Show simple item record

dc.contributor.authorSimmermacher, Christianen_NZ
dc.contributor.authorDeng, Daen_NZ
dc.contributor.authorCranefield, Stephenen_NZ
dc.date.available2011-04-07T03:05:49Z
dc.date.copyright2006-05en_NZ
dc.identifier.citationSimmermacher, C., Deng, D., & Cranefield, S. (2006). Feature analysis and classification of classical musical instruments: an empirical study (Information Science Discussion Papers Series No. 2006/10). University of Otago. Retrieved from http://hdl.handle.net/10523/963en
dc.identifier.urihttp://hdl.handle.net/10523/963
dc.description.abstractWe present an empirical study on classical music instrument classification. A methodology with feature extraction and evaluation is proposed and assessed with a number of experiments, whose final stage is to detect instruments in solo passages. In feature selection it is found that similar but different rankings for individual tone classification and solo passage instrument recognition are reported. Based on the feature selection results, excerpts from concerto and sonata files are processed, so as to detect and distinguish four ma jor instruments in solo passages: trumpet, flute, violin, and piano. Nineteen features selected from the Mel-frequency cepstral coefficients (MFCC) and the MPEG-7 audio descriptors achieve a recognition rate of around 94% by the best classifier assessed by cross validation.en_NZ
dc.format.mimetypeapplication/pdf
dc.publisherUniversity of Otagoen_NZ
dc.relation.ispartofseriesInformation Science Discussion Papers Seriesen_NZ
dc.subject.lcshM Musicen_NZ
dc.subject.lcshQA76 Computer softwareen_NZ
dc.titleFeature analysis and classification of classical musical instruments: an empirical studyen_NZ
dc.typeDiscussion Paperen_NZ
dc.description.versionUnpublisheden_NZ
otago.bitstream.pages17en_NZ
otago.date.accession2006-05-17en_NZ
otago.schoolInformation Scienceen_NZ
otago.openaccessOpen
otago.place.publicationDunedin, New Zealanden_NZ
dc.identifier.eprints307en_NZ
otago.school.eprintsKnowledge, Intelligence & Web Informatics Laboratoryen_NZ
otago.school.eprintsInformation Scienceen_NZ
dc.description.referencesISO/IEC Working Group: MPEG-7 overview. URL http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm (2004) Accessed 8.2.2006. Tzanetakis, G., Cook, P.: Musical genre classification of audio signals. IEEE Transactions on speech and audio processing 10 (2002) 293–302 Aucouturier, J., Pachet, F.: Scaling up music playlist generation. In: Proc. ICME. Volume 1. (2002) 105 – 108 Divakaran, A., Regunathan, R., Xiong, Z., Casey, M.: Procedure for audio-assisted browsing of news video using generalized sound recognition. In: Proc. SPIE. Volume 5021. (2003) 160–166 Foote, J.: An overview of audio information retrieval. Multimedia Systems 7 (1999) 2–10 Marques, J., Moreno, P.: A study of musical instrument classification using gaussian mixture models and support vector machines. Technical Report CRL 99/4, Compaq Computer Corporation (1999) Eronen, A.: Comparison of features for music instrument recognition. In: Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. (2001) 19–22 Essid, S., Richard, G., David, B.: Efficient musical instrument recognition on solo performance music using basic features. In: Proceedings of the Audio Engineering Society 25th International Conference. (2004) Accessed 22.11.2005. Peeters, G., McAdams, S., Herrera, P.: Instrument sound description in the context of mpeg-7. In: Proc. of Inter. Computer Music Conf. (2000) 166–169 Xiong, Z., Radhakrishnan, R., Divakaran, A., Huang, T.: Comparing MFCC and MPEG-7 audio features for feature extraction, maximum likelihood HMM and entropic prior HMM for sports audio classification. In: Proc. of ICME. Volume 3. (2003) 397–400 Brown, J.C., Houix, O.: Feature dependence in the automatic identification of musical woodwind instruments. Journal of the Acoustical Society of America 109(3) (2001) 1064–1072 Essid, S., Richard, G., David, B.: Musical instrument recognition by pairwise classification strategies. IEEE Trans. on Speech and Audio Processing (to appear) (2006) Accessed 2.12.2005. Agostini, G., Longari, M., Poolastri, E.: Musical instrument timbres classification with spectral features. EURASIP Journal on Applied Signal Processing (1) (2003) Livshin, A.A., Rodet, X.: Musical instrument identification in continuous recordings. In: Proceedings of the 7th International Conference on Digital Audio Effects. (2004) Eggink, J., Brown, G.J.: Instrument recognition in accompanied sonatas and concertos. In: Proc. of ICASSP. Volume IV. (2004) 217–220 Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. J. Machine Learning Research 5 (2004) 1205–1224 Grimaldi, M., Cunningham, P., Kokaram, A.: An evaluation of alternative feature selection strategies and ensemble techniques of classifying music. In Mladenic, D., Paa, G., eds.: Workshop in Multimedia Discovery and Mining at ECML/PKDD-2003. (2003) Yu, L., Liu, H.: Feature selection for high-dimensional data: A fast correlation-based filter solution. In: Proc. 20th Intl Conf. Machine Learning. (2003) 856–863 Qinlan, J.: C4.5: Programs for machine learning. Morgan Kaufmann (1993) Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical recipes in C. Cambridge University Press (1988) Niemann, H.: Klassifikation von Mustern. Springer Verlag (1983) IPEM: IPEM-toolbox. URL http://www.ipem.ugent.be/Toolbox (2005) Accessed 10.9.2005. Slaney, M.: The Auditory Toolbox. Technical Report 1998-010, Interval Research Corporation (1998) URL http://rvl4.ecn.purdue.edu/ ∼malcolm/interval/1998-010. Accessed 22.11.2005. Casey, M.: MPEG-7 sound-recognition tools. IEEE Trans. on Circuits and Systems for Video Technology 11(6) (2001) 737–747 Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques. Second edn. Morgan Kaufmann, San Francisco (2005)en_NZ
otago.relation.number2006/10en_NZ
 Find in your library

Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record