Show simple item record

dc.contributor.authorClark, Daviden_NZ
dc.date.available2011-04-07T03:05:50Z
dc.date.copyright2000-11en_NZ
dc.identifier.citationClark, D. (2000). Using consensus ensembles to identify suspect data (Information Science Discussion Papers Series No. 2000/17). University of Otago. Retrieved from http://hdl.handle.net/10523/967en
dc.identifier.urihttp://hdl.handle.net/10523/967
dc.description.abstractIn a consensus ensemble all members must agree before they classify a data point. But even when they all agree some data is still misclassified. In this paper we look closely at consistently misclassified data to investigate whether some of it may be outliers or may have been mislabeled.en_NZ
dc.format.mimetypeapplication/pdf
dc.publisherUniversity of Otagoen_NZ
dc.relation.ispartofseriesInformation Science Discussion Papers Seriesen_NZ
dc.subject.lcshQA76 Computer softwareen_NZ
dc.titleUsing consensus ensembles to identify suspect dataen_NZ
dc.typeDiscussion Paperen_NZ
dc.description.versionUnpublisheden_NZ
otago.bitstream.pages11en_NZ
otago.date.accession2010-10-27 21:04:59en_NZ
otago.schoolInformation Scienceen_NZ
otago.openaccessOpen
otago.place.publicationDunedin, New Zealanden_NZ
dc.identifier.eprints981en_NZ
otago.school.eprintsKnowledge Engineering Laboratoryen_NZ
otago.school.eprintsInformation Scienceen_NZ
dc.description.references1. Brieman, L.: Bagging predictors. Machine Learning 24(2) (1996) 123-140 2. Clemen, R.: Combining forecasts: A review and annotated bibliography. Journal of forecasting 5 (1989) 559-583 3. Wolpert, D.: Stacked generalization. Neural Networks 5 (1992) 241-259 4. Brieman, L.: Stacked regressions. Machine Learning 24(1) (1996) 49-64 5. Freund, Y. and Schapire, R.: Experiments with a new boosting algorithm. Proceedings of the Thirteenth International Conference on Machine Learning (1996) Morag Kaufmann 148-156 6. Alpaydin, E.: Multiple networks for function learning. Proceedings of the 1993 IEEE International conference on Neural Networks, I (1993) 27-32 7. Cox, R., Clark, D. and Richardson, A. An investigation into the effect of ensemble size and voting threshold on the accuracy of neural network ensembles. The 12th Australian Joint Conference on Artificial Intelligence (AI'99), Sydney, Dec, 1999, 268-277. 8. UCI machine learning repository at: http://www.ics.uci.edu/~mlearn/MLRepository.html 9. Hampel, F. R. Robust Estimation: A condensed partial survey, Z. Wahrsch. Verw. Geb., 27, pp. 87-104. 10. Barnett, V. and Lewis, T. Outliers in Statistical Data, 3rd edition. Wiley, Chichester, England. 1994. 11. Huber, P.J. Robust Statistical Procedures, 2nd edition. SIAM, Philadelphia, 1996. 12. Nash, W. J., Sellers, T. L., Talbot, S. R., Cawthorn, A. J. Ford, W. B., “The Population Biology of Abalone (Haliotis species) in Tasmania. I. Blacklip Abalone (H. rubra) from the North Coast and Islands of the Bass Strait, SFD, Tasmania. Technical Report # 48 (1994) 13. Knowledge Engineering Laboratory, Department of Information Science, University of Otago at http://divcom.otago.ac.nz/infosci/kel/en_NZ
otago.relation.number2000/17en_NZ
 Find in your library

Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record