp randomized controlled trial/
4. (random sampl$ or random digit$ or random effect$ or random survey or random regression).ti,ab not exp randomized controlled trial/
5. 1 not (2 or 3 or 4)

6. esophagus/ or gastroesophageal reflux/ or exp laryngopharyngeal reflux/ or duodenogastric reflux/ or bile reflux/ or heartburn/ or esophagitis/ or esophagitis, peptic/ or gastritis/ or exp peptic ulcer/ or gastroparesis/ or gastric emptying/ or dyspepsia/ or eructation/ or exp hernia, diaphragmatic/ or $esophag*.mp or acid regurgitation.mp or (gastr* adj3 reflux).tw or gord.tw or gerd.tw or (acid adj3 reflux).tw or (gastr* adj3 acid adj3 secret*).tw or (stomach adj3 acid adj3 secret*).tw or (gastr* adj3 erosion).tw or (gastr* adj3 ulcer).tw or (stomach adj3 erosion).tw or (stomach adj3 ulcer).tw or (peptic adj3 ulcer).tw or (heartburn or indigestion).tw or $esophagitis.tw or (peptic adj3 $esophagitis).tw or les.tw or (low* adj3 sphincter adj3 pressure).tw or ($esophag* adj3 motil* adj3 disorder).tw or (gastr* adj3 empt* adj3 disorder).tw or (stomach adj3 empt* adj3 disorder).tw or dyspep*.tw or eructat*.tw or regurg*.tw
(stomach adj3 ulcer).tw or (peptic adj3 ulcer).tw or (heartburn or indigestion).tw or $esophagitis.tw or (peptic adj3 $esophagitis).tw or les.tw or (low* adj3 sphincter adj3 pressure).tw or ($esophag* adj3 motil* adj3 disorder).tw or (gastr* adj3 empt* adj3 disorder).tw or (stomach adj3 empt* adj3 disorder).tw or dyspep*.tw or eructat*.tw or regurg*.tw
7. fundoplication/ or gastric fundus/ or fundoplic*.tw or (nissen or rossetti or toupet or lind or watson or belsey or dor or hill procedure).tw or (part* adj3 fundoplication).tw or (antireflux adj3 surg*).tw or (antireflux adj3 interven*).tw or (laparosc* adj3fundoplication).tw or (open adj3 fundoplication).tw or (minim* adj3 fundoplication).tw
8. 5 and 6 and 7

Web of Science search
1. TS=(($esophag* or gastr* or duod*) same (reflux or regurg* or acid or erosion or ulcer)) or TS=(GORD or GERD or heartburn or indigestion or dyspepsia) or TS=$esophagitis or gastritis or gastr* empty* or stomach empty*) or TS=(lower esophag* sphincter or $esophageal motility) or TS=(eructat*) or TS=(hiat* near/3 hernia)
2. TS=(fundoplic* or Nissen or Rossetti or toupet or Watson or belsey or dor or hill procedure) or TS=((antireflux or acid near/3 suppr*) SAME (surg* or laparosc* or open))
3. #1 and #2
Data Collection Form – Antireflux Network

<table>
<thead>
<tr>
<th>Trial ID</th>
<th>(name of file or folder; e.g. Mahon 2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper IDs</th>
<th>(if trial’s results published in more than one paper; e.g. Grant 2009, Grant 2013b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Publication type</th>
<th>(e.g. full report, abstract, letter)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Possible conflicts of interest</th>
<th>(for study authors)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Choo Khoo</td>
</tr>
</tbody>
</table>

Study eligibility

<table>
<thead>
<tr>
<th>Study characteristics</th>
<th>Eligibility criteria</th>
<th>Criteria met?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomised Controlled Trial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quasi-randomised Controlled Trial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult population, GORD based on symptoms AND an objective measure (e.g. manometry, endoscopy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundoplication (open, robotic or lap) for GORD, or other reflux surgical procedure. Exclude procedures specifically for Barrett's, achalasia, extra-oesophageal GORD symptoms.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparison</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment with PPIs, or another surgical procedure. Exclude treatment with other agents (e.g. H2 antagonists)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Types of outcome measures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Health related QOLs; GORD specific QOLs; Dysphagia). (Reflux symptoms; oesophageal acid exposure (score or percentage time); dilatation for dysphagia; reoperation; complications; gas bloating).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INCLUDE</th>
<th>EXCLUDE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reason for exclusion:

Notes:

DO NOT PROCEED IF STUDY EXCLUDED FROM REVIEW
Characteristics of study

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Descriptions as stated in report/paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other relevant references?</td>
<td></td>
</tr>
<tr>
<td>Unit of allocation (individuals or cluster)</td>
<td>Individual</td>
</tr>
<tr>
<td>Start and End dates</td>
<td></td>
</tr>
<tr>
<td>Follow-up time points (if multiple relevant time points reported, record the paper in which each time point was reported e.g. Woodcock 2006 12 months, Nijjar 2010 5 years)</td>
<td></td>
</tr>
</tbody>
</table>

Participants

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Description (per intervention group where appropriate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Site(s), Country</td>
<td></td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td></td>
</tr>
<tr>
<td>Exclusion criteria</td>
<td></td>
</tr>
<tr>
<td>Mean or median age</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>Males</td>
</tr>
<tr>
<td>Severity (prooperative OGD or pH study)</td>
<td></td>
</tr>
<tr>
<td>Baseline imbalances</td>
<td></td>
</tr>
<tr>
<td>Total no. randomised</td>
<td></td>
</tr>
<tr>
<td>Total no. analysed</td>
<td></td>
</tr>
<tr>
<td>Withdrawals and exclusions</td>
<td></td>
</tr>
</tbody>
</table>
Intervention groups

Intervention Group 1 [Surgical Procedure]

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Description as stated in report/paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group name, no. randomised</td>
<td></td>
</tr>
<tr>
<td>Procedure Details</td>
<td></td>
</tr>
<tr>
<td>(for Type: choose from Nissen; Partial posterior; Partial anterior; 90°; mixed; Angelchik; Belsey Mark IV; or other and detail this. For Other: state any peculiarities e.g. rectus abdominis graft/prosthesis)</td>
<td></td>
</tr>
<tr>
<td>(Type)</td>
<td>Nissen</td>
</tr>
<tr>
<td>(Lap/Open/Robotic)</td>
<td>Laparoscopic</td>
</tr>
<tr>
<td>(SGV division)</td>
<td>No</td>
</tr>
<tr>
<td>(Bouge)</td>
<td>Yes</td>
</tr>
<tr>
<td>(Wrap length)</td>
<td></td>
</tr>
<tr>
<td>(Wrap Fixation)</td>
<td></td>
</tr>
<tr>
<td>(Crura Approximated?)</td>
<td>Yes</td>
</tr>
<tr>
<td>(Other)</td>
<td></td>
</tr>
</tbody>
</table>

Intervention Group 2 [Surgical Procedure, or PPI]

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Description as stated in report/paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group name, no. randomised</td>
<td></td>
</tr>
<tr>
<td>Procedure Details</td>
<td></td>
</tr>
<tr>
<td>(for Type: choose from Nissen; Partial posterior; Partial anterior; 90°; mixed; Angelchik; Belsey Mark IV; or other and detail this. For Other: state any peculiarities e.g. rectus abdominis graft/prosthesis. If procedure is PPI, simply state PPI)</td>
<td></td>
</tr>
<tr>
<td>(Type)</td>
<td>Nissen</td>
</tr>
<tr>
<td>(Lap/Open/Robotic)</td>
<td>Laparoscopic</td>
</tr>
<tr>
<td>(SGV division)</td>
<td>No</td>
</tr>
<tr>
<td>(Bouge)</td>
<td>Yes</td>
</tr>
<tr>
<td>(Wrap length)</td>
<td></td>
</tr>
<tr>
<td>(Wrap Fixation)</td>
<td></td>
</tr>
<tr>
<td>(Crura Approximated?)</td>
<td>Yes</td>
</tr>
<tr>
<td>(Other)</td>
<td></td>
</tr>
<tr>
<td>Characteristic</td>
<td>Description as stated in report/paper</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Group name, no. randomised</td>
<td></td>
</tr>
<tr>
<td>Procedure Details</td>
<td></td>
</tr>
<tr>
<td>(for Type: choose from Nissen; Partial posterior; Partial anterior; 90°; mixed; Angelchik; Belsey Mark IV; or other and detail this. For Other: state any peculiarities e.g. rectus abdominis graft/prosthesis. If procedure is PPI, simply state PPI)</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Nissen</td>
</tr>
<tr>
<td>(SGV division)</td>
<td>No</td>
</tr>
<tr>
<td>(Bougie)</td>
<td></td>
</tr>
<tr>
<td>(Wrap length)</td>
<td></td>
</tr>
<tr>
<td>(Wrap Fixation)</td>
<td></td>
</tr>
<tr>
<td>(Crura Approximated?)</td>
<td>Yes</td>
</tr>
<tr>
<td>(Other)</td>
<td></td>
</tr>
<tr>
<td>Outcome*</td>
<td>Unit/Scale**</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Health Related QoL</td>
<td></td>
</tr>
<tr>
<td>Health Related QoL</td>
<td></td>
</tr>
<tr>
<td>Health Related QoL</td>
<td></td>
</tr>
<tr>
<td>GORD Specific QoL</td>
<td></td>
</tr>
<tr>
<td>Dysphagia</td>
<td>(Continuous)</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>(Continuous)</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>(Continuous)</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>(Continuous)</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>(Dichotomous, or scale)</td>
</tr>
</tbody>
</table>

* If not enough data reported to enable extraction, state ‘Contact with authors required’ in ‘Unit/Scale’ field
** Also state tool used, and if data was calculated or imputed

270
<table>
<thead>
<tr>
<th>Outcome*</th>
<th>Unit/Scale**</th>
<th>Time Points</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3/12 – 1 yr</td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>1yr – 5 yrs</td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>5yrs – 10 yrs</td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>10yrs</td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
</tr>
</tbody>
</table>

Reflex Symptoms

Oesophageal acid exposure (De Meester Score)

3/12 – 1 yr
>1yr – 5 yrs
>5yrs – 10 yrs
>10yrs

Oesophageal acid exposure time (percentage pH<4)

3/12 – 1 yr
>1yr – 5 yrs
>5yrs – 10 yrs
>10yrs

Gas Bloating (Continuous)

3/12 – 1 yr
>1yr – 5 yrs
>5yrs – 10 yrs
>10yrs

* If not enough data reported to enable extraction, state ‘Contact with authors required’ in ‘Unit/Scale’ field

** Also state tool used, and if data was calculated or imputed

Also state tool used, and if data was calculated or imputed
<table>
<thead>
<tr>
<th>Outcome</th>
<th>Unit/Scale</th>
<th>Time Points</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number with event</td>
<td>Total Number</td>
<td>Number with event</td>
</tr>
<tr>
<td>Reflux Symptoms</td>
<td>(Dichotomous, or scale)</td>
<td>3/12 – 1 yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>1yr – 5 yrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>5yrs – 10 yrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>10yrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilatation for Dysphagia</td>
<td></td>
<td>3/12 – 1 yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>1yr – 5 yrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>5yrs – 10 yrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>10yrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reoperation Rate</td>
<td></td>
<td>3/12 – 1 yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>1yr – 5 yrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>5yrs – 10 yrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>10yrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Bloating</td>
<td>(Dichotomous, or scale)</td>
<td>3/12 – 1 yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>1yr – 5 yrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>5yrs – 10 yrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>10yrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postoperative Complications</td>
<td></td>
<td>Any time point >3 months</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* If not enough data reported to enable extraction, state ‘Contact with authors required’ in ‘Unit/Scale’ field

** Also state tool used, and if data was calculated or imputed
<table>
<thead>
<tr>
<th>Domain</th>
<th>Risk of bias</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Random sequence generation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocation concealment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blinding of patients and personnel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blinding of outcome assessment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incomplete outcome data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selective outcome reporting?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other bias</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact with authors required? (missing or incomplete data)

NOTES AND COMMENTS:
APPENDIX D

Bias in surgical trials – additional material

D1 Cochrane Library search

1. (MeSH descriptor general surgery, explode all trees) OR (MeSH descriptor gynecology, explode all trees) OR (MeSH descriptor elective surgical procedures, explode all trees) OR (Mesh descriptor digestive system surgical procedures, explode all trees) OR (MeSH descriptor surgical procedures, operative, explode all trees) OR (MeSH descriptor laparotomy, explode all trees) OR (MeSH descriptor obstetric surgical procedures, explode all trees) OR (open near surgery):ti,ab OR (standard near surgery):ti,ab OR (general surgery) OR (gynecology) OR (operative surgery)

2. (MeSH descriptor minimally invasive surgical procedures, explode all trees) OR (MeSH descriptor ambulatory surgical procedures, explode all trees) OR (MeSH descriptor surgery, computer assisted, explode all trees) OR (laparosc*):ti,ab OR (keyhole):ti,ab OR (minimally invasive)

3. (#1 AND #2)
Data Collection Form – Risk of Bias

Trial ID
(name of file; e.g. Mohan 2005). Include all file names if same trial published in more than one paper

Publication type (e.g. full report, abstract, letter)
Full report

Procedure type
Inguinal Hernia

Possible conflicts of interest (for study authors)

Reviewer
Mohammad Amer

Study eligibility

<table>
<thead>
<tr>
<th>Study Characteristics</th>
<th>Criteria met?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Type of study</td>
<td></td>
</tr>
<tr>
<td>Randomised Controlled Trial</td>
<td></td>
</tr>
<tr>
<td>Quasi-randomised Controlled Trial</td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td></td>
</tr>
<tr>
<td>Abdominal surgical procedure</td>
<td></td>
</tr>
<tr>
<td>Intervention</td>
<td></td>
</tr>
<tr>
<td>Procedure performed laparoscopically</td>
<td></td>
</tr>
<tr>
<td>Comparison</td>
<td></td>
</tr>
<tr>
<td>Procedure performed open</td>
<td></td>
</tr>
<tr>
<td>Types of outcome measures</td>
<td></td>
</tr>
<tr>
<td>Length of postoperative stay, postoperative complication rate, pain, time to return of bowel motion/flatus, time to return to normal activities/recovery</td>
<td></td>
</tr>
</tbody>
</table>

INCLUDE
 EXCLUDE

Reason for exclusion

Notes:

DO NOT PROCEED IF STUDY EXCLUDED FROM REVIEW

276
Participants

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Description (per intervention group where appropriate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Site(s), Country</td>
<td></td>
</tr>
<tr>
<td>Key Inclusion/Exclusion criteria</td>
<td></td>
</tr>
<tr>
<td>Additional References (only if not already included in database)</td>
<td></td>
</tr>
<tr>
<td>Patients</td>
<td>Adults [●] Paediatric [][] Both []</td>
</tr>
<tr>
<td>Baseline imbalances</td>
<td></td>
</tr>
<tr>
<td>Total no. randomised</td>
<td></td>
</tr>
<tr>
<td>Total no. analysed</td>
<td></td>
</tr>
<tr>
<td>Withdrawals</td>
<td></td>
</tr>
</tbody>
</table>

Primary Outcomes (Continuous and Dichotomous)

<table>
<thead>
<tr>
<th>Outcome*</th>
<th>Unit/Scale**</th>
<th>Open</th>
<th>Laparoscopic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td>Length of stay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postoperative complication rate</td>
<td>Number with event</td>
<td>Total Number</td>
<td>Number with event</td>
</tr>
</tbody>
</table>

* if not enough data reported to enable extraction, state ‘Contact with authors required’ in ‘Unit/Scale’ field
** Also state tool used, and if data was calculated or imputed

Secondary Outcomes (Continuous)

<table>
<thead>
<tr>
<th>Outcome*</th>
<th>Unit/Scale**</th>
<th>Open</th>
<th>Laparoscopic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td>Postop pain (<4 weeks)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(>4 weeks)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to first bowel motion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk of Bias assessment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain</td>
<td>Risk of bias</td>
<td>Support for judgement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>High</td>
<td>Unclear</td>
</tr>
<tr>
<td>Random sequence generation</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>Allocation concealment</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>Blinding – Subjects/Patients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the individuals who are randomly assigned to the intervention under evaluation</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>Blinding – Healthcare providers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the individuals who actually care for the participants during the study period (e.g. those who administer a questionnaire on postoperative pain)</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>Blinding – Data collectors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the individuals who ultimately decide if a participant has suffered/attained the outcome of interest (e.g. return of intestinal function; postoperative complications)</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
</tbody>
</table>

* if not enough data reported to enable extraction, state ‘Contact with authors required’ in ‘Unit/Scale’ field
** As no tool used, and if data was calculated or imputed
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinding – Data Analysts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the individuals who conduct the data analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incomplete outcome data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selective outcome reporting?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other bias</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONTACT WITH AUTHORS REQUIRED? (further data required for outcomes; or paper reports 'blinded' with no further details)

NOTES AND COMMENTS:

279
D3 Included studies
Listed by procedure and trial name in alphabetical order. The name given to each trial (usually surname of first author of first paper, followed by year) is followed by the included publication(s) for that trial.

Appendicectomy

Aktimur 2015

Al-Mulhim 2002

Attwood 1992

Austin 1992

Bannon 1997

Bauwens 1998
Birth 1998

Bliss 2010

Bruwer 2003

Chiarugi 1996

Cipe 2014

Cox 1996

Eichen 1994

Esposito 1997

281

Frazee 1994

Hansen 1996

Hart 1996

Hebebrand 1994

Heikkinen 1998

Hellberg 1999

Helmy 2001
Henle 1996

Hoff 1995

Huang 2001

Ignacio 2004

Kald 1999

Kaplan 2009

Karadayi 2003

Kathouda 2005

Kazemier 1996

Kehagias 2009

Khalil 2011

Khan 2014

Kotlobovsky 2003

Kouhia 2010

Kum 1993
Laine 1997

Lavonius 2001

Lejus 1996

Lintula 2001

Little 2002

Marcarulla 1997

Martin 1995

Ortega 1995

Ozmen 1999

Pedersen 2001

Pozo 1996

Reiertsen 1997

Ricca 2007

Rohr 1994

Sezeur 1997

Shirazi 2010

Simon 2009

Stare 1998

Sun 1998

Talha 2015

Tate 1993

Tzovaras 2007
Vallribera 2003

Wei 2010

Williams 1996

Yin 1996

Zhang 1998

Cholecystectomy

Ahmed 2014

Amanollahi 2013

Barkun 1992

289

Bellon 1997

Berggren 1994

Bolke 2000

Boo 2007

Bukan 2004

Catena 2008

Charlo 1995

Chumillas 1998

Coelho 1993

Dauleh 1995

Demirer 2000

Dionigi 1994

El-Awadi 2009

Galizia 2001

Garcia-Caballero 1993

Grande 2002

Hamad 2010

Harju 2006

Harju 2010

Harju 2013

292

Hendolin 2000

Huang 1996

Jan 1993

Ji 2005

Johansson 2005

Karayiannakis 1997
Keus 2007

Khan 2014

Kiviluoto 1998

Kunz 1992

Lausten 1999

Le Blanc-Louvry 2000

Lujan 1998

Luo 2003

Majeed 1996

McGinn 1995

McMahon 1993

Mimica 2000

Morshed 2003

Ortega 1996

Putensen-Himmer 1992

Redmond 1994

Ros 2001

Saeed 2007

Schauer 1993

Secco 2002

Siddiqui 2006

Srivastava 2001

Tate 1993

Trondsen 1993

Vagenas 2006

Velazquez-Mendoza 2012

Volpino 1998

Walker 1999

Zajac 1998

Colonic Resection

ALCCaS

Basse 2005

Braga 2002a

Braga 2002b

Braga 2010

Carli 2005

Chung 2007

COLOR

COST

Curet 2000

Danelli 2002

EnROL

Fujii 2013

Gervaz 2010

Gong 2012

Hasegawa 2003

Hewitt 1998

JCOG 0404

Kaiser 2004

Kang 2004

King 2006

Lacy 1995

LAFA

Li 2012

Liang 2002

Liang 2007

Maartense 2006

MRC CLASSIC

Stage 1997

Tang 2001

Tung 2013

Xu 2012

Donor Nephrectomy

Basiri 2007

Burgess 2007
Guleria 2008

Kok 2006

Nicholson 2010

Oyen 2003

Simforoosh 2003
Wolf 2001

Fundoplication

Ackroyd 2004

Chrysos 2002

Franzen 2005

Hakanson 2007

Heikkinen 1999

Knatten 2012

Laine 1997

Luostarinen 2001

Manchet I

McHoney 2005

Nilsson 2000

Papandria 2015
Perttila 1999

Gastric Bypass
Lujan 2004

Nguyen 2001

Sundbom 2004

Westling 2001

Inguinal Hernia
Abbas 2012

Aigner 2011

Aitola 1998

Anadol 2004

Andersson 2003

Barkun 1995

Beets 1999

Bektas 2011

Bender 2009

Berndsen 2002

Bessell 1996

Bharathi 2008

Bilgin 1997

Bostanci 1998

Bringman 2003

Butler 2007

Catani 2003

Celebi 2014

Cesana 2011

Champault 1994

Champault 1997

Chan 2005

Chauhan 2014

Colak 2003

Damamme 1998

Decker 1999

Dedemadi 2006

Demetrashvili 2011

Dirksen 1998

Eklund 2006

Eklund 2007

Feliu 2004

Filipi 1996

Fleming 2001

Gokalp 2003

Gong 2011

Gunal 2007

Guner 2009

Gurbulak 2015

Hamza 2010

Hauters 1996

Heikkinen 1997

Heikkinen 1998a

Heikkinen 1998b

Inal 2014

Jess 2000

Juul 1999

Kald 1997

Khan 2013

Koivusalo 2009

Koninger 1998

Kouhia 2009

Kozol 1997

Kunz 1993

Lal 2003
Lal 2011

Langeveld 2010

Lau 2006

Lawrence 1995

Leibl 1995

Liem 1996

Maddern 1994

Mahon 2003

Merello 1997

Mesci 2012

Moreno-Egea 1999

MRC 1999

Naveed 2013

Neumayer 2004

Ozmen 2004

Ozmen 2010

Paganini 1998

Payne 1994

Payne 1996

Picchio 1999

320

Pokorny 2008

Salma 2015

Sarli 1997

Sarli 2001a

Sarli 2001b

Schrenk 1996

Sharma 2013

Simmermacher 2000

Singh 2012

Sinha 2006

Stoker 1994

Suter 2002

Tang 2015

Tanphiphat 1998

Tomaoglu 2015

Tschudi 1996

Vogt 1995

Wang 2013

Wellwood 1998

Wennstrom 2004

Wright 1996

Yang 2009

Zhiping 2007

Zieren 1998

Rectal Resection
Araujo 2003

Arteaga Gonzalez 2006

COLOR II

COREAN

Darai 2010

Fleshman 2015

Jian 2012

Leung 2000

Liang 2011
Liu 2010

Lujan 2009

Maartense 2004

Ng 2008

Ng 2014

Pan 2007

Stevenson 2015

326
Zhou 2004

Rectopexy

Boccasanta 1998

Solomon 2002