Show simple item record

dc.contributor.authorGonsior, Michaelen_NZ
dc.date.available2012-12-14T04:58:48Z
dc.date.copyright2008en_NZ
dc.identifier.citationGonsior, M. (2008). Dissolved organic matter in New Zealand natural waters (Thesis, Doctor of Philosophy). University of Otago. Retrieved from http://hdl.handle.net/10523/3618en
dc.identifier.urihttp://hdl.handle.net/10523/3618
dc.descriptionxi, 186 leaves :ill. (some col.), col. maps ; 30 cm. Includes bibliographical references. "1st of April 2008". University of Otago department: Chemistry.en_NZ
dc.description.abstractDissolved organic matter (DOM) is the most dynamic and least understood part of the global oceanic carbon cycle. Furthermore the molecular composition of DOM is largely unknown. This study focused on the distribution pattern, removal processes and molecular characterisation of DOM in a range of estuaries and coastal zones in New Zealand. Doubtful Sound, the longest fjord in Fiordland National Park, South Island, New Zealand was of particular interest, because of the combination of extreme rainfall, enhanced production of DOM within the temperate rainforest which largely appears in the relatively deep (≥ 5 m) low salinity layer (LSL) at the fjord surface. A typical river estuary (Freshwater River) located in Stewart Island, New Zealand was also investigated. Optical water properties such as the UV/Vis absorption coefficient at 355 nm (α[CDOM](355)) and excitation-emission matrix fluorescence (EEM) were determined for samples from freshwater, across the LSL into open ocean water. These optical properties showed a marked decrease with salinity and highest levels of EEM fluorescence and α[CDOM](355) in the brackish surface water. In addition to the observed changes in the optical properties, ultrahigh resolution Electrospray Ionisation Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FT-ICR-MS) determination of molecular formulae revealed that in the fjord about 20 % of these formulae changed along a vertical salinity gradient across the LSL between the brackish surface water and the saline water at 5 m depth. This trend was even more pronounced along the salinity gradient of the Fresh Water River Estuary in Stewart Island, where 60 % of all assigned molecular masses changed from freshwater over the mixing zone to ocean water. Associated with these changes was a marked increase in aromaticity with increasing salinity. Comparable behaviour with increasing salinity was also observed in estuarine samples from the Cape Fear River system, North Carolina, USA. In contrast, only minor changes were determined in molecular formulae for surface water samples collected along a transect off the Otago Coast and across the Subtropical Convergence (STC) into Subantarctic Water (SAW). However, a comparison of the molecular formulae assigned to the DOM pool for the STC water and a freshwater stream in Doubtful Sound, revealed that 75 % of all the assigned formulae for the open ocean sample were common to these two markedly different types of natural waters. This seemingly refractory DOM contained nearly 600 assigned molecular formulae, which were all very similar (only spaced by two hydrogen and CH₂ groups) and could be explained with only 9 general molecular formulae. However, the comparison of all assigned formulae for the freshwater sample suggested that about 90 % of the assigned molecular formulae for the terrestrially-derived DOM changed as it moved from rivers to the open ocean and that only 10 % remained the same. Singlet oxygen showed a very close relationship with the optical properties such as the absorption coefficients (a[CDOM](355)) and the EEM fluorescence intensities and these results suggested that singlet oxygen steady state concentrations are linked to CDOM. Photodegradation processes were confirmed to be responsible for a significant destruction of CDOM. Samples collected from different salinity waters showed major differences in wavelength-dependent photo-decay of CDOM suggesting that the rate of photodegradation in the UV range decreased with increase in salinity whereas it was enhanced for longer wavelength radiation (≥400 nm). Additionally, the predominantly unsaturated compounds produced during estuarine mixing were found to be highly photolabile and were either destroyed or new unsaturated compounds were produced within 21 h of solar irradiation.
dc.format.mimetypeapplication/pdf
dc.language.isoenen_NZ
dc.publisherUniversity of Otagoen_NZ
dc.rightsAll items in OUR Archive are provided for private study and research purposes and are protected by copyright with all rights reserved unless otherwise indicated.en_NZ
dc.titleDissolved organic matter in New Zealand natural watersen_NZ
dc.title.alternativeDOM in New Zealand natural waters.en_NZ
dc.typeThesisen_NZ
thesis.degree.disciplineChemistryen_NZ
thesis.degree.nameDoctor of Philosophyen_NZ
thesis.degree.grantorUniversity of Otagoen_NZ
thesis.degree.levelDoctoralen_NZ
otago.interloanyesen_NZ
otago.openaccessOpen
dc.identifier.voyager1547264en_NZ
 Find in your library

Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record