Abstract
K Nearest Neighbors (k-NN) search is a widely used category of algorithms with applications in domains such as computer vision and machine learning. With the rapidly increasing amount of data available, and their high dimensionality, k-NN algorithms scale poorly on multicore systems because they hit a memory wall. In this paper, we propose a novel data filtering strategy, named Subspace Clustering for Filtering (SCF), for k-NN search algorithms on multicore platforms. By excluding unlikely features in k-NN search, this strategy can reduce memory footprint as well as computation. Experimental results on four k-NN algorithms show that SCF can improve their performance on two modern multicore platforms with insignificant loss of search precision.