Show simple item record

dc.contributor.advisorPurvis, Martin
dc.contributor.advisorCranefield, Stephen
dc.contributor.authorNowostawski, Mariusz
dc.date.available2011-10-19T21:10:19Z
dc.date.copyright2008
dc.identifier.citationNowostawski, M. (2008). Evolvable Virtual Machines (Thesis, Doctor of Philosophy). University of Otago. Retrieved from http://hdl.handle.net/10523/1910en
dc.identifier.urihttp://hdl.handle.net/10523/1910
dc.description.abstractThe Evolvable Virtual Machine abstract architecture (EVMA) is a computational architecture for dynamic hierarchically organised virtual machines. The concrete EVM instantiation (EVMI) builds on traditional stack-based models of computation and extends them by notions of hierarchy and reflection on the virtual machine level. The EVM Uni- verse is composed of a number of autonomous and asynchronously communicating EVM machines. The main contribution of this work lies in the new model of computation and in the architecture itself: a novel, compact, flexible and expressive representation of distributed concurrent computation. The EVMA provides a way of expressing and modelling auto-catalytic networks composed of a hierarchical hypercycle of autopoietic subsystems characterised by self-adaptable structural tendencies and self-organised criticality. EVMA provides capabilities for: a) self-learning of dynamical patterns through continuous observation of computable environments, b) self-compacting and generalisa- tion of existing program structures, c) emergence of efficient and robust communication code through appropriate machine assembly on both ends of communication channel. EVMA is in one sense a multi-dimensional generalisation of stack machine with the pur- pose of modelling concurrent asynchronous processing. EVMA approach can be also seen as a meta-evolutionary theory of evolution. The EVMA is designed to model systems that mimic living autonomous and adaptable computational processes. The EVMI prototype has been designed and developed to conduct experimental studies on complex evolving systems. The generality of our approach not only provides the means to experiment with complex hierarchical, computational and evolutionary systems, but it provides a useful model to evaluate, share and discuss the complex hierarchical systems in general. The EVMA provides a novel methodology and language to pursue research, to understand and to talk about evolution of complexity in living systems. In this thesis, we present the simple single-cell EVMI framework, discuss the multi-cell EVM Universe architecture, present experimental results, and propose further extensions, experimental studies, and possible hardware implementations of the EVMI.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherUniversity of Otago
dc.rightsAll items in OUR Archive are provided for private study and research purposes and are protected by copyright with all rights reserved unless otherwise indicated.
dc.subjectnatural evolution
dc.subjectnatural life
dc.subjectcomputation
dc.subjectvirtual machine
dc.subjectevolutionary computing
dc.subjectartificial evolution
dc.subjectartificial life
dc.subjectparallel computing
dc.subjectautonomic computing
dc.subjectself-organised systems
dc.subjectautopoiesis
dc.subjectautocatalytic cycles
dc.subjecthypercycles
dc.subjecthierarchies
dc.subjectautonomy
dc.titleEvolvable Virtual Machines
dc.typeThesis
dc.date.updated2011-10-19T09:22:50Z
thesis.degree.disciplineInformation Science
thesis.degree.nameDoctor of Philosophy
thesis.degree.grantorUniversity of Otago
thesis.degree.levelDoctoral
otago.openaccessOpen
 Find in your library

Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record