Show simple item record

dc.contributor.authorWolf, Heikoen_NZ
dc.contributor.authorDeng, Daen_NZ
dc.date.available2011-04-07T03:06:32Z
dc.date.copyright2005-12en_NZ
dc.identifier.citationWolf, H., & Deng, D. (2005). Image saliency mapping and ranking using an extensible visual attention model based on MPEG-7 feature descriptors (Information Science Discussion Papers Series No. 2005/10). University of Otago. Retrieved from http://hdl.handle.net/10523/1098en
dc.identifier.urihttp://hdl.handle.net/10523/1098
dc.description.abstractIn visual perception, finding regions of interest in a scene is very important in the carrying out visual tasks. Recently there have been a number of works proposing saliency detectors and visual attention models. In this paper, we propose an extensible visual attention framework based on MPEG-7 descriptors. Hotspots in an image are detected from the combined saliency map obtained from multiple feature maps of multi-scales. The saliency concept is then further extended and we propose a saliency index for the ranking of images on their interestingness. Simulations on hotspots detection and automatic image ranking are conducted and statistically tested with a user test. Results show that our method captures more important regions of interest and the automatic ranking positively agrees to user rankings.en_NZ
dc.format.mimetypeapplication/pdf
dc.publisherUniversity of Otagoen_NZ
dc.relation.ispartofseriesInformation Science Discussion Papers Seriesen_NZ
dc.subject.lcshQA76 Computer softwareen_NZ
dc.titleImage saliency mapping and ranking using an extensible visual attention model based on MPEG-7 feature descriptorsen_NZ
dc.typeDiscussion Paperen_NZ
dc.description.versionUnpublisheden_NZ
otago.bitstream.pages21en_NZ
otago.date.accession2005-12-05en_NZ
otago.schoolInformation Scienceen_NZ
otago.openaccessOpen
otago.place.publicationDunedin, New Zealanden_NZ
dc.identifier.eprints145en_NZ
otago.school.eprintsKnowledge, Intelligence & Web Informatics Laboratoryen_NZ
otago.school.eprintsInformation Scienceen_NZ
dc.description.referencesL. Itti and C. Koch. Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3):194–203, March 2001. T. Kadir and M. Brady. Saliency, scale and image description. International Journal of Computer Vision, 45(2):83–105, 2001. W.D. Ferreira and D.L. Borges. Detecting and ranking saliency for scene description. In Lecture Notes in Computer Science, volume 3287, pages 76–83, 2004. L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11):1254–1259, November 1998. Y.F. Ma, L. Lu, H.J. Zhang, and M.J. Li. A user attention model for video summarization. In MULTIMEDIA ’02: Proceedings of the tenth ACM international conference on Multimedia, pages 533–542, Juan-les-Pins, France, 2002. A. Smeulders, M. Worring, S. Santini, A. Gupta, and Jain R. Contentbased image retrieval at the end of the early years. IEEE Transaction on Pattern Analysis and Machine Intelligence, 22(12):1349–1380, 2000. B.S. Manjunath, J.-R. Ohm, and V.V. Vasudevan. MPEG-7 color and texture descriptors. IEEE Trans. Circuits Syst. Video Technol., 11:703– 715, June 2001. L. Wang and B.S. Manjunath. A semantic representation for image retrieval. In Proc. ICIP 2003. IEEE, 2003. J. Luo and A. Singhal. On measuring low-level saliency in photographic images. In Proc. IEEE Conf. on CVPR, pages 1084–1089, 2000. F.W.M. Stentiford. An evolutionary programming approach to the simulation of visual attention. In Proc. IEEE Congress on Evolutionary Computation, pages 851–858, 2001. E. Celaya and P. Jim´enez. Salience detection in time-evolving image sequences. In Design and Application of Hybrid Intelligent Systems, pages 852–860, Amsterdam, The Netherlands, 2003. IOS Press. Y.F. Ma and H.J. Zhang. Contrast-based image attention analysis by using fuzzy growing. In MULTIMEDIA ’03: Proceedings of the eleventh ACM international conference on Multimedia, pages 374–381, Berkeley, CA, USA, 2003. Silvia Corchs, Martin Stetter, and Gustavo Deco. Systems-level neuronal modeling of visual attentional mechanisms. Artif. Intell. Rev., 20:143–160, 2003. R. Castano, K. Wagstaff, L. Song, and R.C. Anderson. Validating rover image prioritizations. The Interplanetary Network Progress Report, 42(160), February 2005. D. Deng and H. Wolf. POISE - Achieving content-based picture organisation for image search engines. In Lecture Notes in Computer Science, volume 3682, pages 1–7, August 2005. H. Liu, X. Xie, X. Tang, Z.-W. Li, and W.-Y. Ma. Effective browsing of web image search results. In MIR ’04: Proceedings of the 6th ACM SIGMM international workshop on Multimedia information retrieval, pages 84–90, New York, NY, USA, 2004. B.S. Manjunath, P. Salembier, and T. Sikora, editors. Introduction to MPEG-7: Multimedia Content Description Interface. John Wiley & Sons, Inc., New York, NY, USA, 2002. L. Itti and C. Koch. Comparison of feature combination strategies for saliency-based visual attention systems. In Proc. SPIE Vol. 3644, Human Vision and Electronic Imaging IV, pages 473–482, May 1999. TU Munich. Mpeg-7 experimentation model website. URL http://www.lis.e-technik.tu-muenchen.de/research/bv/topics/mmdb/ e mpeg7.html, 2005. Retrieved 30 October 2005. University of Otago. Photos of the ISB. URL http://www.library.otago.ac.nz/admin/photos.html. Retrieved 30 October 2005. anon. iLab image databases. URL http://ilab.usc.edu/imgdbs. Retrieved 30 October 2005. L. Itti. The iLab Neuromorphic Vision C++ Toolkit: Free tools for the next generation of vision algorithms. The Neuromorphic Engineer, 1(1):10, March 2004. E.L. Lehmann. Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, Inc., San Francisco, CA, USA, 1975. R.E. Quandt. Measurement and inference in wine tasting. In Meetings of the Vineyard Data Quantification Society, Corsica, 1 - 3 October 1998. J.J. Higgins. Introduction to modern nonparametric statistics. Brooks/Cole, Pacific Grove, CA, USA, 2004. S.J. Luck and E.K. Vogel. The capacity of visual working memory for features and conjunctions. Nature, 390:279–281, 20 November 1997. E.K. Vogel and M.G. Machizawa. Neural activity predicts individual differences in visual working memory capacity. Nature, 428:748–751, 15 April 2004.en_NZ
otago.relation.number2005/10en_NZ
 Find in your library

Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record