Show simple item record

dc.contributor.authorPurvis, Martinen_NZ
dc.contributor.authorCranefield, Stephenen_NZ
dc.contributor.authorBush, Geoffen_NZ
dc.contributor.authorCarter, Danen_NZ
dc.contributor.authorMcKinlay, Bryceen_NZ
dc.contributor.authorNowostawski, Mariuszen_NZ
dc.contributor.authorWard, Royen_NZ
dc.date.available2011-04-07T03:06:08Z
dc.date.copyright1999-08en_NZ
dc.identifier.citationPurvis, M., Cranefield, S., Bush, G., Carter, D., McKinlay, B., Nowostawski, M., & Ward, R. (1999). The NZDIS project: An agent-based distributed information systems architecture (Information Science Discussion Papers Series No. 99/17). University of Otago. Retrieved from http://hdl.handle.net/10523/1024en
dc.identifier.urihttp://hdl.handle.net/10523/1024
dc.description.abstractThis paper describes an architecture for building distributed information systems from existing information resources, based on distributed object and software agent technologies. This architecture is being developed as part of the New Zealand Distributed Information Systems (NZDIS) project. An agent-based architecture is used: information sources are encapsulated as information agents that accept messages in an agent communication language (the FIPA ACL). A user agent assists users to browse ontologies appropriate to their domain of interest and to construct queries based on terms from one or more ontologies. One or more query processing agents are then responsible for discovering (from a resource broker agent) which data source agents are relevant to the query, decomposing the query into subqueries suitable for those agents (including the translation of the query into the specific ontologies implemented by those agents), executing the subqueries and translating and combining the subquery results into the desired result set. Novel features of this system include the use of standards from the object-oriented community such as the Common Object Request Broker Architecture (CORBA) (as a communications infrastructure), the Unified Modeling Language (used as an ontology representation language), the Object Data Management Group's Object Query Language (used for queries) and the Object Management Group's Meta Object Facility (used as the basis for an ontology repository agent). Query results need not be returned within an ACL message, but may instead be represented by a CORBA object reference which may be used to obtain the result set.en_NZ
dc.format.mimetypeapplication/pdf
dc.publisherUniversity of Otagoen_NZ
dc.relation.ispartofseriesInformation Science Discussion Papers Seriesen_NZ
dc.subject.lcshQA76 Computer softwareen_NZ
dc.titleThe NZDIS project: An agent-based distributed information systems architectureen_NZ
dc.typeDiscussion Paperen_NZ
dc.description.versionUnpublisheden_NZ
otago.bitstream.pages18en_NZ
otago.date.accession2010-11-10 19:43:33en_NZ
otago.schoolInformation Scienceen_NZ
otago.openaccessOpen
otago.place.publicationDunedin, New Zealanden_NZ
dc.identifier.eprints1001en_NZ
otago.school.eprintsSoftware Engineering & Collaborative Modelling Laboratoryen_NZ
otago.school.eprintsInformation Scienceen_NZ
dc.description.references[1] R. J. Bayardo, Jr., W. Bohrer, R. Brice, A. Cichocki, J. Fowler, A. Helal, V. Kashyap, T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikrishnan, A. Unruh, and D. Woelk. Infosleuth: agent-based semantic integration of information in open and dynamic environments. In Joan Peckham, editor, Proceedings of the ACM SIGMOD international conference on management of data, SIGMOD Record 26(2), pages 195–206, June 1997. [2] O. M. Duschka and M. R. Genesereth. Query planning in infomaster. In Proceedings of the 12th Annual ACM Symposium on Applied Computing (SAC’97), 1997. http://logic.stanford.edu/people/duschka/papers/Infomaster.ps. [3] H. Nwana, D. Ndumu, L. Lee, and J. Collis. ZEUS: A tool-kit for building distributed multi-agent systems. Applied Artifical Intelligence, 13(1):129–186, 1999. [4] R. S. Cost, T. Finin, Y. Labrou, X. Luan, Y. Peng, I. Soboroff, J. Mayfield, and A. Boughannam. Jackal: A Java-based tool for agent development. In J. Baxter and B. Logan, editors, Software Tools for Developing Agents: Papers from the 1998 AAAI Workshop, number WS-98-10. AAAI Press, 1998. [5] C. A. Knoblock and J. L. Ambite. Agents for information gathering. In J. Bradshaw, editor, Software Agents. AAAI/MIT Press, 1997. [6] M. R. Genesereth and S. P. Ketchpel. Software agents. Communications of the ACM, 37(7):48–53, July 1994. [7] FIPA 97 specification documents. http://drogo.cselt.stet.it/fipa/spec/fipa97/fipa97.htm, 1997. [8] J. R. Searle. Speech Acts. Cambridge University Press, Cambridge, 1969. [9] M. H. Nodine and A. Unruh. Constructing robust conversation policies in dynamic agent communities. Technical Report MCC-INSL-020-99, Microelectronics and Computer Technology Corporation, 1999. [10] M. Greaves, H. Holmback, and J. M. Bradshaw. What is a conversation policy? In M. Greaves and J. M. Bradshaw, editors, Proceedings of the Autonomous Agents ’99 Workshop on Specifying and Implementing Conversation Policies, 1999. [11] R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge representation system. Cognitive Science, 9(2):171–216, April 1985. [12] Knowledge Interchange Format specification. Working Draft, ANSI X3T2 Ad Hoc Group on KIF, March 1995. http://logic.stanford.edu/kif/specification.html. [13] Adam Farquhar, Richard Fikes, and James Rice. The Ontolingua Server: a tool for collaborative ontology construction. In Proceedings of the 10th Knowledge Acquisition for Knowledge-Based Systems Workshop (KAW’96), 1996. [14] Information Sciences Institute. Loom project home page. http://www.isi.edu/isd/LOOM/LOOM-HOME.html, 1998. [15] F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in description logics. In G. Brewka, editor, Principles of Knowledge Representation and Reasoning, Studies in Logic, Language and Information, pages 193–238. CLSI Publications, 1996. [16] Bernd Owsnicki-Klewe. A general characterisation of term description languages. In K.-H. Bläsius, U. Hedtstück, and C. Rollinger, editors, Sorts and Types in Artificial Intelligence, number 418 in Lecture Notes in Artificial Intelligence, pages 183–189. Springer-Verlag, 1990. [17] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language Reference Manual. Addison-Wesley, 1998. [18] Object Management Group. OMG homepage. http://www.omg.org/, 1998. [19] Object Management Group. Object Constraint Language specification. ftp://ftp.omg.org/pub/docs/ad/97-08-08.pdf, September 1997. [20] JosB.WarmerandAnnekeG.Kleppe.TheObjectConstraintLanguage:PreciseModeling With UML. Addison-Wesley, 1998. [21] Distributed Systems Technology Centre. XMI spec recommended. News item on Meta-Object Facility Information Web Page, http://www.dstc.edu.au/Meta-Object-Facility/, January 1999. [22] S. Cranefield and M. Purvis. UML as an ontology modelling language. In Proceedings of the Workshop on Intelligent Information Integration, 16th International Joint Conference on Artificial Intelligence (IJCAI-99), 1999. (to appear). [23] R.G.G. Cattell, D. Barry, D. Bartels, M. Berler, J. Eastman, S. Gamerman, D. Jordan, A. Springer, H. Strickland, and D. Wade, editors. The Object Database Standard: ODMG 2.0. Morgan Kaufmann, 1997. [24] Object Management Group. MOF specification. http://www.omg.org/techprocess/meetings/schedule/Technology_Adoptions.html#tbl_MOF_Specification, 1997. [25] Stephen Crawley, Simon McBride, and Kerry Raymond. Meta-Object Facility tutorial (draft). http://www.dstc.edu.au/Meta-Object-Facility/Tutorial.html, 1997. [26] Distributed Systems Technology Centre. Meta Object Facility frequently asked questions. http://www.dstc.edu.au/Meta-Object-Facility/MOFAQ.html, 1998. [27] Y. Arens, C. A. Knoblock, and W.-M. Shen. Query reformulation for dynamic information integration. Journal of Intelligent Information Systems, 6(2/3):99–130, 1996. [28] E. Mena, A. Illarramendi, V. Kashyap, and A. Sheth. OBSERVER: An approach for query processing in global information systems based on interoperation across pre-existing ontologies. Distributed and Parallel Databases, 1999. (to appear). [29] A. Tomasic, L. Raschid, and P. Valduriez. Scaling access to heterogeneous data sources with disco. IEEE Transactions on Knowledge and Data Engineering, 10(1), 1998. [30] A. Dogac, C. Dengi, E. Kilic, G. Ozhan, F. Ozcan, S. Nural, C. Evrendilek, U. Halici, B. Arpinar, P. Koksal, N. Kesim, and S. Mancuhan. METU interoperable database system. ACM SIGMOD Record, 24(3), September 1995. [31] F. Ozcan, S. Nural, P. Koksal, C. Evrendilek, and A. Dogac. Dynamic query optimization on a distributed object management platform. In Proceedings of the 5th International Conference on Information and Knowledge Management (CIKM’96), 1996. ftp://ftp.srdc.metu.edu.tr/pub/mind/papers/cikm 96.ps.Z. [32] A. P. Sheth and J. A. Larson. Federated database systems for managing distributed, heterogeneous, and autonomous databases. ACM Computing Surveys, 22(3):183–236, September 1990. [33] B. Perry, M. Taylor, and A. Unruh. Information aggregation and agent interaction patterns in infosleuth. Technical Report MCC-INSL-104-98, Microelectronics and Computer Technology Corporation, 1998. http://www.mcc.com/projects/infosleuth/publications/TR98/INSL-104-98.pdf. [34] T. Grust, J. Kroeger, D. Gluche, A. Heuer, and M. Scholl. Query evaluation in CROQUE: Calculus and algebra coincide. In C. Small, P. Douglas, R. Johnson, P. King, and N. Martin, editors, Proceedings of the 15th British National Conferemce on Databases (BNCOD15), Lecture Notes in Computer Science, number 1271, pages 84–100. Springer, 1997. http://wwwdb.informatik.uni-rostock.de/jo/bncod15.ps.gz. [35] L. Fegaras. An experimental optimizer for OQL. Technical Report TR-CSE-97-007, University of Texas at Arlington, 1997. http://lambda.uta.edu/oqlopt.ps.gz. [36] J. A. Blakeley, W. J. McKenna, and G. Graefe. Experiences building the open OODB query optimizer. In P. Buneman and S. Jajodia, editors, Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, pages 287–296. ACM Press, 1993. ftp://ftp.cs.pdx.edu/pub/faculty/graefe/papers/OpenOODB.ps. [37] M. Cherniak and S. B. Zdonik. Rule languages and internal algebras for rule-based optimizers. In Proceedings of the ACM SIGMOD International Conference on Management of Data, 1996. [38] J. Kröger, R. Illner, S. Rost, and A. Heuer. Query rewriting and search in CROQUE. Preprint CS-15-98, Computer Science Department, University of Rostock, 1998. http://wwwdb.informatik.uni-rostock.de/jo/CS-15-98.html. [39] J. L. Ambite and C. A. Knoblock. Planning by rewriting: Efficiently generating high-quality plans. In Proceedings of the 14th National Conference on Artificial Intelligence (AAAI’97), 1997. [40] J. M. Morrissey, S. Bandyopadhyay, and W. T. Bealor. A heuristic for minimizing total cost in disributed query processing. Journal of Computing and Information, 1(2):736–758, 1995. Special Issue: Proceedings of the 7th International Conference of Computing and Information (ICCI’95).en_NZ
otago.relation.number99/17en_NZ
 Find in your library

Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record