Show simple item record

dc.contributor.authorKardos, Julianen_NZ
dc.contributor.authorMoore, Antonien_NZ
dc.contributor.authorBenwell, George Len_NZ
dc.date.available2011-04-07T03:01:52Z
dc.date.copyright2004-11en_NZ
dc.identifier.citationKardos, J., Moore, A., & Benwell, G. L. (2004). The trustree for the visualisation of attribute and spatial uncertainty: usability assessments (pp. 39–52). Presented at the 16th Annual Colloquium of the Spatial Information Research Centre (SIRC 2004: A Spatio-temporal Workshop).en
dc.identifier.urihttp://hdl.handle.net/10523/693
dc.description.abstractAttribute and spatial uncertainty are defined and put into context for this research. This paper then extends on a research programme which has designed a visualisation of attribute and choropleth spatial uncertainty using the Hexagonal or Rhombus (HoR) hierarchical spatial data structure. Using the spatial data model in this fashion is termed – the trustree. To understand this progression, a brief explanation of this research programmes past history must be covered. The New Zealand 2001 census is used as an exemplarity dataset to express attribute uncertainty and choropleth boundary uncertainty (termed spatial uncertainty). An internet survey was conducted to test the usability of the trustree, which was used as a transparent tessellation overlay and a value-by-area (VBA) display within a population choropleth map. Two other visualisation of attribute uncertainty methods – blinking areas and adjacent value were also incorporated into the survey. Participants were required to rank, from 1 to 6, six grid cells which overlaid the uncertainty visualisations, in order from the most accurate to the most uncertain cell, respectively. These ranking results were correlated with the actual ranks, providing a metric of usability for each visualisation method. The blinking areas method was the most effective, followed by adjacent value, VBA trustree and the transparent HoR trustree. The time taken for a participant to rank each visualisation’s cells was collected – there is an 82% correlation between the time taken and the final usability results obtained.en_NZ
dc.format.mimetypeapplication/pdf
dc.relation.urihttp://www.business.otago.ac.nz/SIRC05/conferences/2004/11_Kardos.pdfen_NZ
dc.subjectvisualisationen_NZ
dc.subjectattributeen_NZ
dc.subjectspatialen_NZ
dc.subjecttrustreeen_NZ
dc.subjectUncertaintyen_NZ
dc.subjectUsabilityen_NZ
dc.subject.lcshQA75 Electronic computers. Computer scienceen_NZ
dc.titleThe trustree for the visualisation of attribute and spatial uncertainty: usability assessmentsen_NZ
dc.typeConference or Workshop Item (Paper)en_NZ
dc.description.versionPublisheden_NZ
otago.date.accession2005-12-07en_NZ
otago.relation.pages39-52en_NZ
otago.openaccessOpen
dc.identifier.eprints96en_NZ
dc.description.refereedNon Peer Revieweden_NZ
otago.school.eprintsSpatial Information Research Centreen_NZ
otago.school.eprintsInformation Scienceen_NZ
dc.description.referencesAerts, J. C. J. H., K. C. Clarke & A. D. Keuper (2003) Testing Popular Visualization Techniques for Representing Model Uncertainty. Cartography and Geographic Information Science, 30:3, pp. 249-261. Alexander, J. W. & G. A. Zahorchak (1943) Population-Density Maps of the United States: Techniques and Patterns. Geographical Review, 33:3, pp. 457-466. Armstrong, R. W. (1969) Standardized Class Intervals and Rate Computation in Statistical Maps of Mortality. Annals of the Association of American Geographers, 59:2, pp. 382-390. Bastin, L., P. Fisher & J. Wood (2002) Visualizing uncertainty in multi-spectral remotely sensed imagery. Computers and Geosciences, 28:3, pp. 337-350. Beard, M. K., B. P. Buttenfield & S. B. Clapham 1991, NCGIA Research Initiative 7: Visualization of Spatial Data Quality. Technical Paper 91–26,, National Center for Geographic Information and Analysis, City, pp. 1-175. Bell, S. B. M., B. M. Diaz & F. C. Holroyd 1989, ‘The HoR quadtree: An optimal structure based on a nonsquare 4-shape.’, in Mathematics in Remote Sensing, Ed S. R. Brooks, Clarendon Press, Oxford, Chelmsford. Bertin, J. (1983) Semiology of graphics, The University of Wisconsin Press, Madison, Wisconsin. Blakemore, M. (1983) Generalisation and error in spatial data bases. Cartographica, 21:2 & 3, pp. 131-139. Burrough, P. A. & R. McDonnell (1998) Principles of geographical information systems, Oxford University Press, Oxford ; New York pp. xiii, 333. Chrisman, N. R. 1989, ‘Modelling error in overlaid categorical maps’, in The Accuracy Of Spatial Databases, Eds M. Goodchild & S. Gopal, Taylor & Francis, London, pp. 21-34. Davis, T. J. & C. P. Keller (1997) Modelling and Visualizing Multiple Spatial Uncertainties. Computers and Geosciences, 23:4, pp. 397-408. De Cola, L. (2002) Spatial Forcasting of Disease Risk and Uncertainty. Cartography and Geographic Information Science, 29:4, pp. 363-380. Drecki, I. 2002, ‘Visualisation of Uncertainty in Geographic Data’, in Spatial Data Quality, Eds W. Shi, P. F. Fisher & M. F. Goodchild, Taylor & Francis, New York, pp. 140-159. Drummond, J. 1995, ‘Positional accuracy’, in Elements of spatial data quality, Eds S. C. Guptill & J. L. Morrison, Elsevier, New York, pp. 31-58. Dutton, G. (1992) Handling positional uncertainty in spatial databases. Proceedings 5th International Symposium on Spatial Data Handling, University of South Carolina, pp. 460-469. Ehlschlaeger, C. R., A.M. Shortridge & M. F. Goodchild (1997) Visualizing spatial data uncertainty using animation. Computers and Geosciences, 23:4, pp. 387-395. Evans, B. J. (1997) Dynamic display of spatial data reliability: does it benefit the map user? Computers and Geosciences, 23:4, pp. 409-422. Fairbairn, D., G. Andrienko, N. Andrienko, G. Buziek & J. Dykes (2001) Representation and its Relationship with Cartographic Visualization. Cartography and Geographic Information Science, 28:1, pp. 13-28. Fisher, P. (1994a) Hearing the Reliability in Classified Remotely Sensed Images. Cartography and Geographical Information Systems, 21:1, pp. 31-36. Fisher, P. 1994b, ‘Animation and Sound for the Visualization of Uncertain Spatial Information’, in Visualization in geographical information systems, Eds H. M. Hearnshaw, D. J. Unwin & Association for Geographic Information., Wiley & Sons, Chichester, West Sussex, England ; New York, pp. 243. Goodchild, M. F. 1992, NCGIA Research Initiative 1 Accuracy of Spatial Databases,, University of California, City, pp. 1-9. Goodchild, M. F. 1995, ‘Attribute accuracy’, in In Elements of Spatial Data Quality, Eds S. C. Guptill & J. L. Morrison, Elsevier, New York, pp. 59-80. Hengl, T., D. J. J. Walvoort & A. Brown (2002) Pixel and Colour Mixture: GIS techniques for visualisation of fuzzyness and uncertainty of natural resource inventories. Proceedings : International Symposium on Spatial Accuracy in Natural Resources and Environmental Science10-12 July 2002, Melbourne, Australia, pp. 271. Heuvelink, G. B. M. (1998) Error propagation in environmental modelling with GIS, Taylor & Francis, London; Bristol, PA pp. xviii, 127. Hunter, G. J. (2000) Visualizing Spatial Data Quality. GIM International magazine, 14:1, pp. 13-15. Jenks, G. F. & F. C. Caspall (1971) Error on Choroplethic Maps: Definition, Measurement, Reduction. Annals of the Association of American Geographers, 61:2, pp. 217-244. Jenks, G. F. & M. F. C. Coulson (1963) Class Intervals for Statistical Maps. International Yearbook of Cartography, 3:1, pp. 119-134. Kardos, J., G. L. Benwell & A. Moore (in press) The Visualisation of Uncertainty for Spatially Referenced Census Data using Hierarchical Tessellations. Transactions in GIS, Krygier, J. B. 1994, ‘Sound and Geographic Visualization’, in Visualization in the Modern Cartography, Eds A. MacEachren & D. R. F. Taylor, Pergamon, New York, pp. 149-166. Leitner, M. & B. P. Buttenfield (2000) Guidelines for the Display of Attribute Uncertainty. Cartography and Geographic Information Science, 27:1, pp. 3-14. MacEachren, A., C. A. Brewer & L. W. Pickle (1998) Visualizing georeferenced data: representing reliability of health statistics. Environment and Planning A, 30: pp. 1547-1561. MacEachren, A. & M.-J. Kraak (2001) Research Challenges in Geovisualisation. Cartography and Geographic Information Science, 28:1, pp. 3-12. MacEachren, A. M. (1992) Visualizing Uncertain Information. Cartographic Perspective, 13:Fall, pp. 10-19. MacEachren, A. M. (1995) How maps work : representation, visualization, and design, Guilford Press, New York pp. xiii, 513. Mark, D. M. & F. Csillag (1989) The nature of boundaries on area-class maps. Cartographica, 21: pp. 65-78. Martin, D. (1989) Mapping population data from zone centroid locations. Trans Institute British Geographers, 14:1, pp. 90-97. Martin, D. (1996) Geographic information systems: socioeconomic applications, Routledge, Second Edition, London. McGranaghan, M. (1993) A cartographic view of spatial data quality. Cartographica, 30:2&3, pp. 8–19. Monmonier, M. (1990) Strategies for the interactive exploration of geographic correlation. Proceedings of the 4th International Symposium on Spatial Data Handling, IGU, pp. 512-521. Muehrcke, P. C. & J. O. Muehrcke (1992) Map Use: Reading, Analysis, and Interpretation. 3rd Edition, JP Publications, Madison WI. Openshaw, S. & P. J. Taylor 1981, ‘The modifiable areal unit problem’, in Quantitative Geography: a British view, Eds N. Wrigley & R. J. Bennett, Routledge and Kegan Paul, London. Pang, A. (2001) Visualizing Uncertainty in Geo-Spatial Data. Workshop on the Intersections between Geospatial Information and Information Technology for the National Academies committee of the Computer Science and Telecommunications Board, Arlington, VA, pp.1-14. Perkal, J. (1956) On Epsilon Length. Bulletin de l’Academie Polonaise des Sciences, 4:3, pp. 399-403. Schweizer, D. M. & M. F. Goodchild (1992) Data Quality and Choropleth Maps: An Experiment with the Use of Color. Proceedings, GIS/LIS. 2, pp. 686–699. Scripter, M. W. (1970) Nested-means map classes for statistical maps. Annals of the Association of American Geographers, 60:2, pp. 385-393. Siegel, S. (1956) Nonparametric statistics for the behavioral sciences, McGraw-Hill, New York. Statistics New Zealand. 2002, A Report on the Post Enumeration Survey 2001,, Statistics New Zealand, City, pp 41. Tøssebro, E. & M. Nygård (2003) A discrete model for spatial data with temporal uncertainty. 2nd IASTED International Conference on Information and Knowledge Sharing, Scottsdale, AZ, USA, pp.57-68. Wright, J. K. (1942) Map Makers Are Human: Comments on the Subjective in Maps. Geographical Review, 32:4, pp. 527-544. Zhang, J. & M. F. Goodchild (2002) Uncertainty in geographical information, Taylor & Francis, London ; New York pp. x, 266.en_NZ
otago.event.dates29-30 November 2004en_NZ
otago.event.placeDunedin, New Zealanden_NZ
otago.event.typeconferenceen_NZ
otago.event.title16th Annual Colloquium of the Spatial Information Research Centre (SIRC 2004: A Spatio-temporal Workshop)en_NZ
 Find in your library

Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record